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Motivation

Context of this work: Validation of embedded systems (avionics,
automotive).

Hybrid Systems: composed of two distinct parts

discrete subsystem: a discrete transition system (finite
automata, C program).
continuous subsystem: a switched system of differential
equations.

Validation of such systems:

computes overapproximation of all reachable states.
needs rigourous bounds on the all the possible values of the
continuous variables.
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Motivation

Context of this work: Validation of embedded systems (avionics,
automotive).

Hybrid Systems: composed of two distinct parts

discrete subsystem: a discrete transition system (finite
automata, C program).
continuous subsystem: a switched system of differential
equations.

Validation of such systems:

computes overapproximation of all reachable states.
needs rigourous bounds on the all the possible values of the
continuous variables.

What we need: a method for computing representable functions
which are guaranteed to enclose all the possible continuous
dynamics.
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Objectives.

Suppose you have a switched dynamical system:

b →
(

ẏ = f (y)
)

� b′ →
(

ẏ = g(y)
)

We want to compute two functions that are guaranteed to enclose
all the possible values of y .
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Objectives.

Suppose you have a switched dynamical system:

b →
(

ẏ = f (y)
)

� b′ →
(

ẏ = g(y)
)

We want to compute two functions that are guaranteed to enclose
all the possible values of y .

What we really need: given ẏ = f (y), a set of enclosures [yn] such
that ∀tn, y(tn) ∈ [yn].
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What already exists.

On the one side, validated integration using Taylor methods:

Taylor series expansion w.r.t. time only: AWA, VNODE
Taylor series expansion w.r.t. time and initial values: COSY VI
They mainly differ in the representation of the computed
enclosures (intervals or Taylor models).

On the other side, there are non validated integration
methods:

Euler, Runge-Kutta,. . .
They have been intensively used for simulation and engineers
often know how to tune them.
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Interval Taylor series methods

We start from the Interval Initial Value problem:

ẏ = f (y), y(t0) ∈ [y0] (3.1)

The goal of the integration is to compute a sequence of
interval enclosures [yj ] such that y(tj) ∈ [yj ].

We start from the real valued Taylor series expansion:

y
j+1

= yj +

N−1
∑

k=1

f [k−1](yj)h
k
j + hN

j f [N−1]
(

y(xs)
)

Olivier Bouissou Runge-Kutta guaranteed integration of ODEs



Interval Taylor series methods

We start from the Interval Initial Value problem:

ẏ = f (y), y(t0) ∈ [y0] (3.1)

The goal of the integration is to compute a sequence of
interval enclosures [yj ] such that y(tj) ∈ [yj ].

We start from the real valued Taylor series expansion:

y
j+1

= yj +

N−1
∑

k=1

f [k−1](yj)h
k
j + hN

j f [N−1]
(

y(xs)
)

A naive transformation of this formula into interval arithmetics
gives:

[y
j+1 ] = [yj ] +

N−1
∑

k=1

f [k−1]([yj ])h
k
j + hN

j f [N−1]
(

[ỹj ]
)
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Interval Taylor series methods

Computation of [ỹj ]: Picard-Lindelöf operator (or higher order
methods).

Avoiding [yj ] to grow : we compute the interval evaluations
with the mean value form:

[y
j+1

] = ŷj +

N−1
∑

k=1

f [k−1](ŷj)h
k
j + hN

j f [N−1]
(

[ỹj ]
)

+

(

I +

N−1
∑

k=1

J(f [k−1], [yj ])h
k
j

)

([yj ] − ŷj)

= yj+1 + hN
j f [N−1]

(

[ỹj ]
)

+ Sj .([yj ] − ŷj)
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Interval Taylor series methods

So, the enclosure at the next step is computed as the sum of :

a point: yj+1 = ŷj +

N−1
∑

k=1

f [k−1](ŷj)h
k
j

a local error term: hN
j f [N−1]

(

[ỹj ]
)

an error propagation term: Sj .([yj ] − ŷj)

Wrapping effect occurs during the computation of the error
propagation. To reduce it, you can use for example the
QR-factorization method.
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Our Method.

