A survey of multiple precision computation using floating-point arithmetic

Fourth International Workshop on Taylor Methods
Christoph Quirin Lauter
Laboratoire de I'Informatique et du Parallélisme
École Normale Supérieure de Lyon

Boca Raton, December 16-19

CENTRENALONAL

Motivation

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Project by Arénaire at ENS de Lyon

crlibm ${ }^{1}$: correctly rounded elementary function library
$1_{\text {http://lipforge.ens-lyon.fr/www/crlibm/ }}$

Project by Arénaire at ENS de Lyon

crlibm ${ }^{1}$: correctly rounded elementary function library

- Elementary functions as in an usual libm:
- exp
- sin
- COS
- . . .

[^0]
Project by Arénaire at ENS de Lyon

crlibm ${ }^{1}$: correctly rounded elementary function library

- Elementary functions as in an usual libm:
- exp
- sin
- cos
- ...
- Evaluating elementary functions means evaluating polynomials

[^1]
Project by Arénaire at ENS de Lyon

crlibm ${ }^{1}$: correctly rounded elementary function library

- Elementary functions as in an usual libm:
- exp
- sin
- cos
- ...
- Evaluating elementary functions means evaluating polynomials
- Correct rounding requires high accuracy and complete proofs

[^2]
Need for more precision

- IEEE 754 double precision offers 53 bits of precision
- In crlibm, we need an accuracy of "120 correct bits"
- In Taylor models, no use of high order polynomials if the remainder grows too fast

Need for more precision

- IEEE 754 double precision offers 53 bits of precision
- In crlibm, we need an accuracy of "120 correct bits"
- In Taylor models, no use of high order polynomials if the remainder grows too fast
- First approach:
- Use an integer based fixed high precision floating-point library
- Necessity to leave the floating-point pipeline
- High impact on performance (factor 100)

Need for more precision

- IEEE 754 double precision offers 53 bits of precision
- In crlibm, we need an accuracy of "120 correct bits"
- In Taylor models, no use of high order polynomials if the remainder grows too fast
- First approach:
- Use an integer based fixed high precision floating-point library
- Necessity to leave the floating-point pipeline
- High impact on performance (factor 100)
- Second approach:
- Emulate higher precision in floating-point
- Reusage of already computed floating-point values possible
- No conversions, fill completely floating-point pipeline
- Speed-up by at least a factor 10 w.r.t. the first approach
- Same quality of certification possible

Higher precision in floating-point

- Floating-point expansions:

- Operations on expansions: for example addition:

\square
c_{h}

δ (error)

Need for exact floating-point arithmetic

- We want to implement:

- Single step:

Exact floating-point arithmetic

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Exact floating-point arithmetic?

- Floating-point arithmetic can produce round-off error

$$
a \otimes b=a \cdot b \cdot(1+\varepsilon)
$$

where $|\varepsilon| \leq 2^{-p}$

Exact floating-point arithmetic?

- Floating-point arithmetic can produce round-off error

$$
a \otimes b=a \cdot b \cdot(1+\varepsilon)
$$

where $|\varepsilon| \leq 2^{-p}$

- A floating-point operation is called exact if its result is the mathematical one

$$
\begin{gathered}
a \otimes b=a \cdot b \\
\varepsilon=0
\end{gathered}
$$

Exact floating-point arithmetic?

- Floating-point arithmetic can produce round-off error

$$
a \otimes b=a \cdot b \cdot(1+\varepsilon)
$$

where $|\varepsilon| \leq 2^{-p}$

- A floating-point operation is called exact if its result is the mathematical one

$$
\begin{gathered}
a \otimes b=a \cdot b \\
\varepsilon=0
\end{gathered}
$$

- However: floating-point arithmetic is often exact:
- Floating-point numbers are scaled integers
- If no integer overflow occurs, operations are exact on integers
- Just factorize the scale (where possible)

$$
a \otimes b=2^{E_{a}} \cdot m_{a} \otimes 2^{E_{b}} \cdot m_{b}=2^{E_{a}+E_{b}} \cdot \circ\left(m_{a} \cdot m_{b}\right)
$$

where \circ is the rounding operator satisfying

$$
\forall x \in \mathbb{F} . \circ(x)=x
$$

Disclaimer

If tomorrow, you want to implement what I am going to show in the next slides, remember that...

