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The Reference Trajectory
First Step:Obtain Taylor expansion in time of solution of ODE
of center point c, i.e. obtain

c(t) = c0 + c1 � (t� t0) + c2 � (t� t0)2 + ::: + cn � (t� t0)n

Very well known from day one how to do this with automatic
di¤erentiation. Rather convenient way: can be done by n iterations
of the Picard Operator

c(t) = c0 +

Z t

0

f (r(t0); t)dt0

in one-dimensional Taylor arithmetic. Each iteration raises the
order by one; so in each iteration i, only need to do Taylor arith-
metic in order i. In either way, this step is cheap since it involves
only one-dimensional operations.



The Nonlinear Flow
Second Step: The goal is to obtain Taylor expansion in time
to order n and initial conditions to order k. Note:

1. This is usually the most expensive step. In the original Taylor
model-based algorithm, it is done by n iterations of the Picard
Operator in multi-dimensional Taylor arithmetic, where c0 is
now a polynomial in initial conditions.

2. The case k = 1 has been known for a long time. Tradition-
ally solved by setting upODEs for sensitivities and solving
these as before.

3. The case of higher k goes back to Beam Physics (M. Berz,
Particle Accelerators 1988)

4. Newest Taylor model arithmetic naturally supports di¤erent
expansions orders k for initial conditions and n for time.

Goal: Obtain �ow with one single evaluation of right hand
side.



The Nonlinear Relative ODE
We now develop a better way for second step.
First: introduce new "perturbation" variables ~r such that

r(t) = c(t) + A � ~r(t):
The matrix A provides preconditioning. ODE for ~r(t):

~r0 = A�1 [f (c(t) + A � ~r(t))� c0(t)]
Second: evaluate ODE for ~r0 in Taylor arithmetic. Obtain a
Taylor expansion of the ODE, i.e.

~r0 = P (~r; t)

up to order n in time and k in ~r: Very important for later use:
the polynomial P will have no constant part, i.e.

P (0; t) = 0:



Reminder: The Lie Derivative
Let

r0 = f (r; t)

be a dynamical system. Let g be a variable in state space, and let
us study g(r(t)); i.e. along a solution of the ODE. We have

d

dt
g(t) = f � rg + @g

@t

Introducing the Lie Derivative Lf = f � r + @=@t; we have

dn

dtn
g = Lnfg and g(t) �

nX
i=0

(t� t0)i
i!

Lifg
�
t=t0



Di¤erential Algebras on Taylor Polynomial Spaces

Consider space nDv of Taylor polynomials in v variables and or-
der n with truncation multiplication. Formally: introduce equiv-
alence relation on space of smooth functions

f =n g

if all derivatives from 0 to n agree at 0: Class of f is denoted [f ]:
This induces addition, multiplication and scalar multiplication on
classes. The resulting structure forms an algebra.
An algebra is a Di¤erential Algebra if there is an operation
@; called a derivation, that satis�es

@(s � a + t � b) = s � @a + t � @b and
@(a � b) = a � (@b) + (@a) � b

for any vectors a and b and scalars s and t. Unfortunately, the
natural partial derivative operations [f ] ! [@if ] does not
introduce a di¤erential algebra, because of loss of highest order.



Di¤erential Algebras on Taylor Polynomial Spaces

However, consider the modi�ed operation

@f with @fg = f � rg
If f is origin preserving, i.e. f (0) = 0; then @f is a derivation on
the space nDv. Why?

� Each derivative operation in the gradientrg looses the highest
order;

� but since f (0) = 0; the missing order inrg does not matter
since it does not contribute to the product f � rg:



Polynomial Flow from Lie Derivative
Remember the ODE for ~r0:

~r0 = P (~r; t)

up to order n in time and k in ~r: And remember P (0; t) = 0: Thus
we can obtain the n-th order expansion of the �ow as

~r(t) =

nX
i=0

(t� t0)i
i!

�
�
P � r + @

@t

�i
~r0

,
t=t0

� The fact that P (0; t) = 0 restores the derivatives lost in r
� The fact that @=@t appears without origin-preserving factor
limits the expansion to order n:



Performance of Lie Derivative Flow Methods

Apparently we have the following:
� Each term in the Lie derivative sum requires v + 1 derivations
(very cheap, just re-shu­ ing of coe¢ cients)

� Each term requires v multiplications
�We need one evaluation of f in nDv (to set up ODE)
Compare this with the conventional algorithm, which requires n
evaluations of the function f of the right hand side. Thus, roughly,
if the evaluation of f requires more than v multiplications, the new
method is more e¢ cient.
�Many practically appearing right hand sides f satisfy this.
� But on the other hand, if the function f does not satisfy this
(for example for the linear case), then also P will be simple
(in the linear case: P will be linear), and thus less operations
appear



