Runge-Kutta guaranteed integration of ODEs

Olivier BOUISSOU olivier.bouissou@cea.fr

CEA Saclay

Taylor Methods Workshop 2006 Boca Raton, Florida

Olivier Bouissou Runge-Kutta guaranteed integration of ODEs

2 Taylor Series guaranteed integration

Guatanteed Runge Kutta method

A Numerical results and Conclusion.

- 2 Taylor Series guaranteed integration
- 3 Guatanteed Runge Kutta method

Numerical results and Conclusion.

Context of this work: Validation of embedded systems (avionics, automotive).

- Hybrid Systems: composed of two distinct parts
 - *discrete subsystem:* a discrete transition system (finite automata, C program).
 - *continuous subsystem:* a switched system of differential equations.
- Validation of such systems:
 - computes overapproximation of all reachable states.
 - needs rigourous bounds on the all the possible values of the continuous variables.

Context of this work: Validation of embedded systems (avionics, automotive).

- Hybrid Systems: composed of two distinct parts
 - *discrete subsystem:* a discrete transition system (finite automata, C program).
 - *continuous subsystem:* a switched system of differential equations.
- Validation of such systems:
 - computes overapproximation of all reachable states.
 - needs rigourous bounds on the all the possible values of the continuous variables.

What we need: a method for computing representable functions which are guaranteed to enclose all the possible continuous dynamics.

Suppose you have a switched dynamical system:

$$b
ightarrow (\dot{y} = f(y)) \Box \ b'
ightarrow (\dot{y} = g(y))$$

We want to compute two functions that are guaranteed to enclose all the possible values of y.

Suppose you have a switched dynamical system:

$$b
ightarrow (\dot{y} = f(y)) \Box \ b'
ightarrow (\dot{y} = g(y))$$

We want to compute two functions that are guaranteed to enclose all the possible values of y.

What we really need: given $\dot{y} = f(y)$, a set of enclosures $[y_n]$ such that $\forall t_n, y(t_n) \in [y_n]$.

• On the one side, validated integration using Taylor methods:

- Taylor series expansion w.r.t. time only: AWA, VNODE
- Taylor series expansion w.r.t. time and initial values: COSY VI
- They mainly differ in the representation of the computed enclosures (intervals or Taylor models).

- On the other side, there are non validated integration methods:
 - Euler, Runge-Kutta,...
 - They have been intensively used for simulation and engineers often know how to tune them.

2 Taylor Series guaranteed integration

3 Guatanteed Runge Kutta method

Numerical results and Conclusion.

Interval Taylor series methods

We start from the Interval Initial Value problem:

$$\dot{y} = f(y), \ y(t_0) \in [y_0]$$
 (3.1)

 The goal of the integration is to compute a sequence of interval enclosures [y_j] such that y(t_j) ∈ [y_j].

We start from the real valued Taylor series expansion:

$$y_{j+1} = y_j + \sum_{k=1}^{N-1} f^{[k-1]}(y_j) h_j^k + h_j^N f^{[N-1]}(y(x_s))$$

We start from the Interval Initial Value problem:

$$\dot{y} = f(y), \ y(t_0) \in [y_0]$$
 (3.1)

 The goal of the integration is to compute a sequence of interval enclosures [y_j] such that y(t_j) ∈ [y_j].

We start from the real valued Taylor series expansion:

$$y_{j+1} = y_j + \sum_{k=1}^{N-1} f^{[k-1]}(y_j) h_j^k + h_j^N f^{[N-1]}(y(x_s))$$

A naive transformation of this formula into interval arithmetics gives:

$$[y_{j+1}] = [y_j] + \sum_{k=1}^{N-1} f^{[k-1]}([y_j])h_j^k + h_j^N f^{[N-1]}([\tilde{y}_j])$$

