# Enclosing All Solutions of TPBVP for ODEs Using Interval Analysis 

Youdong Lin and Mark A. Stadtherr<br>Department of Chemical and Biomolecular Engineering<br>University of Notre Dame<br>Notre Dame, IN 46556

Fourth International Workshop on Taylor Methods
Boca Raton, December 16-19, 2006

## Outline

- Background
- Tools
- Methodology
- Examples
- Concluding Remarks


## Background

- Given an ODE system: $\quad \dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta}) \quad t \in\left[t_{0}, t_{f}\right]$
- Supplemented by boundary conditions: $\boldsymbol{g}\left(\boldsymbol{x}\left(t_{0}\right), \boldsymbol{x}\left(t_{f}\right), \boldsymbol{\theta}\right)=\mathbf{0}$
- Initial Value Problem (IVP)
- Two-Point Boundary Value Problem (TPBVP)
- A TPBVP may not have a solution or may have a finite number of solutions
- Often also need to determine parameter values for which solutions exist


## Background (Cont'd)

- Standard techniques for the numerical solutions of a TPBVP
- Shooting methods - based on solving related IVPs
- Finite difference or collocation methods
- Limitation - find a local solution and miss other solutions of interest
- Need a method that can guarantee to enclose all solutions of interest


# Tools 

- Interval Mathematics
- Taylor Models
- Constraint Propagation
- Validated Solution for Parametric ODEs


## Interval Mathematics

- A real interval $X=[a, b]=\{x \in \mathfrak{R} \mid a \leq x \leq b\}$ is a segment in the real number line
- An interval vector $\boldsymbol{X}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{T}$ is an $n$-dimensional rectangle
- Basic interval arithmetic for $X=[a, b]$ and $Y=[c, d]$ is

$$
X \text { op } Y=\{x \text { op } y \mid x \in X, y \in Y\}
$$

- Interval elementary functions (e.g. $\exp (X), \sin (X)$ ) are also available
- The interval extension $F(\boldsymbol{X})$ encloses all values of $f(\boldsymbol{x})$ for every $\boldsymbol{x} \in \boldsymbol{X}$

$$
F(\boldsymbol{X}) \supseteq\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \boldsymbol{X}\}
$$

- Interval extensions computed using interval arithmetic may lead to overestimation of function ("dependence" problem)


## Taylor Models

- Taylor Model $T_{f}=\left(p_{f}, R_{f}\right)$ : Bounds $f(\boldsymbol{x})$ over $\boldsymbol{X}$ using a q-th order Taylor polynomial $p_{f}$ and an interval remainder bound $R_{f}$
- Could obtain $T_{f}$ using a truncated Taylor series
- Can also compute Taylor models by using Taylor model operations
- Beginning with Taylor models of simple functions, Taylor models of very complicated functions can be computed
- Taylor models often yield sharper bounds for modest to complicated functional dependencies


## Taylor Models - Range Bounding

- Exact range bounding of the interval polynomials - NP hard
- Direct evaluation of the interval polynomials - overestimation
- Focus on bounding the dominant part (1st and 2nd order terms)
- Schemes: LDB, QDB, QFB (Makino and Berz, 2004)
- A compromise approach - Exact bounding of 1st order and diagonal elements of 2nd order terms

$$
\begin{aligned}
B(p) & =\sum_{i=1}^{m}\left[a_{i}\left(X_{i}-x_{i 0}\right)^{2}+b_{i}\left(X_{i}-x_{i 0}\right)\right]+S \\
& =\sum_{i=1}^{m}\left[a_{i}\left(X_{i}-x_{i 0}+\frac{b_{i}}{2 a_{i}}\right)^{2}-\frac{b_{i}^{2}}{4 a_{i}}\right]+S
\end{aligned}
$$

where, $S$ is the interval bound of other terms by direct evaluation

## Taylor Models - Constraint Propagation

- Consider constraint $c(\boldsymbol{x})=\mathbf{0}$ over $\boldsymbol{X}$
- Goal - Eliminate parts of $\boldsymbol{X}$ in which constraint cannot be satisfied
- For each $i=1,2 \cdots, m$, shrink $\boldsymbol{X}_{i}$ using

