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Dynamical Invariants

Non-linear dynamical systems exhibit a rich orbit structure.
To understand these structures, it is useful to consider various equivalence
relations on the class of dynamical systems.
A dynamical system (discrete) is a continuous self map f : X → X where
X is a compact metric space.
Given an equivalence relation ∼ on the class of dynamical systems, the
invariants of ∼ are the objects which are constant on the equivalence
classes.
A very useful equivalence relation is

• Topological Conjugacy:
f : X → X , g : Y → Y are topologically conjugate if there is a
homeomorphism h : X → Y such that gh = hf .
Invariants are called dynamical invariants

We focus on the numerical dynamical invariant called topological entropy
—general measure of orbit complexity.
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Topological Entropy h(f ) of a map f : X → X :
Let n ∈ N, x ∈ X .
An n − orbit O(x , n) is a sequence x , fx , . . . , f n−1x
For ε > 0, the n−orbits O(x , n),O(y , n) are ε−different if there is a
j ∈ [0, n − 1) such that

d(f jx , f jy) > ε

Let r(n, ε, f ) = maximum number of ε−different n−orbits. (≤ eαn α)
Set

h(ε, f ) = lim sup
n→∞

1

n
log r(n, ε, f )

(entropy of size ε)
and

h(f ) = lim
n→∞

h(ε, f ) = sup
ε>0

h(ε, f )

(topological entropy of f ) [ε small =⇒ f has ∼ eh(f )n ε− different orbits]
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Properties of Topological Entropy

Dynamical Invariant: f ∼ g=⇒h(f ) = h(g)

Monotonicity of sets and maps:

Λ ⊂ X , f (Λ) ⊂ Λ,=⇒h(f,Λ) ≤ h(f )
(g ,Y ) a factor of f : ∃π : X → Y with gh = hf =⇒h(f ) ≥ h(g)

Power property: h(f n) = nh(f ) for N ∈ N.

h : D∞(M2) → R is continuous (in general usc for C∞ maps)

Variational Principle:

h(f ) = sup
µ∈M(f )

hµ(f )
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Examples of Calculation of Topological Entropy

Topological Markov Chains TMC (subshifts of finite type SFT)
First, the full N − shift:
Let J = {1, . . . ,N} be the first N integers, and let

ΣN = JZ = {a = (. . . , a−1a0a1 . . .), ai ∈ J}

with metric

d(a,b) =
∑
i∈Z

| ai − bi |
2| i |

This is a compact zero dimensional space (homeomorphic to a Cantor set)
Define the left shift by

σ(a)i = ai+1

This is a homeomorphism and h(σ) = log N.
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Let A be an N × N 0-1 matrix and consider

ΣA = {a ∈ ΣN : Aaiai+1 = 1 ∀i}

Then, σ(ΣA) = ΣA and (σ, ΣA) is a TMC.
One has

h(σ, ΣA) = log sp(A) (sp(A) : spectral radius of A)

Definition. A subshift of f is an invariant subset Λ such that
(f ,Λ) ∼ (σ, ΣA) for some 0-1 matrix A.

Theorem. (Katok) Let f : M2 → M2 be a C 2 diffeomorphism of a
compact surface with h(f ) > 0. Then,

h(f ) = sup
subshifts Λ of f

h(f ,Λ).

So, to estimate entropy on surfaces, we should look for subshifts
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Hyperbolic Fixed Points, Stable and Unstable Manifolds

Let M = M2 be a smooth surface, and let D(M) denote the space of C∞

diffeomorphisms from M to M. Give M a Riemannian metric with
associated distance d .
Let f ∈ D(M), and let p be a hyperbolic fixed point
(i.e., f (p) = p, eigenvalues of Df (x) have norm 6= 1)
Let λu, λs denote the eigenvalues of Dfp with | λu | > 1, | λs | < 1.
Let TpM = Eu ⊕ E s be the associated eigenspaces.
Let

W s(p) = {y ∈ M : d(f ny , f nx) → 0 as n →∞}

W u(p) = {y ∈ M : d(f −ny , f −nx) → 0 as n →∞}

Then, W u(p),W s(p) are injectively immersed (C∞) curves tangent at p
to Eu(p),E s(p), respectively.
(Analogous results for hyperbolic periodic points p with f τ (p) = p)
Set W v (O(p)) =

⋃
z∈O(p) W v (z) for v = s, u.
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Homoclinic Points and Homoclinic Tangles

Let p be a hyperbolic periodic point with orbit O(p). A point
q ∈ (W u(O(p)) \ O(p))

⋂
W s(O(p)) is called a homoclinic point.