- Computation of [ỹ_j]: Picard-Lindelöf operator (or higher order methods).
- Avoiding [y_j] to grow: we compute the interval evaluations with the mean value form:

$$\begin{aligned} y_{j+1}] &= \hat{y}_j + \sum_{k=1}^{N-1} f^{[k-1]}(\hat{y}_j) h_j^k + h_j^N f^{[N-1]}([\tilde{y}_j]) + \\ & \left(I + \sum_{k=1}^{N-1} J(f^{[k-1]}, [y_j]) h_j^k\right)([y_j] - \hat{y}_j) \\ &= y_{j+1} + h_j^N f^{[N-1]}([\tilde{y}_j]) + S_j.([y_j] - \hat{y}_j) \end{aligned}$$

So, the enclosure at the next step is computed as the sum of :

• a point:
$$y_{j+1} = \hat{y}_j + \sum_{k=1}^{N-1} f^{[k-1]}(\hat{y}_j) h_j^k$$

• a local error term: $h_j^N f^{[N-1]}([\tilde{y}_j])$

• an error propagation term: $S_j.([y_j] - \hat{y_j})$

Wrapping effect occurs during the computation of the error propagation. To reduce it, you can use for example the **QR-factorization** method.

- Compute the point approximation and the error independently.
 - not validated approximation points are computed without any interval arithmetics.
 - errors are computed in a second time and compared to a user defined tolerance $\epsilon.$
- The global error may be divided into three parts:
- Each error is computed independently:

- Compute the point approximation and the error independently.
- The global error may be divided into three parts:
 - approximation error due to limitations of the method.
 - propagation of the previous error.
 - roundoff error due to machine finite precision.
- Each error is computed independently:

- Compute the point approximation and the error independently.
- The global error may be divided into three parts:
 - approximation error due to limitations of the method.
 - propagation of the previous error.
 - roundoff error due to machine finite precision.
- Each error is computed independently:

Picard-Lindelöf operator for method error.

- Compute the point approximation and the error independently.
- The global error may be divided into three parts:
 - approximation error due to limitations of the method.
 - propagation of the previous error.
 - roundoff error due to machine finite precision.
- Each error is computed independently:

Löhner's factorization method for the propagation.

- Compute the point approximation and the error independently.
- The global error may be divided into three parts:
 - approximation error due to limitations of the method.
 - propagation of the previous error.
 - roundoff error due to machine finite precision.
- Each error is computed independently:

Global error arithmetics for the roundoff error.

- Real numbers: $a \in \mathbb{R}$
- Floating point numbers: $\mathbf{a} \in \mathbb{F}$
- Intervals: $[a] = [\underline{a}, \overline{a}]$
- Floating point intervals: $[a] = [\underline{a}, \overline{a}]$
- Initial value problem:

$$\dot{y} = f(y), \ y(t_0) \in y_0 + [e_0] \quad \text{with } \begin{cases} y : \mathbb{R} \to \mathbb{R}^d \\ f : \mathbb{R}^d \to \mathbb{R}^d \end{cases}$$
 (3.2)

2 Taylor Series guaranteed integration

3 Guatanteed Runge Kutta method

Numerical results and Conclusion.

The RK4 Method.

- Iterative method for computing approximation points of the solution of (3.2)
- Order 4 method, with adaptative step size control.
- Needs four evaluations of f for computing y_{j+1} out of y_j .

$$k_{1} = f(y_{j})$$

$$k_{2} = f(y_{j} + h/2.k_{1})$$

$$k_{3} = f(y_{j} + h/2.k_{2})$$

$$k_{4} = f(y_{j} + hk_{3})$$

$$y_{j+1} = y_{j} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

• The iteration of the scheme gives $\left(\mathbf{y_n}\right)_{n\in\mathbb{N}}$

The RK4 Method.

- Iterative method for computing approximation points of the solution of (3.2)
- Order 4 method, with adaptative step size control.
- Needs four evaluations of f for computing y_{j+1} out of y_j .

$$k_1 = f(y_j)$$

$$k_2 = f(y_j + h/2.k_1)$$

$$k_3 = f(y_j + h/2.k_2)$$

$$k_4 = f(y_j + hk_3)$$

$$y_{j+1} = y_j + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

 $\bullet\,$ The iteration of the scheme gives $\left(y_{n}\right) _{_{n\in\mathbb{N}}}$

Goal: Find an enclosure of $y(t_j) - \mathbf{y_j}$.

