
Implementing Taylor models arithmetic
using floating-point arithmetic:

bounding roundoff errors

Nathalie Revol
INRIA, Arenaire, LIP, ENS-Lyon, France

Nathalie.Revol@ens-lyon.fr

TMW’06, Boca Raton, Florida, 16-19 December 2006

Outline

• introduction to Taylor models arithmetic
• implementation using floating-point arithmetic

• details of various operations

− addition of two Taylor models

− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models

− better multiplication of two Taylor models

• conclusion

TMW’06 1 N. Revol

Introduction to Taylor models arithmetic

A function f can be represented by a Taylor model (p, I)
where p is a polynomial and I is an interval if

∀x ∈ Df , f(x) ∈ p(x) + I.

(p, I) is a Taylor model for f .

Typically, p is the Taylor expansion of f and I encloses the truncation

error of Df , hence the name of Taylor model.

Assumption : interval [−1, 1] as domain.

TMW’06 2 N. Revol

Operations on Taylor models : addition

Addition of two Taylor models :

(p, I) + (q, J) = (p + q, I + J).

If (p, I) is a Taylor model for f

and (q, J) is a Taylor model for g,

then (p + q, I + J) is a Taylor model for f + g.

Example : (1 + x, I) + (2− 3x, J) = (3− 2x, I + J).

TMW’06 3 N. Revol

Operations on Taylor models : multiplication by a scalar

Multiplication of a Taylor model by a scalar :

c× (p, I) = (c× p, c× I).

If (p, I) is a Taylor model for f ,

then (c× p, c× I) is a Taylor model for c× f .

Example : 5× (2− 3x, I) = (10− 15x, 5I).

TMW’06 4 N. Revol

Operations on Taylor models : multiplication

Multiplication of two Taylor models :

(p, I)× (q, J) = (truncn(p× q),
truncation error + Rg(p)× J + I ×Rg(q) + I × J).

If (p, I) is a Taylor model for f

and (q, J) is a Taylor model for g,

then (p, I)× (q, J) is a Taylor model for f × g.

TMW’06 5 N. Revol

Example :

reminder : x ∈ [−1, 1].

(1 + x, [2, 3])× (2− x, [−1, 0])
= (2 + x,Rg(−x2) + Rg(1 + x) · [−1, 0] + Rg(2− x) · [2, 3]

+[2, 3] · [−1, 0])
= (2 + x, [−1, 0] + [0, 2] · [−1, 0] + [1, 3] · [2, 3] + [2, 3] · [−1, 0])
= (2 + x, [−4, 9])

TMW’06 6 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic
• details of various operations

− addition of two Taylor models

− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models

− better multiplication of two Taylor models

• conclusion

TMW’06 7 N. Revol

Implementation of Taylor models arithmetic

Cf. COSY.

Implementation of Taylor models using floating-point arithmetic :
• coefficients of the polynomial and endpoints of the interval

= floating-point numbers
• operations on Taylor models performed using floating-point arithmetic.

Advantage : benefit from the speed of floating-point arithmetic

(implemented in hardware, thus very fast).

TMW’06 8 N. Revol

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Idea : for each computed coefficient,

bound the error on the computed coefficient by E

and add [−E,E] to the interval remainder I.

I thus becomes a big ”bin”, enclosing every possible source of error

(truncation error, roundoff error. . .).

TMW’06 9 N. Revol

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of (
∑n

i=0 aix
i, I) and (

∑n
j=0 bjx

j, J).
Using exact arithmetic :

(
n∑

i=0

aix
i, I) + (

n∑
j=0

bjx
j, J) = (c,K),

where

c =
n∑

k=0

ckx
k with ck = ak + bk and K = I + J.

TMW’06 10 N. Revol

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of (
∑n

i=0 aix
i, I) and (

∑n
j=0 bjx

j, J).

Using exact arithmetic : Using floating-point arithmetic :

(
∑n

i=0 aix
i, I) + (

∑n
j=0 bjx

j, J) = (c,K) (
∑n

i=0 aix
i, I)⊕ (

∑n
j=0 bjx

j, J) = (ĉ, K̂)

where where

c =
∑n

k=0 ckx
k ĉ =

∑n
k=0 ĉkx

k

with ck = ak + bk with ĉk = ak ⊕ bk

TMW’06 11 N. Revol

Implementation of Taylor models arithmetic

Elementary roundoff errors :

ek = ck − ĉk.