$$
\begin{aligned}
& B\left(T_{c}\right) \quad=B\left(p_{c}\right)+R_{c}=a_{i}\left(X_{i}-x_{i 0}+\frac{b_{i}}{2 a_{i}}\right)^{2}-\frac{b_{i}^{2}}{4 a_{i}}+S_{i}=0 \\
& \Longrightarrow \quad U_{i}^{2}=W_{i}, \quad \text { with } U_{i}=X_{i}-x_{i 0}+\frac{b_{i}}{2 a_{i}} \text { and } W_{i}=\left(\frac{b_{i}^{2}}{4 a_{i}}-S_{i}\right) / a_{i} \\
& \Longrightarrow \quad U_{i}= \begin{cases}\emptyset & \text { if } \overline{W_{i}}<0 \\
\left.-\sqrt{\overline{W_{i}}}, \sqrt{\overline{W_{i}}}\right] & \text { if } \underline{W_{i}} \leq 0 \leq \overline{W_{i}} \\
-\sqrt{W_{i}} \cup \sqrt{W_{i}} & \text { if } \underline{W_{i}}>0\end{cases} \\
& \Longrightarrow \quad X_{i}=X_{i} \cap\left(U_{i}+x_{i 0}-\frac{b_{i}}{2 a_{i}}\right)
\end{aligned}
$$

## Validated Solution for Parametric ODEs

- Consider the IVP for the parametric ODEs

$$
\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta}), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{0} \in \boldsymbol{X}_{0}, \quad \boldsymbol{\theta} \in \boldsymbol{\Theta}
$$

- Validated methods:
- Guarantee there exists a unique solution $\boldsymbol{x}$ in the interval $\left[t_{0}, t_{f}\right]$, for each $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and $\boldsymbol{x}_{0} \in \boldsymbol{X}_{0}$
- Compute an interval $\boldsymbol{X}_{j}$ that encloses all solutions of the ODEs system at $t_{j}$ for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and $\boldsymbol{x}_{0} \in \boldsymbol{X}_{0}$
- Tools are available - AWA, VNODE, COSY VI, VSPODE, etc.


## New Method for Parametric ODEs

- Use interval Taylor series to represent dependence on time
- Use Taylor models to represent dependence on uncertain quantities (parameters and initial states)
- Assuming $\boldsymbol{X}_{j}$ is known, then
- Phase 1: Compute a coarse enclosure $\widetilde{\boldsymbol{X}}_{j}$ and prove existence and uniqueness using fixed pointed iteration with Picard operator and high-order interval Taylor series
- Phase 2: Refine the coarse enclosure to obtain $\boldsymbol{X}_{j+1}$ using Taylor models in terms of the uncertain parameters and initial states
- Implemented in VSPODE (Validating Solver for Parametric ODEs, Lin and Stadtherr, 2006)


## Phase 2 of VSPODE

- Represent uncertain initial states and parameters using Taylor model $\boldsymbol{T}_{\boldsymbol{x}_{0}}$ and $\boldsymbol{T}_{\boldsymbol{\theta}}$, with components

$$
\begin{array}{r}
T_{x_{i 0}}=\left(m\left(X_{i 0}\right)+\left(x_{i 0}-m\left(X_{i 0}\right)\right),[0,0]\right), \quad i=1, \cdots, m \\
T_{\theta_{i}}=\left(m\left(\Theta_{i}\right)+\left(\theta_{i}-m\left(\Theta_{i}\right)\right),[0,0]\right), \quad i=1, \cdots, p
\end{array}
$$

- Bound the interval Taylor series coefficients $f^{[i]}$ by Taylor models $\boldsymbol{T}_{\boldsymbol{f}^{[i]}}$
- Use mean value theorem
- Evaluate using Taylor model operations


## Phase 2 of VSPODE (Cont'd)

- Reduce "wrapping effect" by using a new type of Taylor model

$$
\boldsymbol{T}_{\boldsymbol{x}_{j}}=\widehat{\boldsymbol{T}}_{\boldsymbol{x}_{j}}+\mathcal{P}_{j}, \quad \text { where } \quad \mathcal{P}_{j}=\left\{\boldsymbol{A}_{j} \boldsymbol{v}_{j} \mid \boldsymbol{v}_{j} \in \boldsymbol{V}_{j}\right\}
$$

- The remainder bound is propagated as a parallelepiped (parallelepiped method) or a rotated rectangle (QR-factorization method), instead of intervals
- The result: a Taylor model $\boldsymbol{T}_{\boldsymbol{x}_{j+1}}$ in terms of the initial states $\boldsymbol{x}_{0}$ and parameters $\boldsymbol{\theta}$
- Compute the enclosure $\boldsymbol{X}_{j+1}=\boldsymbol{B}\left(\boldsymbol{T}_{\boldsymbol{x}_{j+1}}\right)$ by bounding over $\boldsymbol{X}_{0}$ and $\boldsymbol{\Theta}$


