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Why Interval Computations?

Inclusion of discretization or truncation errors in numerical
algorithms

Newton’s method
Global optimization
Numerical integration
. . .

Modeling of uncertain data

Bounding of roundoff errors

Moore (1966):

Matrix computations, ranges of functions, root-finding
algorithms, integrals, initial value problems for ODEs.
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Interval Arithmetic

Set of compact real intervals:

IR = {x = [x , x ] | x , x ∈ R, x ≤ x}.

Basic arithmetic operations:

x ? y := {x?y | x ∈ x, y ∈ y}, ? ∈ {+,−, ·, /} (0 6∈ y for /).

x + y = [x + y , x + y ],

x− y = [x − y , x − y ],

x · y = [min{xy , xy , xy , xy , },max{xy , xy , xy , xy , }],

x / y = x · [1 / y , 1 / y ].
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Ranges and Inclusion Functions

1 Range of f : D → E : Rg (f ,D) := {f (x) | x ∈ D}.
2 Let f : D ⊆ R → R be a continuous function. An inclusion

function F of f is an interval function F : IR → IR which
encloses the range of f for every compact interval x ⊆ D:

F (x) ⊇ Rg (f , x) for all x ⊆ D.

3 Examples

x · x− 2 · x, x · (x− 2), (x− 1)2 − 1

are inclusion functions for

f (x) = x2 − 2x = x(x − 2) = (x − 1)2 − 1.

ex := [ex , ex ] is an inclusion function for exp.
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Dependency Problem

Interval-arithmetic evaluation of f (x) :=
x

1 + x
on x = [1, 2]:

x

1 + x
=

[1, 2]

[2, 3]
= [

1

3
, 1].

Interval-arithmetic evaluation of g(x) := 1− 1

1 + x
, x ∈ x:

1− 1

1 + x
= 1− 1

[2, 3]
= 1− [

1

3
,
1

2
] = [

1

2
,
2

3
] = Rg (f , x) .

Reduced overestimation: centered forms, etc.
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Wrapping Effect

Overestimation: Enclose non-interval shaped sets by intervals.

Example: f : (x , y) →
√

2

2
(x + y , y − x) (Rotation).

Interval evaluation of f on x = ([−1, 1], [−1, 1]):

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

Rg (f , x), F (x) Rg
(
f 2, x

)
, Rg (f ,F (x)), F (F (x))
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Taylor Models

Taylor model: U := pn(x) + i, x ∈ x, x ∈ IRm, i ∈ IR
(pn: m-variate polynomial of order n).

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }.

Range of a TM: Rg (U) = {z = p(x) + ξ | x ∈ x, ξ ∈ i}.
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Taylor Models

Taylor model: U := pn(x) + i, x ∈ x, x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n).

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }.

Range of a TM: Rg (U) = {z = p(x) + ξ | x ∈ x, ξ ∈ i} ⊂ Rm.

Ex. 1: U :=

(
1
5

)
+

(
2 0
0 1

)
·
(

x
y

)
=

(
1 + 2x
5 + y

)
, x , y ∈ [−1, 1].

Rg (U) =

(
1
5

)
+

(
2 0
0 1

)
·
(

[−1, 1]
[−1, 1]

)
=

(
[−1, 3]
[4, 6]

)
.
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Taylor Models

Taylor model: U := pn(x) + i, x ∈ x, x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n).

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }.

Range of a TM: Rg (U) = {z = p(x) + ξ | x ∈ x, ξ ∈ i} ⊂ Rm.

Ex. 2: U :=

(
x

2 + x2 + y

)
, x , y ∈ [−1, 1]

Rg (U):
21-1 0-2

5

4

3

2

1

0

-1

-2

x
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Taylor Model Arithmetic

Multiplication:

(1 + x + i1) · (2− x + i2) := 2 + x

+Rg
(
−x2

)
+ Rg (1 + x) · i2 + Rg (2− x) · i1 + i1 · i2.

Composition:

U1(x) := 3 + 2x2 + i1, U2(x) := 1
2x − x2 + i2, x ∈ x,

U1(x) ◦ U2(x) ⊆ 3 + 2(1
2x − x2 + i2)2 + i1.
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Taylor Model Arithmetic: Composition

For x ∈ x = [−1
2 , 1

2 ]:

ex ∈ U1(x) := 1 + x + 1
2x2 + [−0.035, 0.035],

cos x ∈ U2(x) := 1− 1
2x2 + [−0.010, 0.010].