Let E ≥
∑n

k=0 |ek|,
then when x varies in [−1, 1],
the difference between c(x) and ĉ(x) lies in [−E,E].

Roundoff errors are properly accounted for if

K̂ = K + [−E,E] = I + J + [−E,E].

TMW’06 12 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic

• details of various operations
− addition of two Taylor models
− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models

− better multiplication of two Taylor models

• conclusion

TMW’06 13 N. Revol

Addition of two Taylor models using FP arithmetic

Addition of (
∑n

i=0 aix
i, I) and (

∑n
j=0 bjx

j, J) using FP arithmetic :

(
∑n

i=0 aix
i, I)⊕ (

∑n
j=0 bjx

j, J) = (ĉ, K̂)

where

ĉ =
∑n

k=0 ĉkx
k

with ĉk = ak ⊕ bk

ek = (ak + bk)− (ak ⊕ bk)
E = (1⊕ nε)�

⊕n
k=0 |ek|

K̂ = I + J + [−E,E]

TMW’06 14 N. Revol

Addition of two Taylor models using FP arithmetic

ek = (ak + bk)− (ak ⊕ bk)
for k = 0 to n, ek is computed using the TwoSum algorithm

more precisely, (ĉk, ek) = TwoSum (ak, bk)

E = (1⊕ nε)�
⊕n

k=0 |ek|
where ε is 1 ulp, (1 + nε) is computed exactly with FP arithmetic

and the factor (1 + nε) accounts for roundoff when computing E

K̂ = I + J + [−E,E]
K̂ is computed using interval arithmetic.

TMW’06 15 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic

• details of various operations
− addition of two Taylor models

− multiplication of a Taylor model by a scalar
− multiplication of two Taylor models

− better multiplication of two Taylor models

• conclusion

TMW’06 16 N. Revol

Multiplication of a Taylor model by a scalar

Multiplication of (
∑n

i=0 aix
i, I) by a scalar b using FP arithmetic :

b · (
∑n

i=0 aix
i, I) = (ĉ, K̂)

where

ĉ =
∑n

k=0 ĉkx
k

with ĉk = ak � b

ek = (ak · b)− (ak � b)
E = (1⊕ nε)�

⊕n
k=0 |ek|

K̂ = I + J + [−E,E]

TMW’06 17 N. Revol

Multiplication of a Taylor model by a scalar

ek = (ak · b)− (ak � b)
for k = 0 to n, ek is computed using the TwoMult algorithm

more precisely, (ĉk, ek) = TwoMult (ak, b)

E = (1⊕ nε)�
⊕n

k=0 |ek|
where again ε is 1 ulp, (1+nε) is computed exactly with FP arithmetic

and the factor (1 + nε) accounts for roundoff when computing E

K̂ = I + J + [−E,E]
K̂ is computed using interval arithmetic.

TMW’06 18 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic

• details of various operations
− addition of two Taylor models

− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models
− better multiplication of two Taylor models

• conclusion

TMW’06 19 N. Revol

Multiplication of two Taylor models using FP arith.

Multiplication of (
∑n

i=0 aix
i, I) by (

∑n
j=0 bjx

j, J) using FP arith. :

(
∑n

i=0 aix
i, I) · (

∑n
j=0 bjx

j, J) = (ĉ, K̂)

where

ĉ =
∑n

k=0 ĉkx
k

with ĉk =
⊕

i+j=k ai � bj

ek = ck − ĉk

E = (1⊕ nε)�
⊕n

k=0 |ek|
K̂ = I + J + [−E,E]

TMW’06 20 N. Revol

Multiplication of two Taylor models using FP arith.

ek =
∑k

i=0 ai · bk−1 −
⊕k

i=0 ai � bk−i

for each operation (⊕ or �),

the roundoff error is computed using either a TwoSum or a TwoMult

finally, ek is computed by summing (using ⊕) all these terms

and by multiplying by a security factor (of the kind (1 + 2kε)).

E = (1⊕ nε)�
⊕n

k=0 |ek|
where the factor (1 + nε) accounts for roundoff when computing E

K̂ = I + J + [−E,E]
K̂ is computed using interval arithmetic.

TMW’06 21 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic

• details of various operations
− addition of two Taylor models

− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models

− better multiplication of two Taylor models
• conclusion

TMW’06 22 N. Revol

Multiplication of two Taylor models using FP arith.

