Fourth International Workshop on Taylor Methods

Boca Raton, Florida
December 16-19, 2006

High-Order Methods - Verification \& Taylor Models Automatic Differentiation Differential Algebraic Tools
and their use for:
ODE and PDE Solvers
Global Optimization
Constraint Satisfaction
Dynamical Systems
Beam Physics

Recent Advances in Taylor Model-based ODE Integration

Martin Berz and Kyoko Makino

Michigan State University

Outline

1. The Reference Trajectory
2. The Flow Operator
3. Defect-Based Verification
4. Step Size Control
5. Example: The Double Pendulum
6. Example / Outlook: Manifolds of the Henon Map

The Reference Trajectory

First Step: Obtain Taylor expansion in time of solution of ODE of center point c, i.e. obtain

$$
c(t)=c_{0}+c_{1} \cdot\left(t-t_{0}\right)+c_{2} \cdot\left(t-t_{0}\right)^{2}+\ldots+c_{n} \cdot\left(t-t_{0}\right)^{n}
$$

Very well known from day one how to do this with automatic differentiation. Rather convenient way: can be done by n iterations of the Picard Operator

$$
c(t)=c_{0}+\int_{0}^{t} f\left(r\left(t^{\prime}\right), t\right) d t^{\prime}
$$

in one-dimensional Taylor arithmetic. Each iteration raises the order by one; so in each iteration i, only need to do Taylor arithmetic in order i. In either way, this step is cheap since it involves only one-dimensional operations.

The Nonlinear Flow

Second Step: The goal is to obtain Taylor expansion in time to order n and initial conditions to order k. Note:

1. This is usually the most expensive step. In the original Taylor model-based algorithm, it is done by n iterations of the Picard Operator in multi-dimensional Taylor arithmetic, where c_{0} is now a polynomial in initial conditions.

2 . The case $k=1$ has been known for a long time. Traditionally solved by setting up ODEs for sensitivities and solving these as before.
3. The case of higher k goes back to Beam Physics (M. Berz, Particle Accelerators 1988)
4. Newest Taylor model arithmetic naturally supports different expansions orders k for initial conditions and n for time.

Goal: Obtain flow with one single evaluation of right hand side.

The Nonlinear Relative ODE

We now develop a better way for second step.
First: introduce new "perturbation" variables \tilde{r} such that

$$
r(t)=c(t)+A \cdot \tilde{r}(t)
$$

The matrix A provides preconditioning. ODE for $\tilde{r}(t)$:

$$
\tilde{r}^{\prime}=A^{-1}\left[f(c(t)+A \cdot \tilde{r}(t))-c^{\prime}(t)\right]
$$

Second: evaluate ODE for \tilde{r}^{\prime} in Taylor arithmetic. Obtain a Taylor expansion of the ODE, i.e.

$$
\tilde{r}^{\prime}=P(\tilde{r}, t)
$$

up to order n in time and k in \tilde{r}. Very important for later use: the polynomial P will have no constant part, i.e.

$$
P(0, t)=0 .
$$

Reminder: The Lie Derivative

Let

$$
r^{\prime}=f(r, t)
$$

be a dynamical system. Let g be a variable in state space, and let us study $g(r(t))$, i.e. along a solution of the ODE. We have

$$
\frac{d}{d t} g(t)=f \cdot \nabla g+\frac{\partial g}{\partial t}
$$

Introducing the Lie Derivative $L_{f}=f \cdot \nabla+\partial / \partial t$, we have

$$
\frac{d^{n}}{d t^{n}} g=L_{f}^{n} g \text { and } g(t) \approx \sum_{i=0}^{n} \frac{\left(t-t_{0}\right)^{i}}{i!} L_{f}^{i} g /_{t=t_{0}}
$$

Differential Algebras on Taylor Polynomial Spaces

Consider space ${ }_{n} D_{v}$ of Taylor polynomials in v variables and order n with truncation multiplication. Formally: introduce equivalence relation on space of smooth functions

$$
f={ }_{n} g
$$

if all derivatives from 0 to n agree at 0 . Class of f is denoted $[f]$. This induces addition, multiplication and scalar multiplication on classes. The resulting structure forms an algebra.

