
A survey of multiple precision computation using
floating-point arithmetic

Fourth International Workshop on Taylor Methods

Christoph Quirin Lauter

Laboratoire de l’Informatique et du Parallélisme
École Normale Supérieure de Lyon

Boca Raton, December 16 - 19

ECOLE NORMALE SUPERIEURE DE LYON

Motivation

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Multiple precision using floating-point - Lauter - TMW 2006 1

Project by Arénaire at ENS de Lyon

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Evaluating elementary functions means evaluating polynomials

Correct rounding requires high accuracy and complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Multiple precision using floating-point - Lauter - TMW 2006 2

http://lipforge.ens-lyon.fr/www/crlibm/

Project by Arénaire at ENS de Lyon

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Evaluating elementary functions means evaluating polynomials

Correct rounding requires high accuracy and complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Multiple precision using floating-point - Lauter - TMW 2006 2

http://lipforge.ens-lyon.fr/www/crlibm/

Project by Arénaire at ENS de Lyon

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Evaluating elementary functions means evaluating polynomials

Correct rounding requires high accuracy and complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Multiple precision using floating-point - Lauter - TMW 2006 2

http://lipforge.ens-lyon.fr/www/crlibm/

Project by Arénaire at ENS de Lyon

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Evaluating elementary functions means evaluating polynomials

Correct rounding requires high accuracy and complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Multiple precision using floating-point - Lauter - TMW 2006 2

http://lipforge.ens-lyon.fr/www/crlibm/

Need for more precision

IEEE 754 double precision offers 53 bits of precision

In crlibm, we need an accuracy of “120 correct bits”

In Taylor models, no use of high order polynomials if the
remainder grows too fast

First approach:

Use an integer based fixed high precision floating-point library
Necessity to leave the floating-point pipeline
High impact on performance (factor 100)

Second approach:

Emulate higher precision in floating-point
Reusage of already computed floating-point values possible
No conversions, fill completely floating-point pipeline
Speed-up by at least a factor 10 w.r.t. the first approach
Same quality of certification possible

Multiple precision using floating-point - Lauter - TMW 2006 3

Need for more precision

IEEE 754 double precision offers 53 bits of precision

In crlibm, we need an accuracy of “120 correct bits”

In Taylor models, no use of high order polynomials if the
remainder grows too fast

First approach:

Use an integer based fixed high precision floating-point library
Necessity to leave the floating-point pipeline
High impact on performance (factor 100)

Second approach:

Emulate higher precision in floating-point
Reusage of already computed floating-point values possible
No conversions, fill completely floating-point pipeline
Speed-up by at least a factor 10 w.r.t. the first approach
Same quality of certification possible

Multiple precision using floating-point - Lauter - TMW 2006 3

Need for more precision

IEEE 754 double precision offers 53 bits of precision

In crlibm, we need an accuracy of “120 correct bits”

In Taylor models, no use of high order polynomials if the
remainder grows too fast

First approach:

Use an integer based fixed high precision floating-point library
Necessity to leave the floating-point pipeline
High impact on performance (factor 100)

Second approach:

Emulate higher precision in floating-point
Reusage of already computed floating-point values possible
No conversions, fill completely floating-point pipeline
Speed-up by at least a factor 10 w.r.t. the first approach
Same quality of certification possible

Multiple precision using floating-point - Lauter - TMW 2006 3

Higher precision in floating-point

Floating-point expansions:

53 bits53 bits 53 bits

159 bits

FP - expansion

high precision significand

Operations on expansions: for example addition:

����
����
����

����
����
����

+ bh

δ (error)

clcmch

bm bl

ah am al

Multiple precision using floating-point - Lauter - TMW 2006 4

Need for exact floating-point arithmetic

We want to implement:

����
����
����

����
����
����

+ bh

δ (error)

clcmch

bm bl

ah am al

Single step:

+

ah

bh

temp1h temp1l

. . .

temp1h + temp1l = ah + bh

am

Multiple precision using floating-point - Lauter - TMW 2006 5

Exact floating-point arithmetic

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Multiple precision using floating-point - Lauter - TMW 2006 6

Exact floating-point arithmetic?