Error Analysis via Interval Defect
Third step of rigorous method: provide rigorous error esti-
mate. We now try to introduce a set of variables ~e, the error
variables, such that the �ow rigorously satis�es

r(t) = c(t) + A � ~r(t) + ~e:
ODE for ~e(t) :

~e0 = f (c(t) + A � ~r(t) + ~e)� c0(t)� A � ~r0(t)
Now again evaluating ODE for ~e0 in Taylor arithmetic. Obtain a
Taylor expansion of the ODE:

~e0 = 0

up to order n in time and k in initial conditions(!)
Of course this is not the real ODE: we are missing the remainder
errors. However, evaluating the ODE for ~e0 in Taylor Model
arithmetic, we obtain a (very small) interval term R, the Taylor
model remainder, such that

~e0 2 R



Error Analysis via Defect - Implementation
For practical implementation, the following aspects are critical:

1. Make sure ~r0(t) numerically �ts with ~r(t): Solution: obtain ap-
proximate value of ~r0(t); and then obtain a Taylor model forR
~r0(t) to represent ~r. Can be done

2. Defect ODE can be solved with very simple Euler-type integra-
tor.

3. Simplest possible case: treat ~e as intervals. Leads to a cone-type
�ow enclosure.

4. Next more sophisticated case: treat ~e as additional variables
(to very low order). Leads to linear inhomogeneous ODE.



Step Size Control
Step size control to maintain approximate error " in each step.
Based on a suite of tests:

1. Utilize the Reference Orbit. Extrapolate the size of coe¢ -
cients for estimate of remainder error, scale so that it reaches
and get �t1. Goes back to Moore in 1960s. This is one of
conveniences when using Taylor integrators.

2. Utilize theFlow. Compute�ow time stepwith�t1:Extrapolate
the contributions of each order of �ow for estimate of remainder
error to get update �t2.

3. Utilize a Correction factor c to account for overestimation
in TM arithmetic as c = n+1

p
jRj=": Largely a measure of com-

plexity of ODE. Dynamically update the correction factor.

4. Perform veri�cation attempt for �t3 = c ��t2
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Dynamic Domain Decomposition

For extended domains (i.e. not only point solutions), this is
natural equivalent to step size control. Similarity to what�s
done in global optimization.

1. Evaluate ODE for �t = 0 for current �ow.

2. If remainder resulting remainder bound R greater than say
"=10; split domain along variable leading to longest axis.

3. Put one half of the box on stack for future work.

Things to consider:

� Since TM provides inner and outer estimate, R is very conve-
nient measure for actual overstimation

� Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.



�When using QR preconditioning, make sure longest side stays
longest. (Not a problem for CV preconditioning)

� Outlook: also dynamic order control for dependence on initial
conditions
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The Double Pendulum - a Chaotic System

d2

dt2
 1 =

l1m2

h
l2( _ 1 + _ 2)

2 + l1 _ 
2
1 cos 2

i
l21
�
m1 +m2 sin

2 2
� sin 2

+ g � �l1(m1 +m2) sin 1 + l1m2 cos 2 sin( 1 +  2)

l21
�
m1 +m2 sin

2 2
�

d2

dt2
 2 = �

(l1(m1 +m2) + l2m2 cos 2)l1 _ 
2
1

l1l2(m1 +m2 sin
2 2)

sin 2

� l2m2(l2 + l1 cos 2)( _ 1 + _ 2)
2

l1l2(m1 +m2 sin
2 2)

sin 2

+ g � (m1 +m2)(l2 + l1 cos 2) sin 1

l1l2(m1 +m2 sin
2 2)

� g � (l1(m1 +m2) + l2m2 cos 2) sin( 1 +  2)

l1l2(m1 +m2 sin
2 2)



The Double Pendulum - Initial Conditions
In agreement with recent work of Rauh et al. (SCAN2006), we
consider the parameter values (l1; l2; m1; m2,g) = (1; 1; 1; 1; 9:81):

 1(t = 0) 2
3�

4
+
1

100

3�

4
[�1;+1]

 2(t = 0) = �1:726533538
_ 1(t = 0) = 0:4138843714
_ 2(t = 0) = 0:6724072960

These initial conditions are in the chaotic regime. Illustration
of motion (for similar, but not identical initial conditions):

http://www.vis.uni-stuttgart.de/~kraus/
LiveGraphics3D/examples/parametrized/pendulum.html
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The Double Pendulum - Code Performance
Integration was carried out from t = 0 until t = 0:5 sec.
VNODE (Ned Nedialkov), QR method
ValEncIA-IVP (Rauh and Auer), Domain decomposition by
lots of intervals, forward/backward integration for pruning
COSY-VI Taylor models, no domain decomposition at t = 1:0:
(The data reported for VNODE and ValEncIA-IVP are quoted
from Rauh et al., SCAN2006).