Composition:

U1 ◦ U2 ⊆ 1 + (1− 1
2x2 + i1) + 1

2(1− 1
2x2 + i1)2 + i2

⊆ 5
2 − x2 + [−0.058, 0.066].
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Taylor Model Arithmetic: Composition

Warning: U1 ◦ U2 is not a valid enclosure of ecos x , x ∈ x,

because the range of U2 is not contained in x.

For example,

(U1 ◦ U2)(0) = [2.442, 2.566] 63 e = ecos 0.

Compositions of Taylor models are computed as above, but

the interval term of U1 must fit the range of U2.

Valid i1 for ex , x ∈ [−1, 1]: [−0.454, 0.454]:

(U1 ◦ U2)(x) :=
5

2
− x2 + [−0.477, 0.485], x ∈ x.
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IA vs. TMA: Dependency Problem

Example: f (x) = x2 + cos x + sin x − ex , x ∈ x = [0, 1].

Direct IA:

f (x) ∈ F (x) = x2 + cos x + sin x− ex

= [0, 1] + [cos 1, 1] + [0, sin 1]− [1, e] ≈ [−2.178, 1.842].

Mean Value Form:

f (x) ∈ f (1
2) + F ′(x) · (x− 1

2)

= f (1
2) + (2 · x− sin x + cos x− ex) · [−1

2 , 1
2 ]

⊆ [−0.042,−0.041] + [−3.020, 0] · [−0.5, 0.5] = [−1.552, 1.469].
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IA vs. TMA: Dependency Problem

TMA (Taylor models of order 3):

f (x) = x2 + cos x + sin x − ex

= x2 + 1− x2

2
+ I1 + x − x3

6
+ I2 − 1− x − x2

2
− x3

6
− I3

= −x3

3
+ I1 + I2 + I3

∈ [−0.334, 0] + 2 ∗ [0, 0.042]− [0, 0.114] = [−0.448, 0.082].

Range: Rg (f , x) = [1 + cos 1 + sin 1− e, 0] ⊂ [−0.337, 0].
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Verified Integration of ODEs

Interval IVP:

u′ = f (t, u), u(t0) ∈ u0, t ∈ t = [t0, tend]

f : R× Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.
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Verified Integration of ODEs

Interval IVP:

u′ = f (t, u), u(t0) ∈ u0, t ∈ t = [t0, tend]

f : R× Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

v

u
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Verified Integration of ODEs

Interval IVP:

u′ = f (t, u), u(t0) ∈ u0, t ∈ t = [t0, tend]

f : R× Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.
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u′ = f (t, u), u(t0) ∈ u0, t ∈ t = [t0, tend]

f : R× Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.
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Interval Methods for ODEs

Sets used to enclose the flow:

Moore (1965): Intervals

Eijgenraam (1981), Lohner (1987): Parallelepipeds

Kühn (1998): Zonotopes

Enclosure sets are convex.
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Quadratic Model Problem

u′ = v , u(0) ∈ [0.95, 1.05],

v ′ = u2, v(0) ∈ [−1.05,−0.95].

Taylor model method: initial set described by parameters a and b:

u0(a, b) := 1 + a, a ∈ a := [−0.05, 0.05],

v0(a, b) := −1 + b, b ∈ b := [−0.05, 0.05].

TMW 2006, Boca Raton M. Neher On Taylor Model Based Integration of ODEs
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Naive Taylor Model Method

Picard iteration (n = 3, h = 0.1):

u(0)(τ, a, b) = 1 + a, v (0)(τ, a, b) = −1 + b,

u(1)(τ, a, b) = u0(a, b) +
∫ τ
0 v (0)(s, a, b) ds

v (1)(τ, a, b) = v0(a, b) +
∫ τ
0

(
u(0)(s, a, b)

)2
ds

u(3)(τ, a, b) = 1 + a− τ + bτ + 1
2τ2 + aτ2 − 1

3τ3,

v (3)(τ, a, b) = −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 + 2
3τ3.