Floating-point arithmetic can produce round-off error

a⊗ b = a · b · (1 + ε)

where |ε| ≤ 2−p

A floating-point operation is called exact if its result is the
mathematical one

a⊗ b = a · b
ε = 0

However: floating-point arithmetic is often exact:
Floating-point numbers are scaled integers
If no integer overflow occurs, operations are exact on integers
Just factorize the scale (where possible)

a⊗ b = 2Ea ·ma ⊗ 2Eb ·mb = 2Ea+Eb · ◦ (ma ·mb)

where ◦ is the rounding operator satisfying

∀x ∈ F . ◦ (x) = x

Multiple precision using floating-point - Lauter - TMW 2006 7

Exact floating-point arithmetic?

Floating-point arithmetic can produce round-off error

a⊗ b = a · b · (1 + ε)

where |ε| ≤ 2−p

A floating-point operation is called exact if its result is the
mathematical one

a⊗ b = a · b
ε = 0

However: floating-point arithmetic is often exact:
Floating-point numbers are scaled integers
If no integer overflow occurs, operations are exact on integers
Just factorize the scale (where possible)

a⊗ b = 2Ea ·ma ⊗ 2Eb ·mb = 2Ea+Eb · ◦ (ma ·mb)

where ◦ is the rounding operator satisfying

∀x ∈ F . ◦ (x) = x

Multiple precision using floating-point - Lauter - TMW 2006 7

Exact floating-point arithmetic?

Floating-point arithmetic can produce round-off error

a⊗ b = a · b · (1 + ε)

where |ε| ≤ 2−p

A floating-point operation is called exact if its result is the
mathematical one

a⊗ b = a · b
ε = 0

However: floating-point arithmetic is often exact:
Floating-point numbers are scaled integers
If no integer overflow occurs, operations are exact on integers
Just factorize the scale (where possible)

a⊗ b = 2Ea ·ma ⊗ 2Eb ·mb = 2Ea+Eb · ◦ (ma ·mb)

where ◦ is the rounding operator satisfying

∀x ∈ F . ◦ (x) = x

Multiple precision using floating-point - Lauter - TMW 2006 7

Disclaimer

If tomorrow, you want to implement what I am going to show in
the next slides, remember that...

Code here is in C and that Fortran behaves differently

Implicit parentheses are elsewhere but our exact FP arithmetic
requires the indicated operation order
Typing of mixed precision expressions is different
“Optimizations” the compiler is allowed to do are different

Declaring variables as double x,y,z; does not imply usage
of IEEE 754 double precision on most systems

Round-to-nearest rounding mode required by some exact
arithmetic sequences, in particular for exact multiplication

Special care is needed for subnormals, underflow and overflow

Multiple precision using floating-point - Lauter - TMW 2006 8

Sterbenz’ lemma

Let be a, b ∈ F such that

sgn(a) = sgn(b)

and
1

2
· |a| ≤ |b| ≤ 2 · |a|

Thus
a	 b = a− b

−

2E

a = 2E · ma

b = 2E · mb

a 	 b = 2E · (ma − mb)

At the base of most extended precision addition algorithms

Independent of the rounding mode

Proof intuition: factor the scale of both scaled integers that
are a and b

Multiple precision using floating-point - Lauter - TMW 2006 9

Sterbenz’ lemma

Let be a, b ∈ F such that

sgn(a) = sgn(b)

and
1

2
· |a| ≤ |b| ≤ 2 · |a|

Thus
a	 b = a− b

−

2E

a = 2E · ma

b = 2E · mb

a 	 b = 2E · (ma − mb)