It is transverse if the curves W u(O(p)) and W s(O(p)) are not tangent at
q.
Fact: (Katok) f has Transverse homoclinic points iff f has subshifts iff
h(f ) > 0
Definition. Homoclinic Tangle = compact set which is the closure of the
transverse homoclinic points of a hyperbolic periodic orbit.
Fact: A homoclinic tangle is an f−invariant set with a dense orbit and a
dense set of hyperbolic periodic orbits.
Using results of Katok-Yomdin-SN get:
f ∈ D∞(M2), h(f ) > 0, M2 compact =⇒ there is a homoclinic tangle Λ
such that h(f ) = h(f ,Λ).
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Typical picture of a homoclinic tangle
Consider the Henon family H(x , y) = (1 + y − a ∗ x2, b ∗ x)
Standard Henon Map: a = 1.4, b = 0.3

Figure: Homoclinic tangle for Henon map Stable and Unstable manifolds
computed with Dynamics-2 (Nusse, Yorke)
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Can one estimate entropy using homoclinic points? —Yes.
To illustrate: Consider the standard geometry associated to the Smale
horseshoe diffeomorphism f .

T1

q

p

Q

f(Q)

Q

R 2

R 1

Q 1

The set
⋂

n f n(Q) = Λ is such that (f ,Λ) ∼ (σ, Σ2).
So, h(T ) = log 2.
In general, if one sees the geometry of the horseshoe in a map f , then
h(f ) ≥ log 2.
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Quadrilateral and 2nd Image with Dynamics 2

As an example, using a result of K. Burns and H. Weiss, and the program
Dynamics 2 of Nusse and Yorke, can easily see how to get
h(H) > 1

2 log(2) = 0.34657
Pieces of W u,W s of right fixed point, a quadrilateral, and its second
image

Figure: Quadrilateral computed with Dynamics-2
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Quadrilateral and 2nd Image with Dynamics 2

As an example, using a result of K. Burns and H. Weiss, and the program
Dynamics 2 of Nusse and Yorke, can easily see how to get
h(H) > 1

2 log(2) = 0.34657
Pieces of W u,W s of right fixed point, a quadrilateral, and its second
image

Figure: Quadrilateral computed with Dynamics-2
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Remarks.

Double precision floating point accuracy: ≈ 10−16

Graphics resolution (i.e., pixel size ≈ 10−3),
So, can prove by hand (or with computer) that 2nd images of
quadrilateral look as in pictures.

for better estimation of entropy would need much finer methods.

Systematic Method: rigorously compute long pieces of pieces of
stable and unstable manifolds and use them to construct subshifts
—use of trellises

We describe trellises. For rigorous numerical implementation, see the
talk of J. Grote
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Some previous work on numerical Estimation of entropy in
the Henon family

h(H) > 0 simply from transverse homoclinic points
Existence of transverse homoclinic points

• Misiurewicz-Szewc, (by hand)

• Francescini-Russo (computer-assisted, parametrizations of stable and
unstable manifolds, later used by Gavosto-Fornaess for quadratic
tangencies)

Interval arithmetic:
• Stoffer-Palmer (1999)- H25 has a full 2-shift via rigorous shadowing,

(Note: Later, we show H2 has a 2-shift factor)
• Galias-Zgliczynski (2001): specific subshifts geometrically via interval

bounds, best lower bound: h(H) > 0.430, via subshift-29 symbols
• attempts to estimate Nn(H) –up to all periodic points of order 30.

in hyperbolic systems, h(f ) = lim supn→∞
1
n log Nn(f )

Sheldon E.Newhouse (Mathematics MSU) Estimating Topological Entropy on Surfaces December, 2006 15 / 33



Galias’ Subshift:

-1.0 0.0 1.0
-0.5

0.0

0.5

Figure 2: Enclosure of the nonwandering part of [−1, 2] ×
[−2, 2]

dynamics is defined. Since the nonwandering part is com-
posed of 8 connected subsets, we choose 8 quadrangles (see
Fig. 3(a)). There are only four covering relations between
these sets. The transition matrix is almost empty and hence
there is no interesting symbolic dynamics on these sets. We
modify the position of the rectangles by hand, so that a large
number of covering relations hold. The improved sets and
their images under the Hénon map are shown in Fig. 3(b).