Time t CPU VNODE CPU ValEncIA CPU COSY
0:5 15:4 sec 5880 / 94 sec * 0:51 sec
1:0 (breakdown t < 0:6) (breakdown t < 0:6) 2:04 sec

* First number: Implementation using Matlab-Intlab,
second number: using C++ interval library



The Double Pendulum - Check of COSY-VI
The doule pendulum preservers energy. Evaluating energy
in Taylor model arithmetic over the entire �ow at any two points
in the integration, and subtracting the results, must result in a
tight enclosure of zero.
Total Energy E is given as

E = m1 � g � y1 +m2 � g � y2 +
1

2
m1

�
_x21 + _y21

�
+
1

2
m2

�
_x22 + _y22

�
:

Elementary arithmetic shows that

x1 = l1 � sin 1, x2 = x1 + l2 � sin( 1 +  2)
y1 = �l1 � cos 1; y2 = y1 � l2 � cos( 1 +  1)
_x1 = _ 1 � l1 � cos 1; _x2 = _x1 + ( _ 1 + _ 2) � l2 � cos( 1 +  2)
_y1 = _ 1 � l1 � sin 1; _y2 = _y1 + ( _ 1 + _ 2) � l2 � sin( 1 +  2)



The Double Pendulum - Energy at t=0

I COEFFICIENT ORDER EXPONENTS
1 6.636304564436251 0 0 0 0 0 0
2 0.4629982784681443 1 1 0 0 0 0
3 -.1650152672869661E-02 2 2 0 0 0 0
4 -.4284009231437226E-04 3 3 0 0 0 0
5 0.7634228476230531E-07 4 4 0 0 0 0
6 0.1189166522762920E-08 5 5 0 0 0 0
7 -.1412752780648741E-11 6 6 0 0 0 0
8 -.1571866492860271E-13 7 7 0 0 0 0
R [-.1538109061161243E-012,0.1517608952722424E-012]



The Double Pendulum - Energy at t=0.5

I COEFFICIENT ORDER EXPONENTS
1 6.636304564436253 0 0 0 0 0 0
2 0.4629982784681632 1 1 0 0 0 0
3 -.1650152672942219E-02 2 2 0 0 0 0
4 -.4284009217517837E-04 3 3 0 0 0 0
5 0.7634212049420934E-07 4 4 0 0 0 0
6 0.1189297979605227E-08 5 5 0 0 0 0
7 -.1487493064301731E-11 6 6 0 0 0 0
8 0.1498746352978318E-13 7 7 0 0 0 0
9 -.8978311500296960E-14 8 8 0 0 0 0
10 0.1732136627097570E-14 9 9 0 0 0 0
11 -.1410358744591400E-15 10 10 0 0 0 0
12 -.3488804283416099E-16 11 11 0 0 0 0
13 0.1647113913603616E-16 12 12 0 0 0 0
R [-.6845903858358710E-010,0.7016561210090576E-010]



The Double Pendulum - Energy Di¤erence

I COEFFICIENT ORDER EXPONENTS
1 0.2664535259100376E-14 0 0 0 0 0 0
2 0.1881828026739640E-13 1 1 0 0 0 0
3 -.7255849567011641E-13 2 2 0 0 0 0
4 0.1391938932279908E-12 3 3 0 0 0 0
5 -.1642680959724263E-12 4 4 0 0 0 0
6 0.1314568423076692E-12 5 5 0 0 0 0
7 -.7474028365299068E-13 6 6 0 0 0 0
8 0.3070612845838590E-13 7 7 0 0 0 0
9 -.8992317058282886E-14 8 8 0 0 0 0
10 0.1732136627097570E-14 9 9 0 0 0 0
11 -.1410358744591400E-15 10 10 0 0 0 0
12 -.3488804283416099E-16 11 11 0 0 0 0
13 0.1647113913603616E-16 12 12 0 0 0 0
R [-.6861710643018788E-010,0.7032572995835042E-010]
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Long Term Behavior
We observe the following:

1. Around t = 2; initial condition range leads to noticeable broad-
ening of ranges

2. Around t = 5; initial condition range leads to angle spread by
> 2�; i.e. di¤erent full revolutions

3. Around t = 30; conventional non-veri�ed integrators reach their
accuracy limit

Question: How long can COSY integrate with dynamic domain
decomposition?
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