At the base of most extended precision addition algorithms

Independent of the rounding mode

Proof intuition: factor the scale of both scaled integers that
are a and b

Multiple precision using floating-point - Lauter - TMW 2006 9

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F such that |a| ≥ |b|.
Let be s, r ∈ F computed by

1 s = a + b ;
2 t = s − a ;
3 r = b − t ;

+

s r

b

a

Thus
s + r = a + b

and
|r | ≤ ulp(s)

Proof intuition: apply Sterbenz’ lemma
Meaning of s and r : s is a approximate sum, r the absolute error

Multiple precision using floating-point - Lauter - TMW 2006 10

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F such that |a| ≥ |b|.
Let be s, r ∈ F computed by

1 s = a + b ;
2 t = s − a ;
3 r = b − t ;

+

s r

b

a

Thus
s + r = a + b

and
|r | ≤ ulp(s)

Proof intuition: apply Sterbenz’ lemma

Meaning of s and r : s is a approximate sum, r the absolute error

Multiple precision using floating-point - Lauter - TMW 2006 10

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F such that |a| ≥ |b|.
Let be s, r ∈ F computed by

1 s = a + b ;
2 t = s − a ;
3 r = b − t ;

+

s r

b

a

Thus
s + r = a + b

and
|r | ≤ ulp(s)

Proof intuition: apply Sterbenz’ lemma
Meaning of s and r : s is a approximate sum, r the absolute error

Multiple precision using floating-point - Lauter - TMW 2006 10

2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F.
Let be s, r ∈ F computed by

1 s = a + b ;
2 i f (f a b s (a) >= fab s (b)) {
3 t = s − a ;
4 r = b − t ;
5 } e l s e {
6 t = s − b ;
7 r = a − t ;
8 }

Thus
s + r = a + b

and
|r | ≤ ulp(s)

Multiple precision using floating-point - Lauter - TMW 2006 11

Branches ?

There are branches!

Branches are expensive on current pipelined processors!

Multiple precision using floating-point - Lauter - TMW 2006 12

2Sum - avoiding branches

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F.
Let be s, r ∈ F computed by

1 s = a + b ;
2 t1 = s − a ;
3 t2 = s − b ;
4 d1 = b − t1 ;
5 d2 = a − t2 ;
6 r = d1 + d2 ;

Thus
s + r = a + b

and
|r | ≤ ulp(s)

⇒ Up to 10% performance gain w.r.t. branching version !

Multiple precision using floating-point - Lauter - TMW 2006 13

2Sum - avoiding branches

Let round-to-nearest the current rounding mode in IEEE 754.
Let a, b ∈ F.
Let be s, r ∈ F computed by

1 s = a + b ;
2 t1 = s − a ;
3 t2 = s − b ;
4 d1 = b − t1 ;
5 d2 = a − t2 ;
6 r = d1 + d2 ;

Thus
s + r = a + b

and
|r | ≤ ulp(s)

⇒ Up to 10% performance gain w.r.t. branching version !
Multiple precision using floating-point - Lauter - TMW 2006 13

Round-to-nearest ?

Round-to-nearest mode required?

I am doing interval arithmetic and I do not like to change the
rounding-mode !

Multiple precision using floating-point - Lauter - TMW 2006 14

Fast2Sum - any rounding mode

Let a, b ∈ F such that |a| ≥ |b|.
Let be s, r ∈ F computed by

1 s = a + b ;
2 e = s − a ;
3 g = s − e ;
4 h = g − a ;
5 f = b − h ;
6 r = f − e ;
7 i f (r + e != f) {
8 s = a ;
9 r = b ;

10 }

Thus
s + r = a + b

and
|r | ≤ ulp(s)

Multiple precision using floating-point - Lauter - TMW 2006 15

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b
Is this possible ?

∗
a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b

Is this possible ?
∗

a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b
Is this possible ?

∗
a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b
Is this possible ?

∗
a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b
Is this possible ?

∗
a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - Introduction

Addition: s + r = a + b

Multiplication - similarly: s + r = a · b
Is this possible ?