- Code here is in C and that Fortran behaves differently
- Implicit parentheses are elsewhere but our exact FP arithmetic requires the indicated operation order
- Typing of mixed precision expressions is different
- "Optimizations" the compiler is allowed to do are different
- Declaring variables as double $\mathrm{x}, \mathrm{y}, \mathrm{z}$; does not imply usage of IEEE 754 double precision on most systems
- Round-to-nearest rounding mode required by some exact arithmetic sequences, in particular for exact multiplication
- Special care is needed for subnormals, underflow and overflow

Sterbenz' lemma

Let be $a, b \in \mathbb{F}$ such that

$$
\operatorname{sgn}(a)=\operatorname{sgn}(b)
$$

and

$$
\frac{1}{2} \cdot|a| \leq|b| \leq 2 \cdot|a|
$$

Thus

$$
\begin{array}{rl}
2^{E} & a=2^{E} \cdot m_{a} \\
- & b=2^{E} \cdot m_{b} \\
& a \ominus b=2^{E} \cdot\left(m_{a}-m_{b}\right) \\
&
\end{array}
$$

Sterbenz' lemma

Let be $a, b \in \mathbb{F}$ such that

$$
\operatorname{sgn}(a)=\operatorname{sgn}(b)
$$

and

$$
\frac{1}{2} \cdot|a| \leq|b| \leq 2 \cdot|a|
$$

Thus

$$
2^{E}
$$

$$
a=2^{E} \cdot m_{a}
$$

$$
-\quad b=2^{E} \cdot m_{b}
$$

$$
a \ominus b=2^{E} \cdot\left(m_{a}-m_{b}\right)
$$

$$
a \ominus b=a-b
$$

- At the base of most extended precision addition algorithms
- Independent of the rounding mode
- Proof intuition: factor the scale of both scaled integers that are a and b

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$ such that $|a| \geq|b|$.
Let be $s, r \in \mathbb{F}$ computed by

$$
\begin{aligned}
& 1 \mathrm{~s}=\mathrm{a}+\mathrm{b} \text {; } \\
& \mathrm{t}=\mathrm{s}-\mathrm{a} \text {; } \\
& \mathrm{r}=\mathrm{b}-\mathrm{t} \text {; }
\end{aligned}
$$

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq \operatorname{ulp}(s)
$$

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$ such that $|a| \geq|b|$.
Let be $s, r \in \mathbb{F}$ computed by

$$
\begin{aligned}
& 1 \begin{array}{l}
\mathrm{s}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{t}=\mathrm{s}-\mathrm{a} ; \\
\mathrm{t} \\
\mathrm{r}=\mathrm{b}-\mathrm{t} ;
\end{array}
\end{aligned}
$$

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq u l p(s)
$$

Proof intuition: apply Sterbenz' lemma

Fast2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$ such that $|a| \geq|b|$.
Let be $s, r \in \mathbb{F}$ computed by

```
s = a + b;
t = s - a;
r = b - t;
```


Thus

$$
s+r=a+b
$$

and

$$
|r| \leq u l p(s)
$$

Proof intuition: apply Sterbenz' lemma
Meaning of s and $r: s$ is a approximate sum, r the absolute error

2Sum

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$.
Let be $s, r \in \mathbb{F}$ computed by

```
s = a + b;
if (fabs(a) >= fabs(b)) {
    t = s - a;
    r = b - t;
    else {
    t = s - b;
    r = a - t;
}
```

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq \operatorname{ulp}(s)
$$

Branches ?

There are branches!
Branches are expensive on current pipelined processors!