Finally, we check rigorously the existence of covering re-
lations between the chosen sets. The coverings correspond to
the symbolic dynamics on eight symbols with the following
transition matrix:

A =

























1 1
1 1

1
1

1 1
1
1

1

























. (7)

It follows that the symbolic dynamics with the transition ma-
trix (7) is embedded in h and that the topological entropy of
the Hénon map is bounded by H(h) > 0.382. This is better
than the best estimate known to date (H(h) > 0.338, see [3]).

We have performed several other attempts to find complex
symbolic dynamics for the Hénon map. The largest bound
for the topological entropy H(h) > 0.430 was obtained for
the sets shown in Fig. 3(c). This bound is close to the non-
rigorous estimation of topological entropy based on the num-
ber of low-period cycles H(h) ≈ 0.465 (see [2]).
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Figure 3: (a) Symbolic dynamics on 8 symbols, initial quad-
rangles, (b) Symbolic dynamics on 8 symbols, improved
quadrangles, (c) Symbolic dynamics on 29 symbols

Figure: Galias Subshift with h(H) > 0.430, 29 symbols
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Galias-Zgliczynski periodic table:

930 Z Galias and P Zgliczyński

Table 7. Periodic orbits for the Hénon map belonging to the trapping region. Qn, number of
periodic orbits with period n; Pn, number of fixed points of hn; Hn(h) = n−1 log(Pn), estimation
of topological entropy based on Pn.

n Qn Pn Hn(h)

1 1 1 0.000 00
2 1 3 0.549 31
3 0 1 0.000 00
4 1 7 0.486 48
5 0 1 0.000 00
6 2 15 0.451 34
7 4 29 0.481 04
8 7 63 0.517 89
9 6 55 0.445 26

10 10 103 0.463 47
11 14 155 0.458 49
12 19 247 0.459 12
13 32 417 0.464 08
14 44 647 0.462 31
15 72 1 081 0.465 71
16 102 1 695 0.464 71
17 166 2 823 0.467 39
18 233 4 263 0.464 32
19 364 6 917 0.465 35
20 535 10 807 0.464 40
21 834 17 543 0.465 35
22 1 225 27 107 0.463 98
23 1 930 44 391 0.465 25
24 2 902 69 951 0.464 81
25 4 498 112 451 0.465 21
26 6 806 177 375 0.464 85
27 10 518 284 041 0.465 07
28 16 031 449 519 0.464 85
29 24 740 717 461 0.464 95
30 37 936 1139 275 0.464 86

which were checked by means of interval arithmetic.
Let us consider two covering sequences satisfying conditions (55). They must start at P4

as for the other sets all coverings involve the same iterate. We have to show that coverings
starting with

• P4
h⇒ P4 and P4

h3⇒ P5

are separated. This cannot be done directly because h2(P4) ∩ P5 �= ∅. We consider two
subcases:

• P4
h⇒ P4

h⇒ P4 and P4
h3⇒ P5—separated as dist(h(P4), P5) > 0,

• P4
h⇒ P4

h3⇒ P5 and P4
h3⇒ P5—separated as dist(h(P5), P5) > 0.

From lemmas 5 and 3 it follows that the topological entropy of the Hénon map is

H(h) � log λ > 0.3381. (66)

Figure: Galias Periodic Table
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Trellises and Associated Subshifts.
Let f : M → M be a smooth surface diffeomorphism
Let P be finite invariant set of hyperbolic saddle orbits with associated
stable and unstable manifolds W u(p),W s(p), p ∈ P
For each p ∈ P, let W u

1 (p) ⊂ W u(p),W s
1 (p) ⊂ W s(p) be a compact,

connected relative neighborhoods of p in W u(p), W s(p), resp.
Set T u =

⋃
p∈P W u

1 (p),T s =
⋃

p∈P W s
1 (p)

The pair T = (T u,T s) is a Trellis if f (T u) ⊃ T u, f (T s) ⊂ T s

An associated rectangle R for the trellis T = (T u,T s) is the closure of a
component of the complement of T u

⋃
T s whose boundary is a Jordan

curve which is an ordered union of exactly four curves Cu
1 ,C s

2 ,Cu
3 ,C s

3 with
Cu

i ⊂ T u, C s
i ⊂ T s .

