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Motivation

Context of this work: Validation of embedded systems (avionics,
automotive).
@ Hybrid Systems: composed of two distinct parts
@ discrete subsystem: a discrete transition system (finite

automata, C program).
e continuous subsystem: a switched system of differential

equations.
@ Validation of such systems:

e computes overapproximation of all reachable states.
o needs rigourous bounds on the all the possible values of the
continuous variables.
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Motivation

Context of this work: Validation of embedded systems (avionics,
automotive).
@ Hybrid Systems: composed of two distinct parts
@ discrete subsystem: a discrete transition system (finite

automata, C program).
e continuous subsystem: a switched system of differential

equations.
@ Validation of such systems:

e computes overapproximation of all reachable states.
o needs rigourous bounds on the all the possible values of the
continuous variables.

What we need: a method for computing representable functions
which are guaranteed to enclose all the possible continuous
dynamics.
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Objectives.

Suppose you have a switched dynamical system:

b— (y=~f(y)Ob — (y=g(y))

We want to compute two functions that are guaranteed to enclose
all the possible values of y.
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Objectives.

Suppose you have a switched dynamical system:

b— (y=~f(y)Ob — (y=g(y))

We want to compute two functions that are guaranteed to enclose
all the possible values of y.

What we really need: given y = f(y), a set of enclosures [y,] such
that Vt,, y(ta) € [yn].
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What already exists.

@ On the one side, validated integration using Taylor methods:
o Taylor series expansion w.r.t. time only: AWA, VNODE
o Taylor series expansion w.r.t. time and initial values: COSY VI
o They mainly differ in the representation of the computed
enclosures (intervals or Taylor models).

@ On the other side, there are non validated integration
methods:
@ Euler, Runge-Kutta,. ..
¢ They have been intensively used for simulation and engineers
often know how to tune them.
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Interval Taylor series methods

We start from the Interval Initial Value problem:

y=1f(y), y(t) € [yo] (3.1)

@ The goal of the integration is to compute a sequence of
interval enclosures [y;] such that y(t;) € [y;].

We start from the real valued Taylor series expansion:

Yia yJ+Zf“l O+ A (y ()
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Interval Taylor series methods

We start from the Interval Initial Value problem:

y=1f(y), y(t) € [yo] (3.1)

@ The goal of the integration is to compute a sequence of
interval enclosures [y;] such that y(t;) € [y;].

We start from the real valued Taylor series expansion:

Yia yJ+Zf“l O+ A (y ()

A naive transformation of this formula into interval arithmetics
gives:

N-1

] = gl + > FE () ak + aY eV =1 ([5)
k=1

Olivier Bouissou Runge-Kutta guaranteed integration of ODEs



Interval Taylor series methods

o Computation of [y;]: Picard-Lindelof operator (or higher order

methods).
o Avoiding [y;] to grow: we compute the interval evaluations
with the mean value form:

v, _ y + f[k 1] hk+th[N 1]
J+1 J

(I+ Z JOEE A (vl - )
k=1
=y + AN + S (ls] - )
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Interval Taylor series methods

So, the enclosure at the next step is computed as the sum of :
N-1
@ apoint: yj41 =y + Z f[k—ll()yj)hjlf
k=1

® a local error term: AN FIN=U([g7])

@ an error propagation term: S;.([y;] — ¥))

Wrapping effect occurs during the computation of the error
propagation. To reduce it, you can use for example the
QR-factorization method.
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Our Method.

o Compute the point approximation and the error
independently.
@ not validated approximation points are computed without any

interval arithmetics.
@ errors are computed in a second time and compared to a user

defined tolerance e.
@ The global error may be divided into three parts:

@ Each error is computed independently:
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Our Method.

@ Compute the point approximation and the error independently.
@ The global error may be divided into three parts:

@ approximation error due to limitations of the method.
o propagation of the previous error.
o roundoff error due to machine finite precision.

@ Each error is computed independently:
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Our Method.

@ Compute the point approximation and the error independently.
@ The global error may be divided into three parts:
o approximation error due to limitations of the method.

@ propagation of the previous error.
@ roundoff error due to machine finite precision.

® Each error is computed independently:

Picard-Lindelof operator for method error.
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Our Method.

@ Compute the point approximation and the error independently.
@ The global error may be divided into three parts:
o approximation error due to limitations of the method.

@ propagation of the previous error.
@ roundoff error due to machine finite precision.

® Each error is computed independently:

Lohner's factorization method for the propagation.
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Our Method.

@ Compute the point approximation and the error independently.
@ The global error may be divided into three parts:
@ approximation error due to limitations of the method.

e propagation of the previous error.
o roundoff error due to machine finite precision.