∗
a b

s r

The significand of a · b holds on a sum of two FP-numbers
s + r

How do we compute s and r?

Multiple precision using floating-point - Lauter - TMW 2006 16

Multiplication - The easy way

Suppose that the system supports a fused-multiply-and-add (FMA)
operation: FMA(a, b, c) = ◦ (a · b + c).
Let be a, b ∈ F.
Let be s, r ∈ F computed by

1 s = a ∗ b ;
2 r = FMA(a , b,− s) ; // r = ◦(a · b − s)

Thus
s + r = a · b

and
|r | ≤ ulp(s)

Multiple precision using floating-point - Lauter - TMW 2006 17

Multiplication - Graphical “proof”

∗
a b

a · b

− s = ◦ (a · b)

r
Cancellation

Multiple precision using floating-point - Lauter - TMW 2006 18

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b

Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b
Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b
Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b
Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b
Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Multiplication - without FMA

Let be a, b ∈ Fp on p bits

We want s + r = a · b
Let be ah + al = a and bh + bl = b

Clearly a · b = ah · bh + ah · bl + al · bh + al · bl

If ah, al , bh, bl are written on at most p′ bits, all products hold
on 2 · p′ bits.

If 2 · p′ ≤ p we can write:

a · b = ah⊗bh + ah⊗bl + al⊗bh + al⊗bl

Since a · b holds on at most 2 · p bits, there will be sufficient
cancellation in the summation of the products producing s + r
⇒ Use here the exact 2Sum presented before.

How can we compute ah + al = a ?

Multiple precision using floating-point - Lauter - TMW 2006 19

Cut into halves

Let round-to-nearest the current rounding mode in IEEE 754.
Let a ∈ Fp with precision p.
Let be h, l ∈ Fp computed by

1 c = 2p−k + 1 ;
2 y = c ∗ a ;
3 z = y − a ;
4 h = y − z ;
5 l = a − h ;

��
��
��
��

��
��
��
��

2p−k · a

a

(2p−k + 1) · a

y = ◦((2p−k + 1) · a)

a−

z = ◦(y − a)

y = ◦((2p−k + 1) · a)

h = y − z

−

a−

l = a − h

Thus
h + l = a

and h has at least k trailing zeros and l has at least p − k + 1
trailing zeros.

Multiple precision using floating-point - Lauter - TMW 2006 20

Other exact operations

Division and square root

One can express only the backward error

s = f (a− δ)

instead of
s + δ = f (a)

as for addition and multiplication

Division:

d =
a− r

b
where d = a� b ∈ F and r ∈ F

Square root:
s =

√
a− r

where s = ◦
(√

a
)

and r ∈ F
We can implement division and square root on expansions
even with backward errors

Multiple precision using floating-point - Lauter - TMW 2006 21

Double-double, triple-double
and expansion arithmetic

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Multiple precision using floating-point - Lauter - TMW 2006 22

Vocabulary

Represent high precision numbers as unevaluated sums of
floating-point numbers

x =
n∑

i=1

xi

Suppose native precision to be IEEE 754 double precision

n = 2: “double-double” – ≈ 102 bits of accuracy
n = 3: “triple-double” – ≈ 150 bits of accuracy
n = 4: Bailey: “quad-double”
any n: expansions

Multiple precision using floating-point - Lauter - TMW 2006 23

Operations on expansions

Operations on expansions:

Addition – Use 2Sum algorithm for carries
Multiplication – Partial products using 2Mult, sum up using
2Sum
Division – Euclid’s division using an exact backward error
sequence or Newton’s method
Square root – Newton’s method
Renormalization – use 2Sums and tests for bringing
expansions to a non-overlapping form

Cost:

No conversions between floating-point and integer ⇒
double-double and triple-double is much faster
Expansions are inefficient: the exponents are redundant
information
Floating-point arithmetic has some bizarre behaviours: ⇒
general expansions seem to be more expensive than integer
based methods because of a high number of tests