Some definitions.

We define the following functions:

$$\begin{aligned} k_1(y,h) &= f(y) \\ k_2(y,h) &= f(y+h/2.k_1(y,h)) \\ k_3(y,h) &= f(y+h/2.k_2(y,h)) \\ k_4(y,h) &= f(y+hk_3(y,h)) \\ \Phi(y,h) &= y + \frac{h}{6} (k_1(y,h) + 2k_2(y,h) + 2k_3(y,h) + k_4(y,h)) \end{aligned}$$

We then have:

$$y_{_{j+1}} = \Phi(y_j, h_j)$$

We also define:

$$\varphi_j: t \mapsto \Phi(t - t_j, y(t_j)) \quad \psi_j: y \mapsto \Phi(h_j, y)$$

Computing the error: one step error

- Let us suppose that $y_j = y(t_j)$.
 - $y_{j+1} = \varphi_j(t_{j+1})$
 - $\forall i \in [0, 4], \ \frac{d^i y}{dt^i}(t_j) = \frac{d^i \varphi_j}{dt^i}(t_j)$
 - Therefore, there exists $\xi \in [t_j, t_{_{j+1}}]$ such that

$$y(t_{j+1}) - \varphi_j(t_{j+1}) = h_j^5 (y - \varphi_j)^{[5]}(\xi)$$

Computing the error: one step error

- Let us suppose that $y_j = y(t_j)$.
 - $y_{j+1} = \varphi_j(t_{j+1})$
 - $\forall i \in [0, 4], \ \frac{d^i y}{dt^i}(t_j) = \frac{d^i \varphi_j}{dt^i}(t_j)$
 - Therefore, there exists $\xi \in [t_j, t_{_{j+1}}]$ such that

$$y(t_{j+1}) - \varphi_j(t_{j+1}) = h_j^5 (y - \varphi_j)^{[5]}(\xi)$$

 \bullet We compute an apriori enclosure $[\tilde{y}_j]$ such that:

$$\forall t \in [t_j, t_{j+1}], y(t) \in [ilde{y}_j]$$

- Picard-Lindelöf operator $P(R) = y_j + [0, h_j].f(R)$ or higher order methods.
 - Then, we have:

ŕ

$$y(t_{_{j+1}}) - \varphi_j(t_{_{j+1}}) \in rac{h_j^5}{120} \left(rac{d^4f}{dx^4} ([ilde y_j]) - rac{d^5 arphi_j}{dx^5} ([t_j, t_{j+1}])
ight)$$

 \bullet We compute an apriori enclosure $[\tilde{y}_j]$ such that:

$$\forall t \in [t_j, t_{j+1}], y(t) \in [\widetilde{y}_j]$$

- Picard-Lindelöf operator P(R) = y_j + [0, h_j].f(R) or higher order methods.
 - Then, we have:

ŕ

$$y(t_{_{j+1}}) - \varphi_j(t_{_{j+1}}) \in rac{h_j^5}{120} \left(rac{d^4f}{dx^4} ([ilde y_j]) - rac{d^5 arphi_j}{dx^5} ([t_j, t_{j+1}])
ight)$$

• In Taylor series method, the local error is:

$$\frac{h_j^N}{N!}\frac{d^{N-1}f}{dx^{N-1}}([\tilde{y}_j])$$

Computing the error: propagation

• We now have: $y_{j+1} = \psi_j(y_j)$ and $y_{j+1}^* = \psi_j(y(t_j))$ • So, $y_{j+1} - y_{j+1}^* = Jac(\psi_j, \chi_j).\epsilon_j$ with $\chi_j \in [y_j, y(t_j)]$

Computing the error: propagation

• This is overapproximated with interval arithmetic:

$$y_{j+1} - y_{j+1}^* \in Jac(\psi_j, y_j + [e_j]).[\epsilon_j]$$

• This is overapproximated with interval arithmetic:

$$y_{j+1} - y_{j+1}^* \in Jac(\psi_j, y_j + [e_j]).[\epsilon_j]$$

 In Taylor series method, the propagation of the previous error is given by:

$$(I + \sum_{k=1}^{N-1} J(f^{[k-1]}, [y_j])h_j^k)([y_j] - \hat{y}_j)$$

 In both cases, the use of the QR preconditionning keeps the method stable.