2Sum - avoiding branches

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$.
Let be $s, r \in \mathbb{F}$ computed by

```
s = a + b;
t1 = s - a;
t2 = s - b;
d1 = b - t1;
d2 = a - t2;
r = d1 + d2;
```

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq \operatorname{ulp}(s)
$$

2Sum - avoiding branches

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a, b \in \mathbb{F}$.
Let be $s, r \in \mathbb{F}$ computed by

```
s = a + b;
t1 = s - a;
t2 = s - b;
d1 = b - t1;
d2 = a - t2;
r = d1 + d2;
```

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq \operatorname{ulp}(s)
$$

\Rightarrow Up to 10% performance gain w.r.t. branching version!

Round-to-nearest ?

Round-to-nearest mode required?

I am doing interval arithmetic and I do not like to change the rounding-mode!

Fast2Sum - any rounding mode

Let $a, b \in \mathbb{F}$ such that $|a| \geq|b|$.
Let be $s, r \in \mathbb{F}$ computed by

$$
\begin{aligned}
& \mathrm{s}=\mathrm{a}+\mathrm{b} ; \\
& \mathrm{e}=\mathrm{s}-\mathrm{a} ; \\
& \mathrm{g}=\mathrm{s}-\mathrm{e} ; \\
& \mathrm{h}=\mathrm{g}-\mathrm{a} ; \\
& \mathrm{f}=\mathrm{b}-\mathrm{h} ; \\
& \mathrm{r}=\mathrm{f}-\mathrm{e} ; \\
& \mathbf{i f} \quad(\mathrm{r}+\mathrm{e} \quad!=\mathrm{f})\{ \\
& \mathrm{s}=\mathrm{a} ; \\
& \quad \mathrm{r}=\mathrm{b}
\end{aligned}
$$

Thus

$$
s+r=a+b
$$

and

$$
|r| \leq \operatorname{ulp}(s)
$$

Multiplication - Introduction

- Addition: $s+r=a+b$

Multiplication - Introduction

- Addition: $s+r=a+b$
- Multiplication - similarly: $s+r=a \cdot b$

Multiplication - Introduction

- Addition: $s+r=a+b$
- Multiplication - similarly: $s+r=a \cdot b$
- Is this possible?

Multiplication - Introduction

- Addition: $s+r=a+b$
- Multiplication - similarly: $s+r=a \cdot b$
- Is this possible?

Multiplication - Introduction

- Addition: $s+r=a+b$
- Multiplication - similarly: $s+r=a \cdot b$
- Is this possible?

- The significand of $a \cdot b$ holds on a sum of two FP-numbers $s+r$

Multiplication - Introduction

- Addition: $s+r=a+b$
- Multiplication - similarly: $s+r=a \cdot b$
- Is this possible ?

- The significand of $a \cdot b$ holds on a sum of two FP-numbers $s+r$
- How do we compute s and r ?

Multiplication - The easy way

Suppose that the system supports a fused-multiply-and-add (FMA) operation: $\operatorname{FMA}(a, b, c)=\circ(a \cdot b+c)$.
Let be $a, b \in \mathbb{F}$.
Let be $s, r \in \mathbb{F}$ computed by

```
\(\mathrm{s}=\mathrm{a} * \mathrm{~b}\);
\(r=\operatorname{FMA}(a, b,-s) ; / / r=o(a \cdot b-s)\)
```

Thus

$$
s+r=a \cdot b
$$

and

$$
|r| \leq u l p(s)
$$

Multiplication - Graphical "proof"

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$
- Let be $a_{h}+a_{l}=a$ and $b_{h}+b_{l}=b$
- Clearly $a \cdot b=a_{h} \cdot b_{h}+a_{h} \cdot b_{l}+a_{l} \cdot b_{h}+a_{l} \cdot b_{l}$

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$
- Let be $a_{h}+a_{l}=a$ and $b_{h}+b_{l}=b$
- Clearly $a \cdot b=a_{h} \cdot b_{h}+a_{h} \cdot b_{l}+a_{l} \cdot b_{h}+a_{l} \cdot b_{l}$
- If $a_{h}, a_{l}, b_{h}, b_{l}$ are written on at most p^{\prime} bits, all products hold on $2 \cdot p^{\prime}$ bits.