An algebra is a Differential Algebra if there is an operation ∂, called a derivation, that satisfies

$$
\begin{aligned}
\partial(s \cdot a+t \cdot b) & =s \cdot \partial a+t \cdot \partial b \text { and } \\
\partial(a \cdot b) & =a \cdot(\partial b)+(\partial a) \cdot b
\end{aligned}
$$

for any vectors a and b and scalars s and t. Unfortunately, the natural partial derivative operations $[f] \rightarrow\left[\partial_{i} f\right]$ does not introduce a differential algebra, because of loss of highest order.

Differential Algebras on Taylor Polynomial Spaces

However, consider the modified operation

$$
\partial_{f} \text { with } \partial_{f} g=f \cdot \nabla g
$$

If f is origin preserving, i.e. $f(0)=0$, then ∂_{f} is a derivation on the space ${ }_{n} D_{v}$. Why?

- Each derivative operation in the gradient ∇g looses the highest order;
- but since $f(0)=0$, the missing order in ∇g does not matter since it does not contribute to the product $f \cdot \nabla g$.

Polynomial Flow from Lie Derivative

Remember the ODE for \tilde{r}^{\prime} :

$$
\tilde{r}^{\prime}=P(\tilde{r}, t)
$$

up to order n in time and k in \tilde{r}. And remember $P(0, t)=0$. Thus we can obtain the n-th order expansion of the flow as

$$
\tilde{r}(t)=\sum_{i=0}^{n} \frac{\left(t-t_{0}\right)^{i}}{i!} \cdot\left(P \cdot \nabla+\frac{\partial}{\partial t}\right)^{i} \tilde{r}_{0} /{ }_{t=t_{0}}
$$

- The fact that $P(0, t)=0$ restores the derivatives lost in ∇
- The fact that $\partial / \partial t$ appears without origin-preserving factor limits the expansion to order n.

Performance of Lie Derivative Flow Methods

Apparently we have the following:

- Each term in the Lie derivative sum requires $v+1$ derivations (very cheap, just re-shuffling of coefficients)
- Each term requires v multiplications
- We need one evaluation of f in ${ }_{n} D_{v}$ (to set up ODE)

Compare this with the conventional algorithm, which requires n evaluations of the function f of the right hand side. Thus, roughly, if the evaluation of f requires more than v multiplications, the new method is more efficient.

- Many practically appearing right hand sides f satisfy this.
- But on the other hand, if the function f does not satisfy this (for example for the linear case), then also P will be simple (in the linear case: P will be linear), and thus less operations appear

Error Analysis via Interval Defect

Third step of rigorous method: provide rigorous error estimate. We now try to introduce a set of variables \tilde{e}, the error variables, such that the flow rigorously satisfies

$$
r(t)=c(t)+A \cdot \tilde{r}(t)+\tilde{e}
$$

ODE for $\tilde{e}(t)$:

$$
\tilde{e}^{\prime}=f(c(t)+A \cdot \tilde{r}(t)+\tilde{e})-c^{\prime}(t)-A \cdot \tilde{r}^{\prime}(t)
$$

Now again evaluating ODE for \tilde{e}^{\prime} in Taylor arithmetic. Obtain a Taylor expansion of the ODE:

$$
\tilde{e}^{\prime}=0
$$

up to order n in time and k in initial conditions(!)
Of course this is not the real ODE: we are missing the remainder errors. However, evaluating the ODE for \tilde{e}^{\prime} in Taylor Model arithmetic, we obtain a (very small) interval term R, the Taylor model remainder, such that

$$
\tilde{e}^{\prime} \in R
$$

Error Analysis via Defect - Implementation

For practical implementation, the following aspects are critical:

1. Make sure $\tilde{r}^{\prime}(t)$ numerically fits with $\tilde{r}(t)$. Solution: obtain approximate value of $\tilde{r}^{\prime}(t)$, and then obtain a Taylor model for $\int \tilde{r}^{\prime}(t)$ to represent \tilde{r}. Can be done
2. Defect ODE can be solved with very simple Euler-type integrator.
3. Simplest possible case: treat ẽ as intervals. Leads to a cone-type flow enclosure.
4. Next more sophisticated case: treat \tilde{e} as additional variables (to very low order). Leads to linear inhomogeneous ODE.