TMW 2006, Boca Raton M. Neher On Taylor Model Based Integration of ODEs
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Naive Taylor Model Method: Remainder Bounds

Remainder bounds by fixed point iteration (Makino, 1998):

Find i0 and j0 s.t.

u0 +

∫ τ

0

(
v (3)(s, a, b) + j0

)
ds ⊆ u(3)(τ, a, b) + i0,

v0 +

∫ τ

0

(
u(3)(s, a, b) + i0

)2
ds ⊆ v (3)(τ, a, b) + j0

for all a ∈ a, b ∈ b, τ ∈ [0, 0.1].

TMW 2006, Boca Raton M. Neher On Taylor Model Based Integration of ODEs



Interval Arithmetic and Taylor Models
Verified Integration of ODEs

Taylor Model Methods for ODEs
Verified Integration of Linear ODEs

Quadratic Model Problem
Naive Taylor Model Method
Shrink Wrapping
Integration with Preconditioned Taylor Models

Naive Taylor Model Method: Enclosure of the Flow

Flow for τ ∈ [0, 0.1]:

Ũ1(τ, a, b) := u(3)(τ, a, b) + i0,

Ṽ1(τ, a, b) := v (3)(τ, a, b) + j0.

Flow at t1 = 0.1:

U1(a, b) := Ũ1(0.1, a, b) = 0.905 + 1.01a + 0.1b + i0,

V1(a, b) := Ṽ1(0.1, a, b) = −0.909 + 0.19a + 1.01b + 0.1a2 + j0

(nonlinear boundary).

TMW 2006, Boca Raton M. Neher On Taylor Model Based Integration of ODEs
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Integration of Model Problem with COSY Infinity and AWA
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Naive Taylor Model Method: Second Integration Step

Find i1 and j1 s.t.

U1(a, b) +
∫ τ
0

(
v (3)(s, a, b) + j1

)
ds ⊆ u(3)(τ, a, b) + i1,

V1(a, b) +
∫ τ
0

(
u(3)(s, a, b) + i1

)2
ds ⊆ v (3)(τ, a, b) + j1

for all a, b ∈ [−0.05, 0.05] and for all τ ∈ [0, 0.1].
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Naive Taylor Model Method: Second Integration Step

Find i1 and j1 s.t.

U1(a, b) +
∫ τ
0

(
v (3)(s, a, b) + j1

)
ds ⊆ u(3)(τ, a, b) + i1,

V1(a, b) +
∫ τ
0

(
u(3)(s, a, b) + i1

)2
ds ⊆ v (3)(τ, a, b) + j1

for all a, b ∈ [−0.05, 0.05] and for all τ ∈ [0, 0.1].

Since i0 and j0 are contained in U1 and V1, diameters of interval
terms are nondecreasing!
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Shrink Wrapping

Absorb interval term into polynomial part via shrink wrap factor q
(Makino and Berz 2002):

U(a, b) := 2 + 4a + 1
2a2 + [−0.2, 0.2],

V(a, b) := 1 + 3b + 1ab + [−0.1, 0.1],

Usw(a, b) := 2 +
89

20
a +

89

160
a2,

Vsw(a, b) := 1 +
287

80
b +

89

80
ab.


a, b ∈ [−1, 1],

(q =
89

80
).
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Shrink Wrapping

(
U
V

)
(white) vs.

(
Usw

Vsw

)
.
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Integration with Preconditioned Taylor Models

Preconditioned integration: flow at tj :

Uj = Ul ,j ◦ Ur ,j = (pl ,j + il ,j) ◦ (pr ,j + ir ,j).

Purpose: stabilize integration similar to QR interval method.

Theorem (Makino and Berz 2004)

If the initial set of an IVP is given by a preconditioned Taylor
model, then integrating the flow of the ODE only acts on the left
Taylor model.
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Linear ODE: Naive TMM

Linear autonomous system (B ∈ Rm×m):

u′ = B u, u(0) = u0 = U0.

Direct interval method (zj : local error, T :=
∑n

k=0
(hB)k

k! ):

uj := T uj−1 + zj , j = 1, 2, . . . .