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$
- Let be $a_{h}+a_{l}=a$ and $b_{h}+b_{l}=b$
- Clearly $a \cdot b=a_{h} \cdot b_{h}+a_{h} \cdot b_{l}+a_{l} \cdot b_{h}+a_{l} \cdot b_{l}$
- If $a_{h}, a_{l}, b_{h}, b_{l}$ are written on at most p^{\prime} bits, all products hold on $2 \cdot p^{\prime}$ bits.
- If $2 \cdot p^{\prime} \leq p$ we can write:

$$
a \cdot b=a_{h} \otimes b_{h}+a_{h} \otimes b_{l}+a_{l} \otimes b_{h}+a_{l} \otimes b_{l}
$$

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$
- Let be $a_{h}+a_{l}=a$ and $b_{h}+b_{l}=b$
- Clearly $a \cdot b=a_{h} \cdot b_{h}+a_{h} \cdot b_{l}+a_{l} \cdot b_{h}+a_{l} \cdot b_{l}$
- If $a_{h}, a_{l}, b_{h}, b_{l}$ are written on at most p^{\prime} bits, all products hold on $2 \cdot p^{\prime}$ bits.
- If $2 \cdot p^{\prime} \leq p$ we can write:

$$
a \cdot b=a_{h} \otimes b_{h}+a_{h} \otimes b_{l}+a_{l} \otimes b_{h}+a_{l} \otimes b_{l}
$$

- Since $a \cdot b$ holds on at most $2 \cdot p$ bits, there will be sufficient cancellation in the summation of the products producing $s+r$ \Rightarrow Use here the exact 2 Sum presented before.

Multiplication - without FMA

- Let be $a, b \in \mathbb{F}_{p}$ on p bits
- We want $s+r=a \cdot b$
- Let be $a_{h}+a_{l}=a$ and $b_{h}+b_{l}=b$
- Clearly $a \cdot b=a_{h} \cdot b_{h}+a_{h} \cdot b_{l}+a_{l} \cdot b_{h}+a_{l} \cdot b_{l}$
- If $a_{h}, a_{l}, b_{h}, b_{l}$ are written on at most p^{\prime} bits, all products hold on $2 \cdot p^{\prime}$ bits.
- If $2 \cdot p^{\prime} \leq p$ we can write:

$$
a \cdot b=a_{h} \otimes b_{h}+a_{h} \otimes b_{l}+a_{l} \otimes b_{h}+a_{l} \otimes b_{l}
$$

- Since $a \cdot b$ holds on at most $2 \cdot p$ bits, there will be sufficient cancellation in the summation of the products producing $s+r$ \Rightarrow Use here the exact 2 Sum presented before.
- How can we compute $a_{h}+a_{l}=a$?

Cut into halves

Let round-to-nearest the current rounding mode in IEEE 754.
Let $a \in \mathbb{F}_{p}$ with precision p.
Let be $h, I \in \mathbb{F}_{p}$ computed by

$$
\begin{aligned}
& c=2^{p-k}+1 ; \\
& y=c * a ; \\
& z=y-a ; \\
& h=y-z ; \\
& l=a-h ;
\end{aligned}
$$

Thus

$$
h+I=a
$$

and h has at least k trailing zeros and $/$ has at least $p-k+1$ trailing zeros.

Other exact operations

- Division and square root
- One can express only the backward error

$$
s=f(a-\delta)
$$

instead of

$$
s+\delta=f(a)
$$

as for addition and multiplication

- Division:

$$
d=\frac{a-r}{b}
$$

where $d=a \oslash b \in \mathbb{F}$ and $r \in F$

- Square root:

$$
s=\sqrt{a-r}
$$

where $s=0(\sqrt{a})$ and $r \in \mathbb{F}$

- We can implement division and square root on expansions even with backward errors

