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It is a gradient PDE and its energy is given by
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We are interested in understanding the global

 dynamics of the Swift-Hohenberg PDE
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ut = (ν − 1)u − 2uxx − uxxxx − u3,

u(·, t) ∈ L2[0, 2π

L0
], ν > 0,

u(x, t) = u(x + 2π

L0
, t), u(−x, t) = u(x, t).

(S-H)



Since Swift-Hohenberg is a gradient PDE, the dynamics of 

interest consists of equilibria (steady state solutions) and 

connecting orbits between them.    

Connecting orbits are intersections of stable and unstable 

manifolds of equilibria. That raises the following question:

Is it possible to get rigorous approximations of the stable 

and unstable manifolds of equilibria of nonlinear PDEs ?  



Outline in 4 parts



(1) Get a finite dimensional Galerkin projection of the 

original infinite dimensional PDE together with a priori 

analytic estimates of the truncation error term.



(2) Using a rigorous continuation method, we get small 

infinite dimensional sets containing a unique 

equilibrium of the original PDE: Validation Sets. 



(3) We want representations of the stable and unstable 

    manifolds of each of the equilibria of the PDE in each 

of the infinite dimensional validation sets.



(4) We want to determine the existence or nonexistence of 

connecting orbits between the validation sets.



(1) Galerkin Projection and Truncation Error Term































ut = (ν − 1)u − 2uxx − uxxxx − u3,

u(·, t) ∈ L2[0, 2π

L0
], ν > 0,

u(x, t) = u(x + 2π

L0
, t), u(−x, t) = u(x, t).

(S-H)

Plugging in (S-H), we get thatu(x, t) =
∞∑

k=−∞

ck(t)eikL0x

∞
∑

k=−∞
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Note that u(x, t) being real implies that c
−k = ck

and that u(−x, t) = u(x, t) implies that each ck is real.
Let ak = ck such that a

−k = ak. Define a := (a0, a1, · · ·)
and define

fk(a) :=
[
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0 − k4L4

0

]

ak −
∑

k1+k2+k3=k

ak1
ak2

ak3
, k ≥ 0 .

Hence, we get the system of countably many ODEs

ȧk = fk(a) , k ≥ 0

with corresponding finite dimensional Galerkin Projection

ȧk = f
(m)
k (aF ) :=
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(ν − 1) + k2L2
0 − k4L4

0

]

ak −

∑

k1+k2+k3=k

|k1|,|k2|,|k3|<m

ak1
ak2

ak3

where aF := (a0, · · · , am−1) and f (m)(aF ) := [f0(aF , 0), · · · , fm−1(aF , 0)].

, k = 0, · · · ,m − 1



The Truncation Error Term is defined by 

rk(a) :=

{
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k

(aF ) , for 0 ≤ k ≤ m − 1
fk(a) , for k ≥ m .
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For all k, suppose that ak ∈ As

|k|s [−1, 1] and let

α := 2

s−1
+ 2 + 3.5 · 2s. Then for Swift-Hohenberg

and for 0 ≤ k < m, an a priori analytic estimate
for the truncation error term is given by



To find the equilibria of ȧ = f(a, ν) = 0, we use a recently developed rigorous
continuation method based on a predictor-corrector algorithm.

ν|

ν̄

•

•

||aF || āF

f (m)(aF , ν) = 0

Since the finite dimensional Newton-like map

T (m)(aF ) := aF − Df (m)(āF )
−1

f (m)(aF )

contracts small sets centered at the numerical equilibrium āF , we want
to construct an infinite dimensional operator T that will contract
small sets centered at (āF , 0, 0, · · ·).

(2) Rigorous Continuation for Equilibria of PDEs



Let { µk := (ν − 1) + k2L2
0 − k4L4
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For a projection dimension m large enough, we expect T to be close
to the true Newton-like operator N(a) := a − Df(ā)−1

f(a) which
should contract a small neighborhood of ā = (āF , 0, 0, · · ·).

Let’s define the Newton-like operator T (a) := a − Af(a).

New Goal: Find Wā centered at ā that will be contracted by T , where

Wā = ā + W (r)

= ā +
m−1∏

k=0

[−r, r] ×
∞∏

k=m

[−
As

ks
,
As

ks
] .



Let’s fix s ≥ 2 and As > 0. The Finite Radii Polynomials are defined by

pk(r) = Yk + Zk(r) − r , 0 ≤ k < m

and the Tail Radii Polynomials are defined by

pk(r) = Yk + Zk(r) −
As

ks
, k ≥ m

For every k ≥ 0, choose Yk and Zk such that

Yk ≥ |[T (ā) − ā]k|

and
Zk(r) ≥ sup

w1,w2∈W (r)
|[T ′(w1 + ā)w2]k|

Theorem : Fix s ≥ 2 and As > 0. If there exists an r > 0 such that

Yk + Zk(r) < r , 0 ≤ k < m

and that

Yk + Zk(r) <
As

ks
, k ≥ m,

then T contracts Wā. Such a set is called a Validation Set.



For Swift-Hohenberg, let ν = 1012.278335845298,
m = 36, s = 2 and As = 1. Then the first 5 radii polynomials are

P0(r) = 3.78538693997847r
3 + 53.66993812353729r

2
− 0.94066816114817r + 0.00002263158367

P1(r) = 3.93318653216601r
3 + 51.12414846239815r

2
− 0.94501041465339r + 0.00004390367633

P2(r) = 4.34213973336531r
3 + 43.70648160384567r

2
− 0.95757138002609r + 0.00009992391280

P3(r) = 4.91217035583181r
3 + 32.75454934434237r

2
− 0.97595014905679r + 0.00018439605102

P4(r) = 5.48852159733388r
3 + 19.85595518347044r

2
− 0.99715843223739r + 0.00027476033610

and I = [0.00042014834314 , 0.01748123404854]

Theorem: Let ν = 1012.278335845298, s = 2, As = 1
and r̄ = 0.00042014834314. Then the Swift-Hohenberg
PDE has a unique equilibrium solution in the set

Wā = (āF , 0, 0, · · ·) +
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∏
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Theorem: Let s ≥ 2 and As fixed. If

r̄ ∈ I :=
∞⋂

k=0

{r > 0 | pk(r) < 0 } = [rmin, rmax]

then T contracts Wā(r̄) (which is then a Validation Set).



Using rigorous continuation, we obtained validation sets around each of the 
numerical equilibria shown in the picture below. These are equilibria for S-H.

ν

||u||



(3) Representations of the stable and unstable manifolds 

of each of the equilibria in their infinite dimensional 

validation sets using Taylor methods ?

• Analytic upper bounds of f(ā), Df(ā), D2f(ā), D3f(ā).



(4) Determine the existence or nonexistence of connecting 

orbits between the validation sets.

• Rigorous Integration using Taylor methods?

• Rule out connections using the energy.

• Think of a connecting orbit as a boundary
value problem.



Thank You !!
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