Naive Taylor model method:

Uj = T j U0 +

j∑
k=1

(T◦)j−k ik , j = 1, 2, . . . ,

where (T◦)0x := x, (T◦)kx := T ·
(
(T◦)k−1x

)
, k ∈ N.
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Linear ODE: Naive TMM with Shrink Wrapping

Linear autonomous system (B ∈ Rm×m):

u′ = B u, u(0) = u0 = U0.

Parallelepiped method (zj : local error, r0 := u0 −m(u0)):

rj := rj−1 + (T j−1)−1(zj − (m(zj)), j = 1, 2, . . . .

Naive Taylor model method with shrink wrapping:

dj := ‖w
(
(T j)−1ij

)
‖∞ , qj := 1+dj/2, p̃sw ,j :=

(
j∏

k=1

qj

)
p̃0(x).
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Preconditioned Taylor Model Method

Initial set: pl ,0(x) = c0 + C0x , pr ,0(x) = x , il ,0 = ir ,0 = 0.

jth initial set: Uj = (cl ,j + Cl ,j x + il ,j) ◦ (cr ,j + Cr ,j x + ir ,j),

cl ,j , cr ,j ∈ Rm, Cl ,j , Cr ,j ∈ Rm×m.

Integrated flow: Ũj := (Tcl ,j + TCl ,j x + il ,j+1) ◦ (pr ,j + ir ,j).
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Preconditioned Taylor Model Method

Cl ,j+1 nonsingular: Ũj = (Tcl,j + Cl,j+1 x + [0, 0])

◦
{

C−1
l,j+1TCl,j cr ,j + C−1

l,j+1TCl,jCr ,j x + C−1
l,j+1TCl,j ir ,j + C−1

l,j+1il,j+1

}
=: (cl,j+1 + Cl,j+1 x + [0, 0]) ◦ (cr ,j+1 + Cr ,j+1 x + ir ,j+1) =: Uj+1

Global error:

ir ,j+1 := C−1
l ,j+1TCl ,j ir ,j + C−1

l ,j+1il ,j+1, j = 0, 1, . . . .

Cl ,j+1 = TCl ,j : parallelepiped preconditioning

Cl ,j+1 = Qj : QR preconditioning

Other choices: curvilinear coordinates, blunting
(Makino and Berz 2004)
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Example 1: Pure Contraction

B =

0@ −0.4375 0.0625 −0.2652
0.0625 −0.4375 −0.2652
−0.2652 −0.2652 −0.375

1A ≈

0@ − 1
2

0 0

0 − 3
4

0
0 0 0

1A

Method Steps y1(100)

AWA iv 216 1.47301
5593E-001

√

AWA pe 131 abort at t = 52.6 fail

AWA QR 216 1.47301
5593E-001

√

TM na 391 [−2.4E+26, 2.4E+26] fail

TM sw 272 [−2.3E+112, 2.3E+112] fail

TM QR 122 1.47301
5593E-001

√

(u0 = [0.999, 1.001] · (1 1 1)T )
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Example 2: Pure Rotation

B =

0@ 0 −0.7071 −0.5
0.7071 0 0.5

0.5 −0.5 0

1A ≈

0@ 0 −1 0
1 0 0
0 0 0

1A

Method Steps y1(100)

AWA iv 393 abort at t = 76.5 fail

AWA pe 449 1.49522
222E+000

√

AWA QR 449 1.49522
222E+000

√

TM na 396 [−1.6E+45, 1.6E+45] fail

TM sw 343 1.49522
222E+000

√

TM QR 343 1.49522
222E+000

√
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Example 3: Contraction and Rotation

B =

0@ −0.125 −0.8321 −0.3232
0.5821 −0.125 0.6768
0.6768 −0.3232 −0.25

1A ≈

0@ 0 −1 0
1 0 0
0 0 − 1

2

1A

Method Steps y1(100)

AWA iv 507 abort at t = 85.5 fail

AWA pe 404 abort at t = 75.2 fail

AWA QR 516 1.34862
592E+000

√

TM na 397 [−1.7E+55, 1.7E+55] fail

TM sw 357 [−3.6E+106, 3.6E+106] fail

TM QR 362 1.34862
592E+000

√
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Summary

Verified integration methods

Interval methods vs. TM methods

Performance for linear ODEs

Future work: Analysis of TM methods for nonlinear ODEs
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