Double-double, triple-double and expansion arithmetic

Motivation

Exact floating-point arithmetic

Double-double, triple-double and expansion arithmetic

Vocabulary

- Represent high precision numbers as unevaluated sums of floating-point numbers

$$
x=\sum_{i=1}^{n} x_{i}
$$

- Suppose native precision to be IEEE 754 double precision
- $n=2$: "double-double" $-\approx 102$ bits of accuracy
- $n=3$: "triple-double" $-\approx 150$ bits of accuracy
- $n=4$: Bailey: "quad-double"
- any n : expansions

Operations on expansions

Operations on expansions:

- Addition - Use 2Sum algorithm for carries
- Multiplication - Partial products using 2Mult, sum up using 2Sum
- Division - Euclid's division using an exact backward error sequence or Newton's method
- Square root - Newton's method
- Renormalization - use 2Sums and tests for bringing expansions to a non-overlapping form

Operations on expansions

Operations on expansions:

- Addition - Use 2Sum algorithm for carries
- Multiplication - Partial products using 2Mult, sum up using 2Sum
- Division - Euclid's division using an exact backward error sequence or Newton's method
- Square root - Newton's method
- Renormalization - use 2Sums and tests for bringing expansions to a non-overlapping form
Cost:
- No conversions between floating-point and integer \Rightarrow double-double and triple-double is much faster
- Expansions are inefficient: the exponents are redundant information
- Floating-point arithmetic has some bizarre behaviours: \Rightarrow general expansions seem to be more expensive than integer based methods because of a high number of tests

Double-double and triple-double in crlibm

- Full implementation of double-double
- Versions for 2Sum and 2Mult optimized for different processors (FMA, FABS, ...)
- All combinations double + double, double-double + double etc.
- Accuracy proof for each operator; proof can already be formally verified (Gappa)

Double-double and triple-double in crlibm

- Full implementation of double-double
- Versions for 2Sum and 2Mult optimized for different processors (FMA, FABS, ...)
- All combinations double + double, double-double + double etc.
- Accuracy proof for each operator; proof can already be formally verified (Gappa)
- Almost complete implementation of triple-double
- Based on double-double
- Almost all combinations double, double-double or triple-double in operand or result
- Accuracy proof of each operator
- Approach for avoiding renormalizations whilst being rigurous
- No branches on common machines
- Correct (IEEE 754) rounding to double implemented

Double-double and triple-double in crlibm

- Full implementation of double-double
- Versions for 2Sum and 2Mult optimized for different processors (FMA, FABS, ...)
- All combinations double + double, double-double + double etc.
- Accuracy proof for each operator; proof can already be formally verified (Gappa)
- Almost complete implementation of triple-double
- Based on double-double
- Almost all combinations double, double-double or triple-double in operand or result
- Accuracy proof of each operator
- Approach for avoiding renormalizations whilst being rigurous
- No branches on common machines
- Correct (IEEE 754) rounding to double implemented
- Automatic routines for generating double, double-double and triple-double code for evaluating complete polynomials in Horner's scheme with formal proof generation

Speed-ups

Logarithm - evaluate polynomials of degree about 12 - 20

Library	cycles
MPFR - integer based multiprec.	12942
crlibm portable using integer based multiprec.	2748
crlibm portable using triple-double	266

Exponential - evaluate polynomials of degree about 7-15

Library	cycles
MPFR - integer based multiprec.	4908
crlibm portable using integer based multiprec.	1976
crlibm portable using triple-double	258

Conclusion

- Presentation of exact floating-point arithmetic
- Overview over general techniques for expansions
- Double-double and triple-double are quite efficient
- No branches needed
- No conversions needed
- Speed-up of a factor of about 10
- Rigourous proofs are possible (Gappa)
- General expansion algorithms known but rarely implemented

[^0]: $1_{\text {http }}$://lipforge.ens-lyon.fr/www/crlibm/

[^1]: $1_{\text {http://lipforge.ens-lyon.fr/www/crlibm/ }}$

[^2]: $1_{\text {http://lipforge.ens-lyon.fr/www/crlibm/ }}$