## VSPODE Example 1 - Double Pendulum Problem



## VSPODE Example 1 - Double Pendulum Problem

- ODE model is

$$
\begin{gathered}
\dot{\theta}_{1}=\omega_{1} \\
\dot{\theta}_{2}=\omega_{2} \\
\dot{\omega}_{1}=\frac{-g\left(2 m_{1}+m_{2}\right) \sin \theta_{1}-m_{2} g \sin \left(\theta_{1}-2 \theta_{2}\right)-2 m_{2} \sin \left(\theta_{1}-\theta_{2}\right) \omega_{2}^{2} L_{2}-\omega_{1}^{2} L_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{L_{1}\left[2 m_{1}+m_{2}-m_{2} \cos \left(2 \theta_{1}-2 \theta_{2}\right)\right]} \\
\dot{\omega}_{2}=\frac{2 \sin \left(\theta_{1}-\theta_{2}\right) \omega_{1}^{2} L_{1}\left(m_{1}+m_{2}\right)+g\left(m_{1}+m_{2}\right) \cos \theta_{1}+\omega_{2}^{2} L_{2} m_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{L_{2}\left[2 m_{1}+m_{2}-m_{2} \cos \left(2 \theta_{1}-2 \theta_{2}\right)\right]}
\end{gathered}
$$

- Local acceleration of gravity $g \in[9.79,9.81] \mathrm{m} / \mathrm{s}^{2}$
- This corresponds roughly to the variation in sea level $g$ between $25^{\circ}$ and $49^{\circ}$ latitude (i.e. spanning the contiguous United States)
- Initial states: $\left(\theta_{1}, \theta_{2}, \omega_{1}, \omega_{2}\right)_{0}=(0,-0.25 \pi, 0,0)$
- Variable step size used in both VSPODE and VNODE


## VSPODE Example 1 - Double Pendulum Problem



## VSPODE Example 2 - Bioreactor Problem

- In a bioreactor, microbial growth may be described by

$$
\begin{gathered}
\dot{X}=(\mu-\alpha D) X \\
\dot{S}=D\left(S^{i}-S\right)-k \mu X,
\end{gathered}
$$

where $X$ and $S$ are concentrations of biomass and substrate, respectively.

- The growth rate $\mu$ may be given by

$$
\left.\mu=\frac{\mu_{m} S}{K_{S}+S} \quad \text { (Monod Law }\right)
$$

or

$$
\mu=\frac{\mu_{m} S}{K_{S}+S+K_{I} S^{2}} \quad \text { (Haldane Law) }
$$

## VSPODE Example 2 - Bioreactor Problem

- Problem data

|  | Value | Units |  | Value | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\alpha$ | 0.5 | - | $\mu_{m}$ | $[1.19,1.21]$ | day $^{-1}$ |
| $k$ | 10.53 | $\mathrm{~g} \mathrm{~S} / \mathrm{g} \mathrm{X}$ | $K_{S}$ | $[7.09,7.11]$ | $\mathrm{g} \mathrm{S} / \mathrm{I}$ |
| $D$ | 0.36 | day $^{-1}$ | $K_{I}$ | $[0.49,0.51]$ | $(\mathrm{g} \mathrm{S} /)^{-1}$ |
| $S^{i}$ | 5.7 | $\mathrm{~g} \mathrm{~S} / \mathrm{I}$ | $X_{0}$ | $[0.82,0.84]$ | $\mathrm{g} \mathrm{X/I}$ |
| $S_{0}$ | 0.80 | $\mathrm{~g} \mathrm{~S} / \mathrm{I}$ |  |  |  |

- Integrate from $t_{0}=0$ to $t_{N}=20$.
- Constant step size of $h=0.1$ used in both VSPODE and VNODE.