Compute the point approximation and the error
independently.

not validated approximation points are computed without any
interval arithmetics.
errors are computed in a second time and compared to a user
defined tolerance ǫ.

The global error may be divided into three parts:

Each error is computed independently:
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Our Method.

Compute the point approximation and the error independently.

The global error may be divided into three parts:

approximation error due to limitations of the method.
propagation of the previous error.
roundoff error due to machine finite precision.

Each error is computed independently:
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Our Method.

Compute the point approximation and the error independently.

The global error may be divided into three parts:

approximation error due to limitations of the method.
propagation of the previous error.
roundoff error due to machine finite precision.

Each error is computed independently:

Picard-Lindelöf operator for method error.
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Our Method.

Compute the point approximation and the error independently.

The global error may be divided into three parts:

approximation error due to limitations of the method.
propagation of the previous error.
roundoff error due to machine finite precision.

Each error is computed independently:

Löhner’s factorization method for the propagation.
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Our Method.

Compute the point approximation and the error independently.

The global error may be divided into three parts:

approximation error due to limitations of the method.
propagation of the previous error.
roundoff error due to machine finite precision.

Each error is computed independently:

Global error arithmetics for the roundoff error.
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Notations.

Real numbers: a ∈ R

Floating point numbers: a ∈ F

Intervals: [a] = [a, a]

Floating point intervals: [a] = [a, a]

Initial value problem:

ẏ = f (y), y(t0) ∈ y0 + [e0] with

{

y : R → R
d

f : R
d → R

d (3.2)
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The RK4 Method.

Iterative method for computing approximation points of the
solution of (3.2)

Order 4 method, with adaptative step size control.

Needs four evaluations of f for computing yj+1 out of yj .

Euler Method

Midpoint Method

RK4 Method

2

4

1

tj + hjtj

3

k1 = f (yj )
k2 = f (yj + h/2.k1)
k3 = f (yj + h/2.k2)
k4 = f (yj + hk3)
yj+1 = yj + h

6

(

k1 + 2k2 + 2k3 + k4

)

The iteration of the scheme gives
(

yn

)

n∈N
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The RK4 Method.

Iterative method for computing approximation points of the
solution of (3.2)

Order 4 method, with adaptative step size control.

Needs four evaluations of f for computing yj+1 out of yj .

Euler Method

Midpoint Method

RK4 Method

2

4

1

tj + hjtj

3

k1 = f (yj )
k2 = f (yj + h/2.k1)
k3 = f (yj + h/2.k2)
k4 = f (yj + hk3)
yj+1 = yj + h

6

(

k1 + 2k2 + 2k3 + k4

)

The iteration of the scheme gives
(

yn

)

n∈N

Goal: Find an enclosure of y
(

tj
)

− yj.
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Some definitions.

We define the following functions:

k1(y , h) = f (y)

k2(y , h) = f (y + h/2.k1(y , h))

k3(y , h) = f (y + h/2.k2(y , h))

k4(y , h) = f (y + hk3(y , h))

Φ(y , h) = y +
h

6

(

k1(y , h) + 2k2(y , h) + 2k3(y , h) + k4(y , h)
)

We then have:
y

j+1 = Φ(yj , hj)

We also define:

ϕj : t 7→ Φ
(

t − tj , y(tj)
)

ψj : y 7→ Φ
(

hj , y
)
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Computing the error: one step error

Let us suppose that yj = y(tj).

yj+1 = ϕj(tj+1)

∀i ∈ [0, 4], d iy

dt i

(

tj
)

=
d i

ϕj

dt i

(

tj
)

Therefore, there exists ξ ∈ [tj , tj+1
] such that

y(t
j+1

) − ϕj(tj+1
) = h5

j

(

y − ϕj

)[5](
ξ
)

tj t
j+1

y(t
j+1

)

y
j+1

y(tj )
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Computing the error: one step error

Let us suppose that yj = y(tj).

yj+1 = ϕj(tj+1)

∀i ∈ [0, 4], d iy

dt i

(

tj
)

=
d i

ϕj

dt i

(

tj
)

Therefore, there exists ξ ∈ [tj , tj+1
] such that

y(t
j+1

) − ϕj(tj+1
) = h5

j

(

y − ϕj

)[5](
ξ
)

tj t
j+1

y(t
j+1

)

y
j+1

y(tj )
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Computing the error: one step error (2)

We compute an apriori enclosure [ỹj ] such that:

∀t ∈ [tj , tj+1 ], y(t) ∈ [ỹj ]

Picard-Lindelöf operator P
(

R
)

= yj + [0, hj ].f (R) or
higher order methods.

