Verified High-Order Optimal Control in Space Flight Dynamics

R. Armellin, P. Di Lizia, F. Bernelli-Zazzera Politecnico di Milano

K. Makino and M. Berz *Michigan State University*

> Fourth International Workshop on Taylor Methods Boca Raton, December 16 – 19, 2006

Motivation

- Space trajectory design is always affected by uncertainties
 - Uncertainties due to navigation systems (errors on the knowledge of the vehicle position and velocity)
 - Uncertainties in modeling both the environment and the system performances (e.g. atmosphere density and vehicle aerodynamic parameters)
- The design of a space mission must take into account the expected uncertainties values: robust design

Outline

- Robust guidance algorithm using Differential Algebra (DA)
 - Aerocapture maneuver
- DA solution of robust optimal control problem
 - Low-thrust transfer to Mars
- Verified optimal control via Taylor Model (TM)
 - Lunar landing

Robust Guidance

- The trajectory is computed in nominal conditions typically by solving an optimization problem
- The trajectory is characterized by
 - A nominal vector of parameters $p = \{x_{i}, p_{1}, p_{2}, ..., p_{n}\}$ which includes also the initial state x_{i}
 - A nominal control history $\boldsymbol{u} = \boldsymbol{g}(u_0, u_1, \dots, u_n, t)$ defined for example by a cubic spline interpolation
 - A nominal final state x_f
- The goal of robust guidance algorithm is to find the corrections in the control law *u* to reach the final position *x_f* regardless of the uncertainties on *p*

Robust Guidance: DA algorithm

Simple 1D problem:

- Initialize the uncertain parameter $[p] = p^0 + \Delta p$ and the control change $[u] = u^0 + \Delta u$ as DA variables
- By means of DA numerical integration obtain the n-th order map $\Delta x_f = \mathcal{M}(\Delta u, \Delta p)$
- Add the identity map $\Delta p = \mathcal{I}(\Delta p)$ and invert the complete map to gain $\Delta u = \mathcal{M}^{-1}(\Delta x_f, \Delta p)$
- By forcing $\Delta x_f = 0$ find $\Delta u = \Delta u(\Delta p)$

Aerocapture Maneuver

• Aerocapture is a way to reduce the propellant needed to gain the final planetary trajectory

$$\begin{aligned} \dot{R} &= V \sin \gamma \\ \dot{\theta} &= \frac{V \cos \gamma \cos \psi}{R \cos \phi} \\ \dot{\theta} &= \frac{V \cos \gamma \sin \psi}{R} \\ \dot{\phi} &= \frac{D}{m} - G \sin \gamma \\ \dot{V} &= \frac{D}{m} - G \sin \gamma \\ V \dot{\gamma} &= \frac{L \cos \sigma}{m} - G \cos \gamma + \frac{V^2 \cos \gamma}{R} \\ V \dot{\psi} &= \frac{L \sin \sigma}{m \cos \gamma} - \frac{V^2 \tan \phi \cos \gamma \cos \psi}{R} \end{aligned}$$

with
$$D = \frac{1}{2}\rho V^2 S C_D$$
, $L = \frac{1}{2}\rho V^2 S C_L$

exponential density model $\rho = \rho_0 e^{-\beta h}$ and control parameter σ

Aerocapture Maneuver

Aerocapture Maneuver

Michigan State University

Politecnico di Milano

- Uncertainties considered: C_D ± 20 %, Q₀ ± 20%, γ₀ ± 0.8 deg
- Due to the high instability of the dynamics, a composition of several maps is required to manage γ₀ uncertainty
- 1 to 4 control points to match 1 to
 4 final state components
- 7th order Taylor expansions

Ι	COEFFICIENT	ORDER	EXPONENTS
1	7.640628215424944E-02	1	10
2	0.3760917116838308E-02	2	20
3	0.2420044808209212E-03	3	30
4	0.2012492098396635E-04	4	4 0
5	0.1944954823730704E-05	5	50
6	0.1750467514565079E-06	6	60
7	1841260173271442E-05	7	70

