Implementing Taylor models arithmetic using floating-point arithmetic: bounding roundoff errors

Nathalie Revol

INRIA, Arenaire, LIP, ENS-Lyon, France Nathalie.Revol@ens-lyon.fr

TMW'06, Boca Raton, Florida, 16-19 December 2006

• introduction to Taylor models arithmetic

- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Introduction to Taylor models arithmetic

A function f can be represented by a Taylor model (p, I) where p is a polynomial and I is an interval if

$$\forall x \in D_f, \ f(x) \in p(x) + I.$$

(p, I) is a **Taylor model** for f.

Typically, p is the Taylor expansion of f and I encloses the truncation error of D_f , hence the name of **Taylor** model. Assumption : interval [-1, 1] as domain.

Operations on Taylor models : addition

Addition of two Taylor models :

$$(p, I) + (q, J) = (p + q, I + J).$$

If (p, I) is a Taylor model for fand (q, J) is a Taylor model for g, then (p+q, I+J) is a Taylor model for f+g.

Example :
$$(1 + x, I) + (2 - 3x, J) = (3 - 2x, I + J).$$

Operations on Taylor models : multiplication by a scalar

Multiplication of a Taylor model by a scalar :

$$c \times (p, I) = (c \times p, c \times I).$$

If (p, I) is a Taylor model for f, then $(c \times p, c \times I)$ is a Taylor model for $c \times f$.

Example :
$$5 \times (2 - 3x, I) = (10 - 15x, 5I)$$
.

Operations on Taylor models : multiplication

Multiplication of two Taylor models :

 $(p, I) \times (q, J) = (trunc_n(p \times q),$ truncation error $+ Rg(p) \times J + I \times Rg(q) + I \times J).$

If (p, I) is a Taylor model for fand (q, J) is a Taylor model for g, then $(p, I) \times (q, J)$ is a Taylor model for $f \times g$.

Example :

reminder : $x \in [-1, 1]$.

$$\begin{aligned} (1+x,[2,3]) \times (2-x,[-1,0]) \\ &= (2+x,Rg(-x^2)+Rg(1+x)\cdot[-1,0]+Rg(2-x)\cdot[2,3] \\ &+[2,3]\cdot[-1,0]) \\ &= (2+x,[-1,0]+[0,2]\cdot[-1,0]+[1,3]\cdot[2,3]+[2,3]\cdot[-1,0]) \\ &= (2+x,[-4,9]) \end{aligned}$$

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Cf. COSY.

Implementation of Taylor models using floating-point arithmetic :

- coefficients of the polynomial and endpoints of the interval
 - = floating-point numbers
- operations on Taylor models performed using floating-point arithmetic.

Advantage : benefit from the speed of floating-point arithmetic (implemented in hardware, thus very fast).

Roundoff errors must be taken into account.

Idea : for each computed coefficient, bound the error on the computed coefficient by Eand add [-E, E] to the interval remainder I.

I thus becomes a big "bin", enclosing every possible source of error (truncation error, roundoff error...).

Roundoff errors must be taken into account.

Example : addition of $(\sum_{i=0}^{n} a_i x^i, I)$ and $(\sum_{j=0}^{n} b_j x^j, J)$. Using exact arithmetic :

$$\left(\sum_{i=0}^{n} a_{i}x^{i}, I\right) + \left(\sum_{j=0}^{n} b_{j}x^{j}, J\right) = (c, K),$$

where

$$c = \sum_{k=0}^{n} c_k x^k$$
 with $c_k = a_k + b_k$ and $K = I + J$.

Roundoff errors must be taken into account.

Example : addition of $(\sum_{i=0}^{n} a_i x^i, I)$ and $(\sum_{j=0}^{n} b_j x^j, J)$.

Using exact arithmetic : $\left(\sum_{i=0}^{n} a_{i}x^{i}, I\right) + \left(\sum_{j=0}^{n} b_{j}x^{j}, J\right) = (c, K) \left| \left(\sum_{i=0}^{n} a_{i}x^{i}, I\right) \oplus \left(\sum_{j=0}^{n} b_{j}x^{j}, J\right) = (\hat{c}, \hat{K}) \right|$

where

$$c = \sum_{k=0}^{n} c_k x^k$$

with $c_k = a_k + b_k$

Using floating-point arithmetic :

where

$$\hat{c} = \sum_{k=0}^{n} \hat{c_k} x^k$$

with $\hat{c_k} = a_k \oplus b_k$

Elementary roundoff errors :

$$e_k = c_k - \hat{c_k}.$$

Let $E \ge \sum_{k=0}^{n} |e_k|$, then when x varies in [-1, 1], the difference between c(x) and $\hat{c}(x)$ lies in [-E, E].