Step Size Control

Step size control to maintain approximate error ε in each step.
Based on a suite of tests:

1. Utilize the Reference Orbit. Extrapolate the size of coefficients for estimate of remainder error, scale so that it reaches and get Δt_{1}. Goes back to Moore in 1960s. This is one of conveniences when using Taylor integrators.
2. Utilize the Flow. Compute flow time step with Δt_{1}. Extrapolate the contributions of each order of flow for estimate of remainder error to get update Δt_{2}.
3. Utilize a Correction factor c to account for overestimation in TM arithmetic as $c=\sqrt[n+1]{|R| / \varepsilon}$. Largely a measure of complexity of ODE. Dynamically update the correction factor.
4. Perform verification attempt for $\Delta t_{3}=c \cdot \Delta t_{2}$

Dynamic Domain Decomposition

For extended domains (i.e. not only point solutions), this is natural equivalent to step size control. Similarity to what's done in global optimization.

1. Evaluate ODE for $\Delta t=0$ for current flow.
2. If remainder resulting remainder bound R greater than say $\varepsilon / 10$, split domain along variable leading to longest axis.
3. Put one half of the box on stack for future work.

Things to consider:

- Since TM provides inner and outer estimate, R is very convenient measure for actual overstimation
- Utilize "First-in-last-out" stack; minimizes stack length. Special adjustments for stack management in a parallel environment, including load balancing.
- When using QR preconditioning, make sure longest side stays longest. (Not a problem for CV preconditioning)
- Outlook: also dynamic order control for dependence on initial conditions

$y \mathbb{1}$

x

The Double Pendulum - a Chaotic System

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \psi_{1} & =\frac{l_{1} m_{2}\left[l_{2}\left(\dot{\psi}_{1}+\dot{\psi}_{2}\right)^{2}+l_{1} \dot{\psi}_{1}^{2} \cos \psi_{2}\right]}{l_{1}^{2}\left[m_{1}+m_{2} \sin ^{2} \psi_{2}\right]} \sin \psi_{2} \\
& +g \cdot \frac{-l_{1}\left(m_{1}+m_{2}\right) \sin \psi_{1}+l_{1} m_{2} \cos \psi_{2} \sin \left(\psi_{1}+\psi_{2}\right)}{l_{1}^{2}\left[m_{1}+m_{2} \sin ^{2} \psi_{2}\right]} \\
\frac{d^{2}}{d t^{2}} \psi_{2} & =-\frac{\left(l_{1}\left(m_{1}+m_{2}\right)+l_{2} m_{2} \cos \psi_{2}\right) l_{1} \dot{\psi}_{1}^{2}}{l_{1} l_{2}\left(m_{1}+m_{2} \sin ^{2} \psi_{2}\right)} \sin \psi_{2} \\
& -\frac{l_{2} m_{2}\left(l_{2}+l_{1} \cos \psi_{2}\right)\left(\dot{\psi}_{1}+\dot{\psi}_{2}\right)^{2}}{l_{1} l_{2}\left(m_{1}+m_{2} \sin ^{2} \psi_{2}\right)} \sin \psi_{2} \\
& +g \cdot \frac{\left(m_{1}+m_{2}\right)\left(l_{2}+l_{1} \cos \psi_{2}\right) \sin \psi_{1}}{l_{1} l_{2}\left(m_{1}+m_{2} \sin ^{2} \psi_{2}\right)} \\
& -g \cdot \frac{\left(l_{1}\left(m_{1}+m_{2}\right)+l_{2} m_{2} \cos \psi_{2}\right) \sin \left(\psi_{1}+\psi_{2}\right)}{l_{1} l_{2}\left(m_{1}+m_{2} \sin ^{2} \psi_{2}\right)}
\end{aligned}
$$

The Double Pendulum - Initial Conditions

In agreement with recent work of Rauh et al. (SCAN2006), we consider the parameter values $\quad\left(l_{1}, l_{2}, m_{1}, m_{2}, g\right)=(1,1,1,1,9.81)$.

