Enclosing All Solutions of TPBVP for ODEs Using Interval Analysis

Youdong Lin and Mark A. Stadtherr

Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556

> Fourth International Workshop on Taylor Methods Boca Raton, December 16-19, 2006

Outline

- Background
- Tools
- Methodology
- Examples
- Concluding Remarks

Background

- Given an ODE system: $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta})$ $t \in [t_0, t_f]$
- Supplemented by boundary conditions: $g(x(t_0), x(t_f), \theta) = 0$
 - Initial Value Problem (IVP)
 - Two-Point Boundary Value Problem (TPBVP)
- A TPBVP may not have a solution or may have a finite number of solutions
- Often also need to determine parameter values for which solutions exist

Background (Cont'd)

- Standard techniques for the numerical solutions of a TPBVP
 - Shooting methods based on solving related IVPs
 - Finite difference or collocation methods
- Limitation find a local solution and miss other solutions of interest
- Need a method that can guarantee to enclose all solutions of interest

Tools

- Interval Mathematics
- Taylor Models
- Constraint Propagation
- Validated Solution for Parametric ODEs

Interval Mathematics

- A real interval $X = [a, b] = \{x \in \Re \mid a \le x \le b\}$ is a segment in the real number line
- An interval vector $\boldsymbol{X} = (X_1, X_2, \cdots, X_n)^T$ is an *n*-dimensional rectangle
- Basic interval arithmetic for X = [a, b] and Y = [c, d] is

 $X \text{ op } Y = \{x \text{ op } y \mid x \in X, y \in Y\}$

- Interval elementary functions (e.g. $\exp(X)$, $\sin(X)$) are also available
- The interval extension $F(oldsymbol{X})$ encloses all values of $f(oldsymbol{x})$ for every $oldsymbol{x}\inoldsymbol{X}$

 $F(\boldsymbol{X}) \supseteq \{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \boldsymbol{X}\}$

• Interval extensions computed using interval arithmetic may lead to overestimation of function ("dependence" problem)

Taylor Models

- Taylor Model $T_f = (p_f, R_f)$: Bounds f(x) over X using a q-th order Taylor polynomial p_f and an interval remainder bound R_f
- Could obtain T_f using a truncated Taylor series
- Can also compute Taylor models by using Taylor model operations
- Beginning with Taylor models of simple functions, Taylor models of very complicated functions can be computed
- Taylor models often yield sharper bounds for modest to complicated functional dependencies

Taylor Models – Range Bounding

- Exact range bounding of the interval polynomials NP hard
- Direct evaluation of the interval polynomials overestimation
- Focus on bounding the dominant part (1st and 2nd order terms)
- Schemes: LDB, QDB, QFB (Makino and Berz, 2004)
- A compromise approach Exact bounding of 1st order and diagonal elements of 2nd order terms

$$B(p) = \sum_{i=1}^{m} \left[a_i \left(X_i - x_{i0} \right)^2 + b_i \left(X_i - x_{i0} \right) \right] + S$$
$$= \sum_{i=1}^{m} \left[a_i \left(X_i - x_{i0} + \frac{b_i}{2a_i} \right)^2 - \frac{b_i^2}{4a_i} \right] + S_i$$

where, S is the interval bound of other terms by direct evaluation

Taylor Models – Constraint Propagation

- Consider constraint c(x) = 0 over X
- Goal Eliminate parts of old X in which constraint cannot be satisfied
- For each $i=1,2\cdots,m$, shrink $oldsymbol{X}_i$ using

$$B(T_c) = B(p_c) + R_c = a_i \left(X_i - x_{i0} + \frac{b_i}{2a_i} \right)^2 - \frac{b_i^2}{4a_i} + S_i = 0$$

$$\implies U_i^2 = W_i, \quad \text{with } U_i = X_i - x_{i0} + \frac{b_i}{2a_i} \text{ and } W_i = \left(\frac{b_i^2}{4a_i} - S_i\right) / a_i$$

$$\implies U_i = \begin{cases} \emptyset & \text{if } \overline{W_i} < 0 \\ \left[-\sqrt{\overline{W_i}}, \sqrt{\overline{W_i}} \right] & \text{if } \underline{W_i} \le 0 \le \overline{W_i} \\ -\sqrt{W_i} \cup \sqrt{W_i} & \text{if } \underline{W_i} > 0 \end{cases}$$

$$\implies X_i = X_i \cap \left(U_i + x_{i0} - \frac{b_i}{2a_i} \right)$$

Validated Solution for Parametric ODEs

• Consider the IVP for the parametric ODEs

 $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{ heta}), \quad \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \in \boldsymbol{X}_0, \quad \boldsymbol{ heta} \in \boldsymbol{\Theta}$

- Validated methods:
 - Guarantee there exists a unique solution $m{x}$ in the interval $[t_0,t_f]$, for each $m{ heta}\in m{\Theta}$ and $m{x}_0\in m{X}_0$
 - Compute an interval $m{X}_j$ that encloses all solutions of the ODEs system at t_j for $m{ heta}\in m{\Theta}$ and $m{x}_0\in m{X}_0$
- Tools are available AWA, VNODE, COSY VI, VSPODE, etc.