Transfer between two fixed states

• Suppose we have a nominal solution of the optimal control problem:

$$\begin{split} \dot{\boldsymbol{x}} &= \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t) & \text{Find a solution that minimize} \\ \boldsymbol{x}(t_i) &= \boldsymbol{x}_i & \\ \boldsymbol{x}(t_f) &= \boldsymbol{x}_f & \\ \text{where} \quad \boldsymbol{x} &= \{x_1, x_2, \dots, x_n\} & J = \int_{t_i}^{t_f} \frac{1}{2} u^2 d\tau \end{split}$$

Obtained by means of a control parameterization:

$$u = g(u_1, u_2, ..., u_m, t), m > n$$

- Suppose the presence of uncertainty on the initial state
- Find the new control function which solves the previous problem (i.e. reach x_f and minimize J)

Algorithm:

- Initialize x_i and the control parameters as DA variables: $[x_i] = x_i^0 + \Delta x_i$ and $[u_k] = u_k^0 + \Delta u_k$ for $k = 1, \dots, m$
- A Runge-Kutta DA integration of the ODE leads to:

$$\Delta \boldsymbol{x}_{f} = \mathcal{M}_{\boldsymbol{x}_{f}}(\Delta \boldsymbol{x}_{i}, \Delta \boldsymbol{u}) \text{ and } \Delta \boldsymbol{u} = \{\Delta u_{1}, ..., \Delta u_{m}\}$$

Expansion of x_f w.r.t. x_i and the control parameters

• Select a subset of control parameters equal to the number of constraints on the final state (n), Δu_o , and indicate the remaining ones (m-n) with Δu_a

- Expand the constraint manifold
 - Build the following map and invert it:

$$\begin{pmatrix} \Delta \boldsymbol{x}_f \\ \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{x}_i \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \mathcal{M}_{\boldsymbol{x}_f} \end{bmatrix} \\ \begin{bmatrix} \mathcal{I}_{\boldsymbol{u}_a} \end{bmatrix} \\ \begin{bmatrix} \mathcal{I}_{\boldsymbol{x}_i} \end{bmatrix} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{x}_i \\ \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{u}_o \end{pmatrix} \longrightarrow \begin{pmatrix} \Delta \boldsymbol{x}_i \\ \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{u}_o \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \mathcal{M}_{\boldsymbol{x}_f} \end{bmatrix} \\ \begin{bmatrix} \mathcal{I}_{\boldsymbol{u}_a} \end{bmatrix} \\ \begin{bmatrix} \mathcal{I}_{\boldsymbol{x}_i} \end{bmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \Delta \boldsymbol{x}_f \\ \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{x}_i \end{pmatrix}$$

• By imposing $\Delta x_f = 0$ obtain the Taylor Series expansion of the constraint manifold:

$$\Delta \boldsymbol{u}_o = \mathcal{M}_{\boldsymbol{u}_o}(\Delta \boldsymbol{u}_a, \Delta \boldsymbol{x}_i)$$

- Substitute in the objective function and gain: $J = \mathcal{J}(\Delta u_a, \Delta u_o, \Delta x_i) \longrightarrow \overline{J} = \overline{\mathcal{J}}(\Delta u_a, \Delta x_i)$
- Evaluate the gradient with respect to $\Delta \boldsymbol{u}_a$: $\nabla_{\boldsymbol{u}_a} \bar{J} = \nabla_{\boldsymbol{u}_a} \bar{\mathcal{J}}(\Delta \boldsymbol{u}_a, \Delta \boldsymbol{x}_i)$

• Build the following map and invert it:

 $\begin{pmatrix} \nabla_{\boldsymbol{u}_a} \bar{J} \\ \Delta \boldsymbol{x}_i \end{pmatrix} = \begin{pmatrix} [\nabla_{\boldsymbol{u}_a} \bar{\mathcal{J}}] \\ [\mathcal{I}_{\boldsymbol{x}_i}] \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{x}_i \end{pmatrix} \longrightarrow \begin{pmatrix} \Delta \boldsymbol{u}_a \\ \Delta \boldsymbol{x}_i \end{pmatrix} = \begin{pmatrix} [\nabla_{\boldsymbol{u}_a} \bar{\mathcal{J}}] \\ [\mathcal{I}_{\boldsymbol{x}_i}] \end{pmatrix}^{-1} \begin{pmatrix} \nabla_{\boldsymbol{u}_a} \bar{\mathcal{J}} \\ \Delta \boldsymbol{x}_i \end{pmatrix}$