Multiple precision using floating-point - Lauter - TMW 2006 24

Operations on expansions

Operations on expansions:

Addition – Use 2Sum algorithm for carries
Multiplication – Partial products using 2Mult, sum up using
2Sum
Division – Euclid’s division using an exact backward error
sequence or Newton’s method
Square root – Newton’s method
Renormalization – use 2Sums and tests for bringing
expansions to a non-overlapping form

Cost:

No conversions between floating-point and integer ⇒
double-double and triple-double is much faster
Expansions are inefficient: the exponents are redundant
information
Floating-point arithmetic has some bizarre behaviours: ⇒
general expansions seem to be more expensive than integer
based methods because of a high number of tests

Multiple precision using floating-point - Lauter - TMW 2006 24

Double-double and triple-double in crlibm

Full implementation of double-double
Versions for 2Sum and 2Mult optimized for different processors
(FMA, FABS, . . .)
All combinations double + double, double-double + double
etc.
Accuracy proof for each operator; proof can already be
formally verified (Gappa)

Almost complete implementation of triple-double
Based on double-double
Almost all combinations double, double-double or triple-double
in operand or result
Accuracy proof of each operator
Approach for avoiding renormalizations whilst being rigurous
No branches on common machines
Correct (IEEE 754) rounding to double implemented

Automatic routines for generating double, double-double and
triple-double code for evaluating complete polynomials in
Horner’s scheme with formal proof generation

Multiple precision using floating-point - Lauter - TMW 2006 25

Double-double and triple-double in crlibm

Full implementation of double-double
Versions for 2Sum and 2Mult optimized for different processors
(FMA, FABS, . . .)
All combinations double + double, double-double + double
etc.
Accuracy proof for each operator; proof can already be
formally verified (Gappa)

Almost complete implementation of triple-double
Based on double-double
Almost all combinations double, double-double or triple-double
in operand or result
Accuracy proof of each operator
Approach for avoiding renormalizations whilst being rigurous
No branches on common machines
Correct (IEEE 754) rounding to double implemented

Automatic routines for generating double, double-double and
triple-double code for evaluating complete polynomials in
Horner’s scheme with formal proof generation

Multiple precision using floating-point - Lauter - TMW 2006 25

Double-double and triple-double in crlibm

Full implementation of double-double
Versions for 2Sum and 2Mult optimized for different processors
(FMA, FABS, . . .)
All combinations double + double, double-double + double
etc.
Accuracy proof for each operator; proof can already be
formally verified (Gappa)

Almost complete implementation of triple-double
Based on double-double
Almost all combinations double, double-double or triple-double
in operand or result
Accuracy proof of each operator
Approach for avoiding renormalizations whilst being rigurous
No branches on common machines
Correct (IEEE 754) rounding to double implemented

Automatic routines for generating double, double-double and
triple-double code for evaluating complete polynomials in
Horner’s scheme with formal proof generation

Multiple precision using floating-point - Lauter - TMW 2006 25

Speed-ups

Logarithm - evaluate polynomials of degree about 12− 20

Library cycles

MPFR - integer based multiprec. 12942

crlibm portable using integer based multiprec. 2748

crlibm portable using triple-double 266

Exponential - evaluate polynomials of degree about 7− 15

Library cycles

MPFR - integer based multiprec. 4908

crlibm portable using integer based multiprec. 1976

crlibm portable using triple-double 258

Multiple precision using floating-point - Lauter - TMW 2006 26

Conclusion

Presentation of exact floating-point arithmetic

Overview over general techniques for expansions

Double-double and triple-double are quite efficient

No branches needed
No conversions needed
Speed-up of a factor of about 10

Rigourous proofs are possible (Gappa)

General expansion algorithms known but rarely implemented

Multiple precision using floating-point - Lauter - TMW 2006 27

	Motivation
	Exact floating-point arithmetic
	Double-double, triple-double and expansion arithmetic