Bioreactor Problem - Monod Law

(VSPODE does not break down at longer $t$ )

Bioreactor Problem - Haldane Law

(VSPODE does not break down at longer $t$ )

## Methodology for Solutions of TPBVP

- A type of shooting method based on branch and reduce framework
- Find variables $z$ (unknown initial state and parameters)
- The initial interval vector of $\boldsymbol{Z}^{(0)}$ is divided into a sequence of subintervals.
- Certain subintervals are dynamically refined while others are excluded from consideration based on solution criteria (Boundary Conditions)


## Methodology for Solutions of TPBVP (Cont'd)

- Iteration: for a particular subinterval $\boldsymbol{Z}^{(k)}$
- Obtain the Taylor model of $\boldsymbol{X}_{f}$ using VSPODE
- Perform the CPP on boundary conditions $(\boldsymbol{g}=0)$ to reduce $\boldsymbol{Z}^{(k)}$
* If $\boldsymbol{Z}^{(k)}=\emptyset$, go to next subinterval in the test list $\mathcal{L}$
* If Width $(Z) \leq \epsilon_{x}$ or $|B(\boldsymbol{g})| \leq \epsilon_{g}$, store $\boldsymbol{Z}^{(k)}$ in the result list $\mathcal{R}$ and go to next subinterval in the test list $\mathcal{L}$
* If $\boldsymbol{Z}^{(k)}$ is sufficiently reduced, repeat
* Otherwise, bisect $\boldsymbol{Z}^{(k)}$ and store the resulting two subintervals in the test list $\mathcal{L}$
- Termination
- The test list $\mathcal{L}$ is empty
- All solutions of interest are stored in the result list $\mathcal{R}$


## Methodology for Solutions of TPBVP (Cont'd)

- One of drawback of shooting methods is that the solution of IVP with some variables may not exist in $\left[t_{0}, t_{f}\right]$, i.e. state becomes unbounded before reaching $t_{f}$
- VSPODE would FAIL in such a case
- May be associated with the abnormal value of state
- Introduce bounds on the state, i.e. natural bounds.
- Check state bounds on each integration step of VSPODE, and discard those subintervals that will result in violation of the state bounds.


## Example 1 - Bratu's Equation

- Arises in a model of spontaneous combustion: $x^{\prime \prime}+\lambda \exp (x)=0$

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-\exp \left(x_{1}\right) \\
t & \in[0,1] \\
x_{1}(0) & =0 \\
x_{1}(1) & =0 \\
x_{2}(0) & \in[0,20]
\end{aligned}
$$

- Two solutions in less than 2 seconds CPU time


## Example 1 - Bratu's Equation (Cont'd)



## Example 2 - Mathieu's equation

- Arises arises in separation of variables of the Helmholtz differential equation in elliptic cylindrical coordinates: $x^{\prime \prime}+(\lambda-2 r \cos 2 t) x=0$

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-\left(\lambda-10 \cos \left(2 x_{3}\right)\right) x_{1} \\
x_{3}^{\prime} & =1 \\
t & \in[0, \pi] \\
x(0) & =(1,0,0)^{T} \\
x_{2}(\pi) & =0 \\
\lambda & \in[0,100]
\end{aligned}
$$

- 9 solutions are found in 6.56 seconds of CPU time


## Example 2 - Mathieu's equation (Cont'd)



## Example 3 - Steady State Brusselator with Diffusion

- Arises in an autocatalytic, oscillating chemical reaction

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =L^{2} / D_{1}\left[(B+1) x_{1}-A-x_{1}^{2} x_{3}\right] \\
x_{3}^{\prime} & =x_{4} \\
x_{4}^{\prime} & =L^{2} / D_{2}\left(x_{1}^{2} x_{3}-B x_{1}\right) \\
t & \in[0,1] \\
x_{1}(0) & =x_{1}(1)=A \\
x_{3}(0) & =x_{3}(1)=B / A \\
x_{2} & \in[-25,25], \quad x_{4} \in[-25,25] \\
x_{1} & \geq 0, \quad x_{3} \geq 0
\end{aligned}
$$

- Constants: $D_{1}=0.0016, D_{2}=0.008, A=2$, and $B=4.6$


## Example 3 - Steady State Brusselator with Diffusion

- Depending on the value of $L$, there exists a differing number of solutions

| $L$ | Solutions | CPU (s) |
| :--- | :---: | :---: |
| 0.1 | 2 | 2303 |
| 0.15 | 2 | 10545 |
| 0.2 | 6 | 9696 |
| 0.22 | 6 | 12683 |
| 0.25 | 6 | 30185 |
| 0.3 | 5 | 130603 |

## Concluding Remarks

- We propose a type of shooting method based on branch and reduce framework to enclose all solutions of interest of TPBVP
- A new validated solver for parametric ODEs is used to produce guaranteed bounds on the solutions of IVPs for ODEs with interval-valued parameters and initial states
- A constraint propagation strategy on the Taylor models is used to efficiently eliminate incompatible domain of variables
- Future work
- Computing Bifurcations
- Optimal control problems


## Acknowledgment

- Department of Energy
- Indiana 21st Century Research \& Technology Fund