New Method for Parametric ODEs

- Use interval Taylor series to represent dependence on time
- Use Taylor models to represent dependence on uncertain quantities (parameters and initial states)
- Assuming X_i is known, then
 - Phase 1: Compute a coarse enclosure X_j and prove existence and uniqueness using fixed pointed iteration with Picard operator and high-order interval Taylor series
 - Phase 2: Refine the coarse enclosure to obtain X_{j+1} using Taylor models in terms of the uncertain parameters and initial states
- Implemented in VSPODE (Validating Solver for Parametric ODEs, Lin and Stadtherr, 2006)

Phase 2 of VSPODE

• Represent uncertain initial states and parameters using Taylor model T_{x_0} and T_{θ} , with components

$$T_{x_{i0}} = (m(X_{i0}) + (x_{i0} - m(X_{i0})), [0, 0]), \quad i = 1, \cdots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \cdots, p$$

- Bound the interval Taylor series coefficients $m{f}^{[i]}$ by Taylor models $m{T}_{m{f}^{[i]}}$
 - Use mean value theorem
 - Evaluate using Taylor model operations

Phase 2 of VSPODE (Cont'd)

• Reduce "wrapping effect" by using a new type of Taylor model

 $oldsymbol{T}_{oldsymbol{x}_j} = \widehat{oldsymbol{T}}_{oldsymbol{x}_j} + \mathcal{P}_j, \hspace{1em} ext{where} \hspace{1em} \mathcal{P}_j = \{oldsymbol{A}_j oldsymbol{v}_j \mid oldsymbol{v}_j \in oldsymbol{V}_j\}$

- The remainder bound is propagated as a parallelepiped (parallelepiped method) or a rotated rectangle (QR-factorization method), instead of intervals
- The result: a Taylor model $T_{x_{j+1}}$ in terms of the initial states x_0 and parameters heta
- Compute the enclosure $X_{j+1} = B(T_{\boldsymbol{x}_{j+1}})$ by bounding over X_0 and Θ

VSPODE Example 1 – Double Pendulum Problem

VSPODE Example 1 – Double Pendulum Problem

• ODE model is

$$\begin{split} \dot{\theta}_1 &= \omega_1 \\ \dot{\theta}_2 &= \omega_2 \\ \dot{\omega}_1 &= \frac{-g(2m_1 + m_2)\sin\theta_1 - m_2g\sin(\theta_1 - 2\theta_2) - 2m_2\sin(\theta_1 - \theta_2)}{L_1\left[2m_1 + m_2 - m_2\cos(2\theta_1 - 2\theta_2)\right]} \\ \dot{\omega}_2 &= \frac{2\sin(\theta_1 - \theta_2)}{L_2\left[2m_1 + m_2\right] + g(m_1 + m_2)\cos\theta_1 + \omega_2^2L_2m_2\cos(\theta_1 - \theta_2)}{L_2\left[2m_1 + m_2 - m_2\cos(2\theta_1 - 2\theta_2)\right]} \end{split}$$

- Local acceleration of gravity $g \in [9.79, 9.81]~{
 m m/s}^2$
- This corresponds roughly to the variation in sea level g between 25° and 49° latitude (i.e. spanning the contiguous United States)
- Initial states: $(\theta_1, \theta_2, \omega_1, \omega_2)_0 = (0, -0.25\pi, 0, 0)$
- Variable step size used in both VSPODE and VNODE

VSPODE Example 2 – Bioreactor Problem

• In a bioreactor, microbial growth may be described by

$$\dot{X} = (\mu - \alpha D)X$$
$$\dot{S} = D(S^{i} - S) - k\mu X,$$

where X and S are concentrations of biomass and substrate, respectively.

• The growth rate μ may be given by

$$\mu = rac{\mu_m S}{K_S + S}$$
 (Monod Law)

or

$$\mu = rac{\mu_m S}{K_S + S + K_I S^2}$$
 (Haldane Law)

VSPODE Example 2 – Bioreactor Problem

• Problem data

	Value	Units		Value	Units
α	0.5	-	μ_m	[1.19, 1.21]	day^{-1}
k	10.53	g S/ g X	K_S	[7.09, 7.11]	g S/I
D	0.36	day^{-1}	K_I	[0.49, 0.51]	(g S/l) $^{-1}$
S^i	5.7	g S/I	X_0	[0.82, 0.84]	g X/I
S_0	0.80	g S/I			

• Integrate from $t_0 = 0$ to $t_N = 20$.

• Constant step size of h = 0.1 used in both VSPODE and VNODE.