- Given an uncertainty on the initial state Δx_i, the previous map delivers, by imposing ∇_{u_a} J
 = 0, the control correction Δu_a, solution of the optimal control problem
- The corrections to be applied on the omitted variables, Δu_o , are given by the previous explicit expression of the constraint manifold

Low-Thrust Transfer to Mars

- The control profile is described by a cubic spline defined on 4 time-equally-spaced collocation points
- Nominal optimal solution
 - Departing time $t_0 = 1213.8 \text{ MJD}$
 - Transfer time $t_{tof} = 513.210$ days
 - Uncertainty considered
 - Launch window $t_0 = [1208, 1219]$ MJD

Low-Thrust Transfer to Mars

- DA techniques are used to evaluate the analytical ephemerides with departing date uncertainty
- As a result the ephemeris model delivers Taylor expansions of the Earth position and velocity (initial state)
- The time of flight is chosen to keep the arrival date fixed

TM Validated Control

- The DA control law can be validated using TM
- Consider the generic ODE:

 $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$ $\boldsymbol{x}(t_i) = \boldsymbol{x}_i$

• The Taylor series are transformed into a Taylor model by composition with a Taylor model identity e

.g if
$$\Delta u = \Delta u (\Delta x_i) \longrightarrow \Delta u^T = \Delta u \circ \mathcal{I}_{x_i}^T$$

• The dynamics is then propagated using the TM control and validated Taylor integrator

Lunar Landing - 2BP

- Nominal initial conditions: pericenter of an elliptic orbit (20 km of altitude)
- The goal is to land at Moon South Pole
- The nominal optimal control is computed in a two-body dynamical model
- Firstly DA is used to find the control strategy that reacts to the uncertainties in two-body problem (2BP)

Example 1:

Introduced uncertainty:
 30 m on initial position

J

Michigan State University

olitecnico di Milano

16

Lunar Landing - 2BP

Example 2:

- Introduced uncertainty:
 - 10 m on initial position
 - 10 m/s on initial velocity
- Control corrections of the order of 10⁰ N

• Secondly Taylor models are introduced and the validated Taylor integration is used to address the validated control problem:

Variable	Desired	Interval Enclosure	Width
X [m]	-0.5512	[-0.5534 , -0.5491]	0.0043
Y [m]	1.6180	[1.6137 , 1.6220]	0.0083
Z [m]	0.0000	[-0.3648E-003, 0.3648E-003]	7.2960E-04
Vx [m/s]	-0.6553E-003	[-0.6575E-003, -0.6531E-003]	4.4000E-06
Vy [m/s]	-3.0006511	[-3.0006590 , -3.0006436]	1.5400E-05
Vz [m/s]	0.0000	[-0.3183E-006, 0.3183E-006]	6.3660E-07

Politecnico di Milano Michigan State University

Lunar Landing - Perturbed 2BP

- Introduced perturbations:
 - Moon oblateness
 - Earth gravity field
 - Sun gravity field

• Validated Taylor Integration:

Variable	Interval	Enclosure	Width
X [m]	<pre>[705.9079 [2132.9812 [985.8375 [0.4504 [1.0267 [0.9344</pre>	, 709.3936	3.4857
Y [m]		, 2147.2011	14.2199
Z [m]		, 992.4736	6.6361
Vx [m/s]		, 0.4523	0.0019
Vy [m/s]		, 1.0494	0.0227
Vz [m/s]		, 0.9385	0.0041

18

Politecnico di Milano Michigan State University

Conclusions and Future Work

Conclusions:

- DA computation is a powerful tool not only to address uncertainties sensitivity but also to solve optimal robust control problems in space flight dynamics
- TM can be use to solve validated control problem thus avoiding any Monte Carlo simulation run

Future work:

- Extend TM validation to aerodynamic phases and to larger value of initial uncertainties
- Address the optimal feedback control problem

Verified High-Order Optimal Control in Space Flight Dynamics

R. Armellin, P. Di Lizia, K. Makino, M. Berz

Fourth International Workshop on Taylor Methods Boca Raton, December 16 – 19, 2006