Implementing Taylor models arithmetic using floating-point arithmetic: bounding roundoff errors

Nathalie Revol
INRIA, Arenaire, LIP, ENS-Lyon, France
Nathalie.Revol@ens-lyon.fr

TMW'06, Boca Raton, Florida, 16-19 December 2006

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Introduction to Taylor models arithmetic

A function f can be represented by a Taylor model (p, I) where p is a polynomial and I is an interval if

$$
\forall x \in D_{f}, f(x) \in p(x)+I .
$$

(p, I) is a Taylor model for f.

Typically, p is the Taylor expansion of f and I encloses the truncation error of D_{f}, hence the name of Taylor model.
Assumption : interval $[-1,1]$ as domain.

Operations on Taylor models : addition

Addition of two Taylor models :

$$
(p, I)+(q, J)=(p+q, I+J)
$$

If (p, I) is a Taylor model for f and (q, J) is a Taylor model for g, then $(p+q, I+J)$ is a Taylor model for $f+g$.

Example : $(1+x, I)+(2-3 x, J)=(3-2 x, I+J)$.

Operations on Taylor models : multiplication by a scalar

Multiplication of a Taylor model by a scalar :

$$
c \times(p, I)=(c \times p, c \times I)
$$

If (p, I) is a Taylor model for f, then $(c \times p, c \times I)$ is a Taylor model for $c \times f$.

$$
\text { Example : } 5 \times(2-3 x, I)=(10-15 x, 5 I)
$$

Operations on Taylor models: multiplication

Multiplication of two Taylor models :

$$
\begin{aligned}
(p, I) \times(q, J)= & \left(\text { trunc }_{n}(p \times q),\right. \\
& \text { truncation error }+R g(p) \times J+I \times R g(q)+I \times J) .
\end{aligned}
$$

If (p, I) is a Taylor model for f and (q, J) is a Taylor model for g, then $(p, I) \times(q, J)$ is a Taylor model for $f \times g$.

Example :

reminder : $x \in[-1,1]$.

$$
\begin{aligned}
(1+ & x,[2,3]) \times(2-x,[-1,0]) \\
= & \left(2+x, R g\left(-x^{2}\right)+R g(1+x) \cdot[-1,0]+R g(2-x) \cdot[2,3]\right. \\
& +[2,3] \cdot[-1,0]) \\
= & (2+x,[-1,0]+[0,2] \cdot[-1,0]+[1,3] \cdot[2,3]+[2,3] \cdot[-1,0]) \\
= & (2+x,[-4,9])
\end{aligned}
$$

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Implementation of Taylor models arithmetic

Cf. COSY.

Implementation of Taylor models using floating-point arithmetic :

- coefficients of the polynomial and endpoints of the interval
= floating-point numbers
- operations on Taylor models performed using floating-point arithmetic.

Advantage : benefit from the speed of floating-point arithmetic (implemented in hardware, thus very fast).

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Idea : for each computed coefficient, bound the error on the computed coefficient by E and add $[-E, E]$ to the interval remainder I.
I thus becomes a big "bin", enclosing every possible source of error (truncation error, roundoff error. . .).

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ and $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$. Using exact arithmetic:

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)+\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(c, K),
$$

where

$$
c=\sum_{k=0}^{n} c_{k} x^{k} \text { with } c_{k}=a_{k}+b_{k} \text { and } K=I+J
$$

Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ and $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$.

Using exact arithmetic :
$\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)+\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(c, K)$
where

$$
\begin{aligned}
& c=\sum_{k=0}^{n} c_{k} x^{k} \\
& \quad \text { with } c_{k}=a_{k}+b_{k}
\end{aligned}
$$

Using floating-point arithmetic:
$\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right) \oplus\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(\hat{c}, \hat{K})$
where

$$
\begin{aligned}
& \hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k} \\
& \quad \text { with } \hat{c_{k}}=a_{k} \oplus b_{k}
\end{aligned}
$$

Implementation of Taylor models arithmetic

Elementary roundoff errors :

$$
e_{k}=c_{k}-\hat{c_{k}} .
$$

Let $E \geq \sum_{k=0}^{n}\left|e_{k}\right|$,
then when x varies in $[-1,1]$,
the difference between $c(x)$ and $\hat{c}(x)$ lies in $[-E, E]$.