@ Each error is computed independently:

Global error arithmetics for the roundoff error.
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Notations.

Real numbers: a € R
Floating point numbers: a € I
Intervals: [a] = [a, 3]

Floating point intervals: [a] = [a, 3]

Initial value problem:

. . ‘R — R4
=), v entlal win { 457N 62
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The RK4 Method.

@ lterative method for computing approximation points of the

solution of (3.2)

@ Order 4 method, with adaptative step size control.

@ Needs four evaluations of f for computing y;t1 out of y;.

mm;
A

Midpoirt Methoc

Euler Method

t; t +hj

@ The iteration of the scheme gives (yn)

Olivier Bouissou

ki = f(y;)

ko = y; + h/2.k1)
ks = f(y; + h/2.ko)
ky = f(y; + hks)

Yier = ¥ + 2(ky + 2ko + 2ks + ka)

€N
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The RK4 Method.

@ lterative method for computing approximation points of the

solution of (3.2)

@ Order 4 method, with adaptative step size control.

@ Needs four evaluations of f for computing y;t1 out of y;.

m/
A

Midpoirt Methoc

Euler Method

t; t

T

@ The iteration of the scheme gives (yn)

ki = f(y;)

ko = y; + h/2.k1)
ks = f(y; + h/2.ko)
ky = f(y; + hks)

Yier = ¥ + 2(ky + 2ko + 2ks + ka)

€N

Goal: Find an enclosure of y(tj) - ;-
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Some definitions.

We define the following functions:
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We then have:

We also define:

Pj -

-

()

f(y + h/2.k(y, h))
f(y + h/2.ka(y, h))
f(y + hks(y, h))

h
Yim = d)(yja hj)

t—®(t—t,y(t) vy d(h,y)
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Computing the error: one step error

@ Let us suppose that y; = y(t;).
® Yjt1 = <Pj(tj+1)

d'p;
o Vie[0,4], G (h) =G (1)
o Therefore, there exists £ € [t;, t,] such that

y(t) = ei(tn) = By — ) (€)
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Computing the error: one step error

@ Let us suppose that y; = y(t;).
® Yjt1 = @j(tj+1)

d'p;
o Vie[0,4], G (h) =G (1)
o Therefore, there exists £ € [t;, t,] such that

y(t) = ei(tn) = By — ) (€)
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Computing the error: one step error (2)

@ We compute an apriori enclosure [;] such that:

Ve e [t,t,.], y(t) € [7]

o Picard-Lindeldf operator P(R) = y; + [0, hj].f(R) or
- higher order methods.
@ Then, we have:

B/
W) =60 € 15 (S () - S (15 5a) )
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Computing the error: one step error (2)

@ We compute an apriori enclosure [;] such that:

Ve e [t,t,.], y(t) € [7]

o Picard-Lindeldf operator P(R) = y; + [0, hj].f(R) or
- higher order methods.
@ Then, we have:

W) =60 € 15 (S () - S (15 5a) )

o In Taylor series method, the local error is:

hY gN-1f
N‘ dXN 1 ([}{,])
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Computing the error: propagation

o We

@ So,

/ Now, what if there were an error: y(t;) € yj + [g]

Mj+1

Xj+1

Y

o

J+1

now have: y, ., = v;(y;) and y | = ¢;(y(£;))

* o __
Vi — ¥, = Jac

V7, xj)-€j | with x; € [y, y(8)]

Olivier Bouissou
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Computing the error: propagation

// @ This is overapproximated with interval arithmetic:
' % Yin — Y5, € Jac(yy, y; + [g])-[e]]
al
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Computing the error: propagation

@ This is overapproximated with interval arithmetic:

Vi — ¥y € Jac(yy, y; + [g]) [¢/]

@ In Taylor series method, the propagation of the
previous error is given by:

=

-1

T+ I ) (] — )
1

x
Il

@ In both cases, the use of the QR preconditionning
keeps the method stable.
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To sum up.

Goal: give a rigourous bound on y(t;) —y;

y(tj+1) = Yin Tt (y(tj+1) - yjjl) + (yﬁu o yj+1))
= Y + (y - 90])[5] (5) + (yﬁu - yJH) - Ej+1
[ej+1] € (y - SDJ)[S]([R]) + Jac(¢j7 i + [ejl)‘[ejl - [Ej+1]

b —o)TdS(R)  dac(yyi+el)le] (]
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To sum up.