Set ∂u(R)
def
= Cu

1

⋃
Cu

3 , ∂s(R)
def
= Cs

2

⋃
C s

4
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R
1

R2 R3

R4

p

Figure: A Horseshoe Trellis

Trellises: studied by R. Easton, Garrett Birkhoff
Pieter Collins: Studied relation to Bestvina-Handel, Franks-Misiurewicz
methods for forcing orbits and isotopy classes mod certain periodic orbits
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For a rectangle R with ∂u(R) = Cu
1

⋃
Cu

3 , ∂s(R) = C s
2

⋃
C s

4 , define
an R−u-disk = topological closed 2-disk D with int(D) ⊂ R,

∂D ⊂ W u(p)
⋃

W s(p), and ∂D meeting both parts of ∂s(R).
an R−s-disk in R = topological closed 2-disk D with int(D) ⊂ R,

∂D ⊂ W u(p)
⋃

W s(p), and ∂D meeting both parts of ∂u(R).

Figure: u-disk
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Given a Trellis T , we obtain a SFT as follows.
Let R(T ) denote the collection of all associated rectangles:

R(T ) = {R1,R2, . . . ,Rs}

We say that Ri ≺f Rj if
• f (Ri )

⋂
Rj contains an Rj−u-disk, and

• Ri
⋂

f −1(Rj) contains an Ri−s-disk.
Define the incidence matrix A of the trellis T = 0-1 matrix such that

Aij = 1 iff Ri ≺ Rj . Set (σ, ΣA) = associated SFT.

Theorem Let T be a trellis for C∞ surface diffeomorphism f with
associated SFT (σ, ΣA). Then,

h(f ) ≥ h(σ, ΣA).
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• Idea of Proof: If Ri ≺f Rj and Rj ≺f Rk , then Ri ≺f 2 Rk .

In a word Ri0Ri1 . . .Rik of R ′i s, get pieces of disjoint parts of ∂u(Ri ) whose
f k−images stretch across Rik .

So, get curves whose length growth ≥ h(σ, ΣA).

• Remark. Since R ′i s not disjoint, may not have (σ, ΣA) as a factor.

May have other SFT’s with entropy near h(σ, ΣA) as factors.
Remark. Given rectangles associated with a trellis, we can consider
subcollections of them and first return maps to induce various SFT’s
which give lower bounds for entropy.
Next, we consider some good pieces of W u(p),W s(p) for estimation of
h(H)
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 7th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 8th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 9th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 10th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 11th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 12th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 13th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: with longer piece of W u
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Let

p ≈ (0.6313544770895048, .1894063431268514)

be the right fixed point of

H(x , y) = (1 + y − 1.4 ∗ x2, 0.3 ∗ x)

Let T = (T u,T s) be the ”first trellis” of H2: i.e., ”D” shaped trellis
containing p for H2.
Using rectangles obtained from the piece of T u and H jT s , 0 ≤ j ≤ 11, we
constructed a 42x42 matrix A whose entries are 0’s, 1’s, 2’s which
corresponds to a ”SFT” in H.
This means that refining A to an incidence matrix A1 (i.e., getting rid of
the 2’s), gives a trellis and associated SFT (σ, ΣA1) with entropy

h(H) ≥ h(σ, ΣA1) ≈ 0.4563505671076695 ≈ 0.456

Here the ≈ means up to the calculation of the spectral radius of A1 (done
using maxima).

Sheldon E.Newhouse (Mathematics MSU) Estimating Topological Entropy on Surfaces December, 2006 31 / 33



������������	�
������
�������������������
������������
��������������
�� �!
"��#���$�%$&%����'
�())
� ��	��* )+�, -	���.	$�/�0.�� 0��1� �/�
���
����12
�3������&
�3�����14
�5��

�������$��1���
��14�
�6��

�������$���14��
��14

Sheldon E.Newhouse (Mathematics MSU) Estimating Topological Entropy on Surfaces December, 2006 32 / 33



Comments on Numerical Methods for Computing Invariant
Manifolds

Graph Transform not generally used: have formula
f2(1, g) ◦ [f1(1, g)]−1. So, need to do an inversion.

You-Kostelich-Yorke Method ( also D. Hobson): compute iterates of
short line segment near unstable eigendirection. Not rigorously
justified in the relevant papers.

Parametrization Method: Francescini-Russo, Gavosto-Fornaess, J.
Hubbard, Carré, Fontich, de la Llave,
Justification: use power series methods, truncate, and get estimates
of remainders

Bisection Method, like a newton method, completely rigorous, not
really used in most programs

Remark Using shadowing ideas and volume estimates, all of these can be
made rigorous in the C 0 (i.e., enclosure) sense.
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