$$
\begin{aligned}
& \psi_{1}(t=0) \in \frac{3 \pi}{4}+\frac{1}{100} \frac{3 \pi}{4}[-1,+1] \\
& \psi_{2}(t=0)=-1.726533538 \\
& \dot{\psi}_{1}(t=0)=0.4138843714 \\
& \dot{\psi}_{2}(t=0)=0.6724072960
\end{aligned}
$$

These initial conditions are in the chaotic regime. Illustration of motion (for similar, but not identical initial conditions):

```
http://www.vis.uni-stuttgart.de/~kraus/
LiveGraphics3D/examples/parametrized/pendulum.html
```

DP. RK trajectories. VE v.s. center-RE. Y(1)

DP. RK trajectories. VE v.s. center-RE. $\mathrm{Y}(2)$

DP. RK trajectories. VE v.s. center-RE. Y(3)

DP. RK trajectories. VE v.s. center-RE. Y(4)

DP. RK trajectories. VE v.s. center-RE. $Y(1)-Y(3)$

DP. RK trajectories. VE v.s. center-RE. $\mathrm{Y}(2)-\mathrm{Y}(4)$

The Double Pendulum - Code Performance

Integration was carried out from $t=0$ until $t=0.5 \mathrm{sec}$.
VNODE (Ned Nedialkov), QR method
ValEncIA-IVP (Rauh and Auer), Domain decomposition by lots of intervals, forward/backward integration for pruning COSY-VI Taylor models, no domain decomposition at $t=1.0$. (The data reported for VNODE and ValEncIA-IVP are quoted from Rauh et al., SCAN2006).

Time t CPU VNODE CPU ValEncIA CPU COSY
$0.5 \quad 15.4 \mathrm{sec}$
$1.0 \quad$ (breakdown $t<0.6$) (breakdown $t<0.6$) 2.04 sec

* First number: Implementation using Matlab-Intlab, second number: using C++ interval library

The Double Pendulum - Check of COSY-VI

The doule pendulum preservers energy. Evaluating energy in Taylor model arithmetic over the entire flow at any two points in the integration, and subtracting the results, must result in a tight enclosure of zero.
Total Energy E is given as

$$
E=m_{1} \cdot g \cdot y_{1}+m_{2} \cdot g \cdot y_{2}+\frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) .
$$

Elementary arithmetic shows that

$$
\begin{aligned}
& x_{1}=l_{1} \cdot \sin \psi_{1}, x_{2}=x_{1}+l_{2} \cdot \sin \left(\psi_{1}+\psi_{2}\right) \\
& y_{1}=-l_{1} \cdot \cos \psi_{1}, y_{2}=y_{1}-l_{2} \cdot \cos \left(\psi_{1}+\psi_{1}\right) \\
& \dot{x}_{1}=\dot{\psi}_{1} \cdot l_{1} \cdot \cos \psi_{1}, \dot{x}_{2}=\dot{x}_{1}+\left(\dot{\psi}_{1}+\dot{\psi}_{2}\right) \cdot l_{2} \cdot \cos \left(\psi_{1}+\psi_{2}\right) \\
& \dot{y}_{1}=\dot{\psi}_{1} \cdot l_{1} \cdot \sin \psi_{1}, \dot{y}_{2}=\dot{y}_{1}+\left(\dot{\psi}_{1}+\dot{\psi}_{2}\right) \cdot l_{2} \cdot \sin \left(\psi_{1}+\psi_{2}\right)
\end{aligned}
$$

The Double Pendulum - Energy at $\mathrm{t}=0$

I	COEFFICIENT	ORDER	EXPONENTS				
1	6.636304564436251	0	0	0	0	0	0
2	0.4629982784681443	1	1	0	0	0	0
3	$-.1650152672869661 \mathrm{E}-02$	2	2	0	0	0	0
4	$-.4284009231437226 \mathrm{E}-04$	3	3	0	0	0	0
5	$0.7634228476230531 \mathrm{E}-07$	4	4	0	0	0	0
6	$0.1189166522762920 \mathrm{E}-08$	5	5	0	0	0	0
7	$-.1412752780648741 \mathrm{E}-11$	6	6	0	0	0	0
8	$-.1571866492860271 \mathrm{E}-13$	7	7	0	0	0	0
R	$[-.1538109061161243 \mathrm{E}-012,0.1517608952722424 \mathrm{E}-012]$						