Roundoff errors are properly accounted for if

$$
\hat{K}=K+[-E, E]=I+J+[-E, E] .
$$

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Addition of two Taylor models using FP arithmetic

Addition of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ and $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$ using FP arithmetic: $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right) \oplus\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(\hat{c}, \hat{K})$
where
$\hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k}$ with $\hat{c_{k}}=a_{k} \oplus b_{k}$
$e_{k}=\left(a_{k}+b_{k}\right)-\left(a_{k} \oplus b_{k}\right)$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
$\hat{K}=I+J+[-E, E]$

Addition of two Taylor models using FP arithmetic

$e_{k}=\left(a_{k}+b_{k}\right)-\left(a_{k} \oplus b_{k}\right)$
for $k=0$ to n, e_{k} is computed using the TwoSum algorithm more precisely, $\left(\hat{c_{k}}, e_{k}\right)=\operatorname{TwoSum}\left(a_{k}, b_{k}\right)$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
where ε is $1 \mathrm{ulp},(1+n \varepsilon)$ is computed exactly with FP arithmetic and the factor $(1+n \varepsilon)$ accounts for roundoff when computing E
$\hat{K}=I+J+[-E, E]$
\hat{K} is computed using interval arithmetic.

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Multiplication of a Taylor model by a scalar

Multiplication of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ by a scalar b using FP arithmetic:
$b \cdot\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)=(\hat{c}, \hat{K})$
where
$\hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k}$
with $\hat{c_{k}}=a_{k} \odot b$
$e_{k}=\left(a_{k} \cdot b\right)-\left(a_{k} \odot b\right)$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
$\hat{K}=I+J+[-E, E]$

Multiplication of a Taylor model by a scalar

$e_{k}=\left(a_{k} \cdot b\right)-\left(a_{k} \odot b\right)$
for $k=0$ to n, e_{k} is computed using the TwoMult algorithm more precisely, $\left(\hat{c_{k}}, e_{k}\right)=$ TwoMult $\left(a_{k}, b\right)$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
where again ε is 1 ulp, $(1+n \varepsilon)$ is computed exactly with FP arithmetic and the factor $(1+n \varepsilon)$ accounts for roundoff when computing E
$\hat{K}=I+J+[-E, E]$
\hat{K} is computed using interval arithmetic.

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Multiplication of two Taylor models using FP arith.

Multiplication of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ by $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$ using FP arith. : $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right) \cdot\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(\hat{c}, \hat{K})$
where

$$
\begin{aligned}
& \hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k} \\
& \quad \text { with } \hat{c_{k}}=\bigoplus_{i+j=k} a_{i} \odot b_{j}
\end{aligned}
$$

$e_{k}=c_{k}-\hat{c_{k}}$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
$\hat{K}=I+J+[-E, E]$

Multiplication of two Taylor models using FP arith.

$e_{k}=\sum_{i=0}^{k} a_{i} \cdot b_{k-1}-\bigoplus_{i=0}^{k} a_{i} \odot b_{k-i}$
for each operation (\oplus or \odot),
the roundoff error is computed using either a TwoSum or a TwoMult finally, e_{k} is computed by summing (using \oplus) all these terms and by multiplying by a security factor (of the kind $(1+2 k \varepsilon)$).
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
where the factor $(1+n \varepsilon)$ accounts for roundoff when computing E
$\hat{K}=I+J+[-E, E]$
\hat{K} is computed using interval arithmetic.

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Multiplication of two Taylor models using FP arith.