Then, we have:

y(t
j+1

)− ϕj(tj+1
) ∈

h5
j

120

(

d4f

dx4

(

[ỹj ]
)

−
d5ϕj

dx5

(

[tj , tj+1]
)

)
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Computing the error: one step error (2)

We compute an apriori enclosure [ỹj ] such that:

∀t ∈ [tj , tj+1 ], y(t) ∈ [ỹj ]

Picard-Lindelöf operator P
(

R
)

= yj + [0, hj ].f (R) or
higher order methods.

Then, we have:

y(t
j+1

)− ϕj(tj+1
) ∈

h5
j

120

(

d4f

dx4

(

[ỹj ]
)

−
d5ϕj

dx5

(

[tj , tj+1]
)

)

In Taylor series method, the local error is:

hN
j

N!

dN−1f

dxN−1

(

[ỹj ]
)
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Computing the error: propagation

Now, what if there were an error: y(tj) ∈ yj + [ej]

ej

y(tj )

yj

y
j+1

tj

y∗

j+1

t
j+1

ηj+1

χj+1

y(t
j+1

)

We now have: y
j+1

= ψj(yj) and y∗

j+1
= ψj(y(tj))

So, y
j+1

− y∗

j+1
= Jac(ψj , χj ).ǫj with χj ∈ [yj , y(tj)]
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Computing the error: propagation

This is overapproximated with interval arithmetic:

y
j+1 − y∗

j+1
∈ Jac(ψj , yj + [ej ]).[ǫj ]
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Computing the error: propagation

This is overapproximated with interval arithmetic:

y
j+1 − y∗

j+1
∈ Jac(ψj , yj + [ej ]).[ǫj ]

In Taylor series method, the propagation of the
previous error is given by:

(

I +

N−1
∑

k=1

J(f [k−1], [yj ])h
k
j

)

([yj ] − ŷj)

In both cases, the use of the QR preconditionning
keeps the method stable.

Olivier Bouissou Runge-Kutta guaranteed integration of ODEs



To sum up.

Goal: give a rigourous bound on y(tj) − yj

y
(

t
j+1

)

= y
j+1

+
(

y
(

t
j+1

)

− y∗

j+1

)

+
(

y∗

j+1
− y

j+1

))

= y
j+1

+
(

y − ϕj

)[5]
(ξ) +

(

y∗

j+1
− y

j+1

)

− E
j+1

[ej+1] ∈
(

y − ϕj

)[5]
([R]) + Jac(ψj , yj + [ej]).[ej] − [Ej+1 ]

(

y − ϕj

)[5]
dt5([R]) Jac(ψj , yj + [ej]).[ej] [E

j+1
]
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To sum up.

Goal: give a rigourous bound on y(tj) − yj

y
(

t
j+1

)

= y
j+1

+
(

y
(

t
j+1

)

− y∗

j+1

)

+
(

y∗

j+1
− y

j+1

))

= y
j+1

+
(

y − ϕj

)[5]
(ξ) +

(

y∗

j+1
− y

j+1

)

− E
j+1

[ej+1] ∈
(

y − ϕj

)[5]
([R]) + Jac(ψj , yj + [ej]).[ej] − [Ej+1 ]

Implementation issues:

Löhner’s QR-factorization method for reducing the wrapping
effect
Overapproximation of [Ej]: we use the global error arithmetics
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Computing the error : round-off error.

a = fa + ea
−→εe and b = fb + eb

−→εe

a + b = ↑
∼

(fa + fb) + (ea + eb+ ↓
∼

(fa + fb))
−→εe

a − b = ↑
∼

(fa − fb) + (ea − eb+ ↓
∼

(fa − fb))
−→εe

a × b = ↑
∼

(fa × fb) + (eafb + ebfa + eaeb+ ↓
∼

(fa × fb))
−→εe

Let the user know both the result (f ) and its distance
to the real result.

x

e

[f ](x)

f (x)
f (x)
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Computing the error : round-off error.