To sum up.

Goal: give a rigourous bound on $y(t_j) - \mathbf{y}_j$

$$\begin{split} y(t_{j+1}) &= \mathbf{y}_{j+1} + \left(y(t_{j+1}) - y_{j+1}^*\right) + \left(y_{j+1}^* - \mathbf{y}_{j+1}\right) \right) \\ &= \mathbf{y}_{j+1} + \left(y - \varphi_j\right)^{[5]}(\xi) + \left(y_{j+1}^* - y_{j+1}\right) - E_{j+1} \\ &[\mathbf{e}_{j+1}] &\in \left(y - \varphi_j\right)^{[5]}([\mathbf{R}]) + Jac(\psi_j, \mathbf{y}_j + [\mathbf{e}_j]).[\mathbf{e}_j] - [\mathbf{E}_{j+1}] \end{split}$$

To sum up.

Goal: give a rigourous bound on $y(t_j) - \mathbf{y}_j$

$$\begin{split} y(t_{j+1}) &= \mathbf{y}_{j+1} + \left(y(t_{j+1}) - y_{j+1}^*\right) + \left(y_{j+1}^* - \mathbf{y}_{j+1}\right) \\ &= \mathbf{y}_{j+1} + \left(y - \varphi_j\right)^{[5]}(\xi) + \left(y_{j+1}^* - y_{j+1}\right) - E_{j+1} \\ & [\mathbf{e}_{j+1}] \in \left(y - \varphi_j\right)^{[5]}([\mathbf{R}]) + Jac(\psi_j, \mathbf{y}_j + [\mathbf{e}_j]).[\mathbf{e}_j] - [\mathbf{E}_{j+1}] \end{split}$$

- Implementation issues:
 - Löhner's QR-factorization method for reducing the wrapping effect
 - Overapproximation of [E_j]: we use the global error arithmetics

Computing the error : round-off error.

$$a = f_a + e_a \overrightarrow{\varepsilon_e}$$
 and $b = f_b + e_b \overrightarrow{\varepsilon_e}$

$$\begin{array}{rcl} a+b &=& \uparrow_{\sim} (f_a+f_b)+(e_a+e_b+\downarrow_{\sim} (f_a+f_b))\overrightarrow{e_e} \\ a-b &=& \uparrow_{\sim} (f_a-f_b)+(e_a-e_b+\downarrow_{\sim} (f_a-f_b))\overrightarrow{e_e} \\ a\times b &=& \uparrow_{\sim} (f_a\times f_b)+(e_af_b+e_bf_a+e_ae_b+\downarrow_{\sim} (f_a\times f_b))\overrightarrow{e_e} \end{array}$$

• Let the user know both the result (f) and its distance to the real result.

Suppose that we are working on a 4 digits machine. We have two global error numbers, $a = 621.3 + 0.05 \overrightarrow{\varepsilon_e}$ and $b = 1.287 + 0.0005 \overrightarrow{\varepsilon_e}$, that we want to multiply.