Multiplication of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ by $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$ using FP arith. : $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right) \cdot\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(\hat{c}, \hat{K})$
where

$$
\begin{aligned}
& \hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k} \\
& \quad \text { with } \hat{c_{k}}=\bigoplus_{i+j=k} a_{i} \odot b_{j}
\end{aligned}
$$

or equivalently $c_{k}=\left\{\left(a_{i}\right)^{t} \odot\left(b_{k-i}\right)\right\}$ is a FP dot product

$$
\begin{aligned}
& e_{k}=c_{k}-\hat{c_{k}} \\
& E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right| \\
& \hat{K}=I+J+[-E, E]
\end{aligned}
$$

Accurate dot product by Ogita, Rump and Oishi (2004)

$$
\begin{aligned}
& \text { function }[\text { res, err }]=\operatorname{DotErr} 1(x, y) \\
& \qquad p, s]=\operatorname{TwoMult}\left(x_{1}, y_{1}\right) \\
& \text { err }=|\mathrm{s}| \\
& \text { for } i=2: n \\
& {[\mathrm{~h}, \mathrm{r}]=\operatorname{TwoMult}\left(x_{i}, y_{i}\right)} \\
& {[\mathrm{p}, \mathrm{q}]=\operatorname{TwoSum}(\mathrm{p}, \mathrm{~h})} \\
& \mathrm{s}=\mathrm{s} \oplus(\mathrm{q} \oplus \mathrm{r}) \\
& \operatorname{err}=\operatorname{err} \oplus(|\mathrm{q}| \oplus|\mathrm{r}|) \\
& \mathrm{res}=\mathrm{p} \oplus \mathrm{~s} \\
& \mathrm{err}=\operatorname{err} \oslash(1-(n+2) \varepsilon)
\end{aligned}
$$

Multiplication of $\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right)$ by $\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)$

$\left(\sum_{i=0}^{n} a_{i} x^{i}, I\right) \cdot\left(\sum_{j=0}^{n} b_{j} x^{j}, J\right)=(\hat{c}, \hat{K})$
where
$\hat{c}=\sum_{k=0}^{n} \hat{c_{k}} x^{k}$ with $\left(\hat{c_{k}}, e_{k}\right)=\operatorname{Dot} \operatorname{Err} 1\left(\left(a_{i}\right),\left(b_{k-i}\right)\right)$
$E=(1 \oplus n \varepsilon) \odot \bigoplus_{k=0}^{n}\left|e_{k}\right|$
where the factor $(1+n \varepsilon)$ accounts for roundoff when computing E
$\hat{K}=I+J+[-E, E]$
\hat{K} is computed using interval arithmetic.

Outline

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
- addition of two Taylor models
- multiplication of a Taylor model by a scalar
- multiplication of two Taylor models
- better multiplication of two Taylor models
- conclusion

Conclusion

- quality :
- better, tighter bounds for roundoff errors
- thus interval remainder should contain only "true" error
- price :
- a few extra operations, especially in the presence of a FMA
- but maybe not much more than in existing COSY
- maybe even better in practice, since no test and branching

Possible improvements

- assumption :
- algorithms work only with rounding to nearest
- cf. Christoph Lauter's talk
algorithms exist that work for any faithful rounding mode
- even higher precision (double-double, triple-double) :
- use of (truncated) expansions
- care must be taken to bound tightly the roundoff errors
- arbitrary precision :
- more expensive
- resort to more naive error bounds for efficiency reason

Disclaimer

I did not prove totally yet the algorithms given here. What might be slightly modified are the safety factors of the kind $1+n \varepsilon$, which may be something like $1+(n+2) \varepsilon \ldots$.

Bibliography

- Dekker T. J., A floating point technique for extending the available precision, Numerische Mathematik, vol 18, no 3, pp 224-242, 1971.
- Higham N., Accuracy and stability of numerical algorithms (2nd edition), SIAM, 2002. Chapter 4 : Summation.
- Lauter C., Basic building blocks for a triple-double intermediate format, Research report LIP, ENS Lyon RR2005-38, 2005. http://www.ens-lyon.fr/LIP/ Pub/Rapports/RR/RR2005/RR2005-38.pdf
- Ogita T., Rump S. and Oishi S., Accurate sum and dot product, SIAM Journal on Scientific Computing, 2004.
- Priest D., Algorithms for arbitrary precision floating point arithmetic, Kornerup P. and Matula D., 10th Symposium on Computer Arithmetic, Grenoble, France, pp 132-144, 1991. http://www.cs.cmu.edu/afs/cs/project/quake/ public/papers/related/Priest.ps
- Shewchuk J. R., Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete and Comput. Geometry, vol 18, pp 305-363, 1997.
- Sterbenz P. H., Floating Point Computation, Prentice Hall, 1974.