Suppose that we are working on a 4 digits machine. We
have two global error numbers, a = 621.3 + 0.05−→εe and b =
1.287 + 0.0005−→εe , that we want to multiply.

621.3 + 0.05−→εe a

× 1.287 + 0.0005−→εe b

= 799.6131 Real result
+ 0.06435−→εe Error due to a

+ 0.31065−→εe Error due to b

+ 0.000025−→εe Second order term
= 799.6ε Floating point result

=↑
∼

(fa × fb)
+ 0.375025−→εe
+ 0.0131−→εe ↓

∼
(fa × fb)

= 799.6ε + 0.388[1, 2]−→εe
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Numerical Results.

The method has been implemented in a library GRKlib:
use formal derivation techniques for computing the derivatives.
propagates separately method and round off errors.
can be used with both double and multiprecision arithmetics.
only implements order 4 Runge-Kutta formula.

Tried it on various problems:
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Numerical Results.

The method has been implemented in a library GRKlib:
use formal derivation techniques for computing the derivatives.
propagates separately method and round off errors.
can be used with both double and multiprecision arithmetics.
only implements order 4 Runge-Kutta formula.

Tried it on various problems:
Linear problem
Simple rotation:

Ẏ =





0 −0.707107 −0.5
0.707107 0 0.5

0.5 0 −0.5



Y

t = 100 500 1000
ǫ 4.10−4 2.10−3 4.10−3
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Numerical Results.

The method has been implemented in a library GRKlib:
use formal derivation techniques for computing the derivatives.
propagates separately method and round off errors.
can be used with both double and multiprecision arithmetics.
only implements order 4 Runge-Kutta formula.

Tried it on various problems:
Linear problem
Simple contraction:

Ẏ =





−0.4375 0.0625 −0.265165
0.0625 −0.4375 −0.265165

−0.265165 −0.265165 −0.375



Y

t = 100 500 1000
ǫ 3.10−5 3.10−5 3, 3.10−5
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Numerical Results.

The method has been implemented in a library GRKlib:
use formal derivation techniques for computing the derivatives.
propagates separately method and round off errors.
can be used with both double and multiprecision arithmetics.
only implements order 4 Runge-Kutta formula.

Tried it on various problems:
Non linear problem
Lorenz equations:







ẏ1 = 10(y2 − y1)
ẏ2 = y1(28 − y3) − y2

ẏ3 = y1 ∗ y2 −
8
3y3

t = 5 10 15
ǫ 2.10−8 4.10−5 6.10−4
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Conclusion.

In this talk, we:

showed how to make a validated integration method out of a
Runge-Kutta integration scheme.

informally compared the formulae for the error with the ones
from Taylor series method.

Our implementation shows that we can achieve good precision
results, although only order 4 method is used.
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Conclusion.

In this talk, we:

showed how to make a validated integration method out of a
Runge-Kutta integration scheme.

informally compared the formulae for the error with the ones
from Taylor series method.

Our implementation shows that we can achieve good precision
results, although only order 4 method is used.

Advantage of the method:
based on well known numerical method (Runge-Kutta), which
can be finely tuned for every problem.
it allows effective step size control, with ideas coming from
control theory.
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Conclusion.

In this talk, we:

showed how to make a validated integration method out of a
Runge-Kutta integration scheme.

informally compared the formulae for the error with the ones
from Taylor series method.

Our implementation shows that we can achieve good precision
results, although only order 4 method is used.

Advantage of the method:
based on well known numerical method (Runge-Kutta), which
can be finely tuned for every problem.
it allows effective step size control, with ideas coming from
control theory.

Further work:
add other integration schemes to our library (order 5/6 RK
methods).
use better domains for the representation of the error to
reduce wrapping effect (Taylor models).
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