Multiplication of (
∑n

i=0 aix
i, I) by (

∑n
j=0 bjx

j, J) using FP arith. :

(
∑n

i=0 aix
i, I) · (

∑n
j=0 bjx

j, J) = (ĉ, K̂)

where

ĉ =
∑n

k=0 ĉkx
k

with ĉk =
⊕

i+j=k ai � bj

or equivalently ck = {(ai)t � (bk−i)} is a FP dot product

ek = ck − ĉk

E = (1⊕ nε)�
⊕n

k=0 |ek|
K̂ = I + J + [−E,E]

TMW’06 23 N. Revol

Accurate dot product by Ogita, Rump and Oishi (2004)

function [res, err] = DotErr1(x, y)
[p, s] = TwoMult(x1, y1)
err = |s|
for i = 2 : n

[h,r] = TwoMult(xi, yi)
[p,q] = TwoSum(p,h)
s = s ⊕(q ⊕ r)
err = err ⊕(|q| ⊕ |r|)

res = p ⊕ s
err = err �(1− (n + 2)ε)

TMW’06 24 N. Revol

Multiplication of (
∑n

i=0 aix
i, I) by (

∑n
j=0 bjx

j, J)

(
∑n

i=0 aix
i, I) · (

∑n
j=0 bjx

j, J) = (ĉ, K̂)

where

ĉ =
∑n

k=0 ĉkx
k

with (ĉk, ek) = DotErr1 ((ai), (bk−i))

E = (1⊕ nε)�
⊕n

k=0 |ek|
where the factor (1 + nε) accounts for roundoff when computing E

K̂ = I + J + [−E,E]
K̂ is computed using interval arithmetic.

TMW’06 25 N. Revol

Outline

• introduction to Taylor models arithmetic

• implementation using floating-point arithmetic

• details of various operations

− addition of two Taylor models

− multiplication of a Taylor model by a scalar

− multiplication of two Taylor models

− better multiplication of two Taylor models

• conclusion

TMW’06 26 N. Revol

Conclusion

• quality :
− better, tighter bounds for roundoff errors

− thus interval remainder should contain only ”true” error

• price :
− a few extra operations, especially in the presence of a FMA

− but maybe not much more than in existing COSY

− maybe even better in practice, since no test and branching

TMW’06 27 N. Revol

Possible improvements

• assumption :
− algorithms work only with rounding to nearest

− cf. Christoph Lauter’s talk

algorithms exist that work for any faithful rounding mode

• even higher precision (double-double, triple-double) :
− use of (truncated) expansions

− care must be taken to bound tightly the roundoff errors

• arbitrary precision :
− more expensive

− resort to more naive error bounds for efficiency reason

TMW’06 28 N. Revol

Disclaimer

I did not prove totally yet the algorithms given here. What might be

slightly modified are the safety factors of the kind 1 + nε, which may be

something like 1 + (n + 2)ε. . .

TMW’06 29 N. Revol

Bibliography
• Dekker T. J., A floating point technique for extending the available precision,

Numerische Mathematik, vol 18, no 3, pp 224-242, 1971.
• Higham N., Accuracy and stability of numerical algorithms (2nd edition), SIAM,

2002. Chapter 4 : Summation.
• Lauter C., Basic building blocks for a triple-double intermediate format, Re-

search report LIP, ENS Lyon RR2005-38, 2005. http://www.ens-lyon.fr/LIP/
Pub/Rapports/RR/RR2005/RR2005-38.pdf

• Ogita T., Rump S. and Oishi S., Accurate sum and dot product, SIAM Journal
on Scientific Computing, 2004.

• Priest D., Algorithms for arbitrary precision floating point arithmetic, Korne-
rup P. and Matula D., 10th Symposium on Computer Arithmetic, Grenoble,
France, pp 132–144, 1991. http://www.cs.cmu.edu/afs/cs/project/quake/
public/papers/related/Priest.ps

• Shewchuk J. R., Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates, Discrete and Comput. Geometry, vol 18, pp 305-363, 1997.

• Sterbenz P. H., Floating Point Computation, Prentice Hall, 1974.

TMW’06 30 N. Revol

http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-38.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-38.pdf
http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/related/Priest.ps
http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/related/Priest.ps

	titre [0]