Goal: give a rigourous bound on y(t;) —y;

y(tj+1) = Yin Tt (y(tj+1) - X,jl) + (-yjil - yj+1))
= Y t (y - 90])[5](5) + (yﬁu - yjﬂ) —E.
(v — ) PU(R]) + Jac(vy, v + [ei])-[e] — [E,,.]

m

e, ]

@ |Implementation issues:

o Lohner's QR-factorization method for reducing the wrapping
effect
@ Overapproximation of [E;]: we use the global error arithmetics
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Computing the error : round-off error.

pz
~

a+b
a—b
axb

a="f,+ez. and b=f,+ epze

= 1. (fi+f)+(eatent | (f+1))Ee
= 1 (fi—fo)+ (ea —ent | (f_fbi)?
T~

(f X fb) (eafb + epfy + esep+ (fa X fb))&‘_;

@ Let the user know both the result (f) and its distance
to the real result.
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Computing the error : round-off error.

i

Suppose that we are working on a 4 digits machine.
have two global error numbers, a = 621.3 + 0.05z. and b=
1.287 + 0.0005z, that we want to multiply.

X

621.3
1.287

0.05z,
0.0005z,

799.6131

0.06435¢z,
0.31065¢z,
0.000025z,

799.6¢

0.375025z,
0.0131z,

799.6¢

Olivier Bouissou

0.388[1, 2]z2

a

b

Real result

Error due to a

Error due to b

Second order term

Floating point result
=1 (fax 1)

L. (fa x f)
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Numerical Results.

@ The method has been implemented in a library GRKIib:
¢ use formal derivation techniques for computing the derivatives.
@ propagates separately method and round off errors.
@ can be used with both double and multiprecision arithmetics.
o only implements order 4 Runge-Kutta formula.

@ Tried it on various problems:
]

Olivier Bouissou Runge-Kutta guaranteed integration of ODEs



Numerical Results.

@ The method has been implemented in a library GRKIib:

use formal derivation techniques for computing the derivatives.
@ propagates separately method and round off errors.

@ can be used with both double and multiprecision arithmetics.
o only implements order 4 Runge-Kutta formula.

<

@ Tried it on various problems:
o Linear problem
Simple rotation:

. 0  -0.707107 —0.5
Y = | 0.707107 0 05 | v
0.5 0 ~0.5
t=] 100 | 500 | 1000

€ 4107% 21073 | 4103
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Numerical Results.

@ The method has been implemented in a library GRKIib:

use formal derivation techniques for computing the derivatives.
@ propagates separately method and round off errors.

@ can be used with both double and multiprecision arithmetics.
o only implements order 4 Runge-Kutta formula.

<

@ Tried it on various problems:
o Linear problem
Simple contraction:

_ —0.4375 0.0625 —0.265165
Y = 0.0625 —0.4375 —0.265165 | Y
—0.265165 —0.265165  —0.375

t= 100 500 1000
€ 3.10° [ 3.10™ | 3,3.10°
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Numerical Results.

@ The method has been implemented in a library GRKIib:
¢ use formal derivation techniques for computing the derivatives.
@ propagates separately method and round off errors.
@ can be used with both double and multiprecision arithmetics.
o only implements order 4 Runge-Kutta formula.

@ Tried it on various problems:
@ Non linear problem
Lorenz equations:
y1=10(y2 — 1)
Y2 =y1(28 — y3) — y»
Ys=y1%y»— 3y

t= 5 10 15
€ 21078 [ 410> | 6.10°*
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Conclusion.

In this talk, we:

@ showed how to make a validated integration method out of a
Runge-Kutta integration scheme.

@ informally compared the formulae for the error with the ones
from Taylor series method.

Our implementation shows that we can achieve good precision
results, although only order 4 method is used.
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Conclusion.

In this talk, we:
@ showed how to make a validated integration method out of a
Runge-Kutta integration scheme.
@ informally compared the formulae for the error with the ones
from Taylor series method.
Our implementation shows that we can achieve good precision
results, although only order 4 method is used.
@ Advantage of the method:

@ based on well known numerical method (Runge-Kutta), which
can be finely tuned for every problem.

o it allows effective step size control, with ideas coming from
control theory.
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Conclusion.

In this talk, we:

@ showed how to make a validated integration method out of a
Runge-Kutta integration scheme.
@ informally compared the formulae for the error with the ones
from Taylor series method.
Our implementation shows that we can achieve good precision
results, although only order 4 method is used.

@ Advantage of the method:
@ based on well known numerical method (Runge-Kutta), which
can be finely tuned for every problem.
o it allows effective step size control, with ideas coming from
control theory.

@ Further work:

o add other integration schemes to our library (order 5/6 RK
methods).

@ use better domains for the representation of the error to
reduce wrapping effect (Taylor models).
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