	621.3	+	$0.05\overrightarrow{\varepsilon_e}$	а
×	1.287	+	$0.0005 \overrightarrow{\varepsilon_e}$	b
=	799.6131			Real result
		+	$0.06435 \overrightarrow{\varepsilon_e}$	Error due to a
		+	$0.31065 \overrightarrow{\varepsilon_e}$	Error due to b
		+	$0.000025 \overrightarrow{\varepsilon_e}$	Second order term
=	799.6arepsilon			Floating point result
				$=\uparrow_{\sim}(f_{a} \times f_{b})$
		+	$0.375025\overrightarrow{\varepsilon_e}$	
		+	$0.0131 \overrightarrow{\varepsilon_e}$	$\downarrow_{\sim} (f_{a} \times f_{b})$
=	799.6 $arepsilon$	+	$0.388[1,2]\overrightarrow{\varepsilon_e}$	

- 2 Taylor Series guaranteed integration
- 3 Guatanteed Runge Kutta method

- The method has been implemented in a library GRKlib:
 - use formal derivation techniques for computing the derivatives.
 - propagates separately method and round off errors.
 - can be used with both double and multiprecision arithmetics.
 - only implements order 4 Runge-Kutta formula.
- Tried it on various problems:

- The method has been implemented in a library GRKlib:
 - use formal derivation techniques for computing the derivatives.
 - propagates separately method and round off errors.
 - can be used with both double and multiprecision arithmetics.
 - only implements order 4 Runge-Kutta formula.
- Tried it on various problems:
 - Linear problem Simple rotation:

$$\dot{Y} = \left(\begin{array}{ccc} 0 & -0.707107 & -0.5\\ 0.707107 & 0 & 0.5\\ 0.5 & 0 & -0.5 \end{array}\right) Y$$

t =	100	500	1000
ε	4.10^{-4}	2.10^{-3}	4.10^{-3}

- The method has been implemented in a library GRKlib:
 - use formal derivation techniques for computing the derivatives.
 - propagates separately method and round off errors.
 - can be used with both double and multiprecision arithmetics.
 - only implements order 4 Runge-Kutta formula.
- Tried it on various problems:
 - Linear problem Simple contraction:

$$\dot{Y} = \begin{pmatrix} -0.4375 & 0.0625 & -0.265165 \\ 0.0625 & -0.4375 & -0.265165 \\ -0.265165 & -0.265165 & -0.375 \end{pmatrix} Y$$

t =	100	500	1000
ε	3.10^{-5}	3.10^{-5}	$3, 3.10^{-5}$

- The method has been implemented in a library GRKlib:
 - use formal derivation techniques for computing the derivatives.
 - propagates separately method and round off errors.
 - can be used with both double and multiprecision arithmetics.
 - only implements order 4 Runge-Kutta formula.
- Tried it on various problems:
 - Non linear problem Lorenz equations:

$$\begin{cases} \dot{y_1} = 10(y_2 - y_1) \\ \dot{y_2} = y_1(28 - y_3) - y_2 \\ \dot{y_3} = y_1 * y_2 - \frac{8}{3}y_3 \end{cases}$$

t =	5	10	15
ϵ	2.10 ⁻⁸	4.10^{-5}	6.10^{-4}

Conclusion.

In this talk, we:

- showed how to make a validated integration method out of a Runge-Kutta integration scheme.
- informally compared the formulae for the error with the ones from Taylor series method.

Our implementation shows that we can achieve good precision results, although only order 4 method is used.

Conclusion.

In this talk, we:

- showed how to make a validated integration method out of a Runge-Kutta integration scheme.
- informally compared the formulae for the error with the ones from Taylor series method.

Our implementation shows that we can achieve good precision results, although only order 4 method is used.

- Advantage of the method:
 - based on well known numerical method (Runge-Kutta), which can be finely tuned for every problem.
 - it allows effective step size control, with ideas coming from control theory.

Conclusion.

In this talk, we:

- showed how to make a validated integration method out of a Runge-Kutta integration scheme.
- informally compared the formulae for the error with the ones from Taylor series method.

Our implementation shows that we can achieve good precision results, although only order 4 method is used.

- Advantage of the method:
 - based on well known numerical method (Runge-Kutta), which can be finely tuned for every problem.
 - it allows effective step size control, with ideas coming from control theory.
- Further work:
 - add other integration schemes to our library (order 5/6 RK methods).
 - use better domains for the representation of the error to reduce wrapping effect (Taylor models).