The Double Pendulum - Energy at $\mathrm{t}=0.5$

| I | COEFFICIENT | ORDER | EXPONENTS | | | | |
| ---: | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | 6.636304564436253 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0.4629982784681632 | 1 | 1 | 0 | 0 | 0 | 0 |
| 3 | $-.1650152672942219 \mathrm{E}-02$ | 2 | 2 | 0 | 0 | 0 | 0 |
| 4 | $-.4284009217517837 \mathrm{E}-04$ | 3 | 3 | 0 | 0 | 0 | 0 |
| 5 | $0.7634212049420934 \mathrm{E}-07$ | 4 | 4 | 0 | 0 | 0 | 0 |
| 6 | $0.1189297979605227 \mathrm{E}-08$ | 5 | 5 | 0 | 0 | 0 | 0 |
| 7 | $-.1487493064301731 \mathrm{E}-11$ | 6 | 6 | 0 | 0 | 0 | 0 |
| 8 | $0.1498746352978318 \mathrm{E}-13$ | 7 | 7 | 0 | 0 | 0 | 0 |
| 9 | $-.8978311500296960 \mathrm{E}-14$ | 8 | 8 | 0 | 0 | 0 | 0 |
| 10 | $0.1732136627097570 \mathrm{E}-14$ | 9 | 9 | 0 | 0 | 0 | 0 |
| 11 | $-.1410358744591400 \mathrm{E}-15$ | 10 | 10 | 0 | 0 | 0 | 0 |
| 12 | $-.3488804283416099 \mathrm{E}-16$ | 11 | 11 | 0 | 0 | 0 | 0 |
| 13 | $0.1647113913603616 \mathrm{E}-16$ | 12 | 12 | 0 | 0 | 0 | 0 |
| R | $[-.6845903858358710 \mathrm{E}-010,0.7016561210090576 \mathrm{E}-010]$ | | | | | | |

The Double Pendulum - Energy Difference

I	COEFFICIENT	ORDER	EXPONENTS				
1	$0.2664535259100376 E-14$	0	0	0	0	0	0
2	$0.1881828026739640 E-13$	1	1	0	0	0	0
3	$-.7255849567011641 E-13$	2	2	0	0	0	0
4	$0.1391938932279908 \mathrm{E}-12$	3	3	0	0	0	0
5	$-.1642680959724263 \mathrm{E}-12$	4	4	0	0	0	0
6	$0.1314568423076692 \mathrm{E}-12$	5	5	0	0	0	0
7	$-.7474028365299068 \mathrm{E}-13$	6	6	0	0	0	0
8	$0.3070612845838590 \mathrm{E}-13$	7	7	0	0	0	0
9	$-.8992317058282886 \mathrm{E}-14$	8	8	0	0	0	0
10	$0.1732136627097570 \mathrm{E}-14$	9	9	0	0	0	0
11	$-.1410358744591400 \mathrm{E}-15$	10	10	0	0	0	0
12	$-.3488804283416099 \mathrm{E}-16$	11	11	0	0	0	0
13	$0.1647113913603616 \mathrm{E}-16$	12	12	0	0	0	0
R	$[-.6861710643018788 \mathrm{E}-010,0.7032572995835042 \mathrm{E}-010]$						

DP. RK trajectories. VE v.s. center-RE. Y(1)

Center trajectories. COSY RK

Center trajectories. COSY RK

Long Term Behavior

We observe the following:

1. Around $t=2$, initial condition range leads to noticeable broadening of ranges
2. Around $t=5$, initial condition range leads to angle spread by $>2 \pi$, i.e. different full revolutions
3. Around $t=30$, conventional non-verified integrators reach their accuracy limit

Question: How long can COSY integrate with dynamic domain decomposition?

DP: COSY-VI Integration with Dynamic Domain Decomposition

Fourth International Workshop on Taylor Methods

Boca Raton, Florida
December 16-19, 2006

High-Order Methods - Verification \& Taylor Models Automatic Differentiation Differential Algebraic Tools
and their use for:
ODE and PDE Solvers
Global Optimization
Constraint Satisfaction
Dynamical Systems
Beam Physics