(VSPODE does not break down at longer t)

Bioreactor Problem – Haldane Law 1.5 S_{VSPODE} 1.4 $\leftarrow \mathsf{S}_{\mathsf{VNODE}}$ 1.3 1.2 X/S 1.1 $\leftarrow X_{VNODE}$ 1 0.9 X_{VSPODE} 0.8 10 t 15 20 5 0

(VSPODE does not break down at longer *t*)

Methodology for Solutions of TPBVP

- A type of shooting method based on branch and reduce framework
- Find variables z (unknown initial state and parameters)
- The initial interval vector of $Z^{(0)}$ is divided into a sequence of subintervals.
- Certain subintervals are dynamically refined while others are excluded from consideration based on solution criteria (Boundary Conditions)

Methodology for Solutions of TPBVP (Cont'd)

- Iteration: for a particular subinterval $Z^{(k)}$
 - Obtain the Taylor model of X_f using VSPODE
 - Perform the CPP on boundary conditions ($m{g}=0$) to reduce $m{Z}^{(k)}$
 - * If $oldsymbol{Z}^{(k)}=\emptyset$, go to next subinterval in the test list $\mathcal L$
 - * If $Width(Z) \leq \epsilon_x$ or $|B(g)| \leq \epsilon_g$, store $Z^{(k)}$ in the result list \mathcal{R} and go to next subinterval in the test list \mathcal{L}
 - * If $Z^{(k)}$ is sufficiently reduced, repeat
 - * Otherwise, bisect $Z^{(k)}$ and store the resulting two subintervals in the test list \mathcal{L}
- Termination
 - The test list \mathcal{L} is empty
 - All solutions of interest are stored in the result list ${\cal R}$

Methodology for Solutions of TPBVP (Cont'd)

- One of drawback of shooting methods is that the solution of IVP with some variables may not exist in $[t_0, t_f]$, i.e. state becomes unbounded before reaching t_f
- VSPODE would FAIL in such a case
- May be associated with the abnormal value of state
- Introduce bounds on the state, i.e. natural bounds.
- Check state bounds on each integration step of VSPODE, and discard those subintervals that will result in violation of the state bounds.

Example 1 – Bratu's Equation

• Arises in a model of spontaneous combustion: $x'' + \lambda \exp(x) = 0$

$$\begin{array}{rcl}
x_1' &=& x_2 \\
x_2' &=& -\exp(x_1) \\
t &\in& [0,1] \\
x_1(0) &=& 0 \\
x_1(1) &=& 0 \\
x_2(0) &\in& [0,20]
\end{array}$$

• Two solutions in less than 2 seconds CPU time

Example 2 – Mathieu's equation

• Arises arises in separation of variables of the Helmholtz differential equation in elliptic cylindrical coordinates: $x'' + (\lambda - 2r \cos 2t)x = 0$

$$\begin{array}{rcl} x_1' &=& x_2 \\ x_2' &=& -(\lambda - 10\cos(2x_3))x_1 \\ x_3' &=& 1 \\ t &\in& [0,\pi] \\ \boldsymbol{x}(0) &=& (1,0,0)^T \\ \boldsymbol{x}_2(\pi) &=& 0 \\ \lambda &\in& [0,100] \end{array}$$

• 9 solutions are found in 6.56 seconds of CPU time

Example 3 – Steady State Brusselator with Diffusion

• Arises in an autocatalytic, oscillating chemical reaction

$$\begin{aligned} x_1' &= x_2 \\ x_2' &= L^2/D_1 \left[(B+1)x_1 - A - x_1^2 x_3 \right] \\ x_3' &= x_4 \\ x_4' &= L^2/D_2 \left(x_1^2 x_3 - B x_1 \right) \\ t &\in [0,1] \\ x_1(0) &= x_1(1) = A \\ x_3(0) &= x_3(1) = B/A \\ x_2 &\in [-25,25], \quad x_4 \in [-25,25] \\ x_1 &\geq 0, \quad x_3 \geq 0 \end{aligned}$$

• Constants: $D_1 = 0.0016$, $D_2 = 0.008$, A = 2, and B = 4.6

Example 3 – Steady State Brusselator with Diffusion

• Depending on the value of L, there exists a differing number of solutions

L	Solutions	CPU (s)	
0.1	2	2303	
0.15	2	10545	
0.2	6	9696	
0.22	6	12683	
0.25	6	30185	
0.3	5	130603	

Concluding Remarks

- We propose a type of shooting method based on branch and reduce framework to enclose all solutions of interest of TPBVP
 - A new validated solver for parametric ODEs is used to produce guaranteed bounds on the solutions of IVPs for ODEs with interval-valued parameters and initial states
 - A constraint propagation strategy on the Taylor models is used to efficiently eliminate incompatible domain of variables
- Future work
 - Computing Bifurcations
 - Optimal control problems

Acknowledgment

- Department of Energy
- Indiana 21st Century Research & Technology Fund