Roundoff errors are properly accounted for if

$$\hat{K} = K + [-E, E] = I + J + [-E, E].$$

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Addition of two Taylor models using FP arithmetic

Addition of $(\sum_{i=0}^{n} a_i x^i, I)$ and $(\sum_{j=0}^{n} b_j x^j, J)$ using FP arithmetic : $(\sum_{i=0}^{n} a_i x^i, I) \oplus (\sum_{j=0}^{n} b_j x^j, J) = (\hat{c}, \hat{K})$

where $\hat{c} = \sum_{k=0}^{n} \hat{c_k} x^k$ with $\hat{c_k} = a_k \oplus b_k$

 $e_k = (a_k + b_k) - (a_k \oplus b_k)$ $E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^n |e_k|$ $\hat{K} = I + J + [-E, E]$

Addition of two Taylor models using FP arithmetic

 $e_k = (a_k + b_k) - (a_k \oplus b_k)$ for k = 0 to n, e_k is computed using the TwoSum algorithm more precisely, $(\hat{c_k}, e_k) = \text{TwoSum } (a_k, b_k)$

$$\begin{split} E &= (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^{n} |e_k| \\ \text{where } \varepsilon \text{ is } 1 \text{ ulp, } (1 + n\varepsilon) \text{ is computed exactly with FP arithmetic} \\ \text{and the factor } (1 + n\varepsilon) \text{ accounts for roundoff when computing } E \end{split}$$

$$\hat{K} = I + J + [-E, E]$$

 \hat{K} is computed using interval arithmetic.

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Multiplication of a Taylor model by a scalar

Multiplication of $(\sum_{i=0}^{n} a_i x^i, I)$ by a scalar *b* using FP arithmetic : $b \cdot (\sum_{i=0}^{n} a_i x^i, I) = (\hat{c}, \hat{K})$

where

$$\hat{c} = \sum_{k=0}^{n} \hat{c_k} x^k$$

with $\hat{c_k} = a_k \odot b$

 $e_k = (a_k \cdot b) - (a_k \odot b)$ $E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^n |e_k|$ $\hat{K} = I + J + [-E, E]$

Multiplication of a Taylor model by a scalar

$$e_k = (a_k \cdot b) - (a_k \odot b)$$

for $k = 0$ to n , e_k is computed using the TwoMult algorithm
more precisely, $(\hat{c_k}, e_k) = \text{TwoMult } (a_k, b)$

$$E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^{n} |e_{k}|$$

where again ε is 1 ulp, $(1+n\varepsilon)$ is computed exactly with FP arithmetic
and the factor $(1+n\varepsilon)$ accounts for roundoff when computing E

$$\hat{K} = I + J + [-E, E]$$

 \hat{K} is computed using interval arithmetic.

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Multiplication of two Taylor models using FP arith.

Multiplication of $(\sum_{i=0}^{n} a_i x^i, I)$ by $(\sum_{j=0}^{n} b_j x^j, J)$ using FP arith. : $(\sum_{i=0}^{n} a_i x^i, I) \cdot (\sum_{j=0}^{n} b_j x^j, J) = (\hat{c}, \hat{K})$

where

$$\hat{c} = \sum_{k=0}^{n} \hat{c_k} x^k$$
with $\hat{c_k} = \bigoplus_{i+j=k} a_i \odot b_j$

$$e_k = c_k - \hat{c_k}$$

$$E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^n |e_k|$$

$$\hat{K} = I + J + [-E, E]$$

Multiplication of two Taylor models using FP arith.

$$e_k = \sum_{i=0}^k a_i \cdot b_{k-1} - \bigoplus_{i=0}^k a_i \odot b_{k-i}$$

for each operation (\oplus or \odot),

the roundoff error is computed using either a TwoSum or a TwoMult finally, e_k is computed by summing (using \oplus) all these terms and by multiplying by a security factor (of the kind $(1 + 2k\varepsilon)$).

 $E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^{n} |e_k|$ where the factor $(1 + n\varepsilon)$ accounts for roundoff when computing E

$$\hat{K} = I + J + [-E, E]$$

 \hat{K} is computed using interval arithmetic.

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models
- conclusion

Multiplication of two Taylor models using FP arith.

Multiplication of $(\sum_{i=0}^{n} a_i x^i, I)$ by $(\sum_{j=0}^{n} b_j x^j, J)$ using FP arith. : $(\sum_{i=0}^{n} a_i x^i, I) \cdot (\sum_{j=0}^{n} b_j x^j, J) = (\hat{c}, \hat{K})$

where

$$\begin{split} \hat{c} &= \sum_{k=0}^{n} \hat{c_k} x^k \\ \text{with } \hat{c_k} &= \bigoplus_{i+j=k} a_i \odot b_j \\ \text{or equivalently } c_k &= \{(a_i)^t \odot (b_{k-i})\} \text{ is a FP dot product} \end{split}$$

$$e_k = c_k - \hat{c_k}$$

$$E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^n |e_k|$$

$$\hat{K} = I + J + [-E, E]$$

Accurate dot product by Ogita, Rump and Oishi (2004)

$$\begin{array}{l} \texttt{function} \ [\texttt{res, err}] = \texttt{DotErr1}(x,y) \\ [p,s] = \texttt{TwoMult}(x_1,y_1) \\ \texttt{err} = |\texttt{s}| \\ \texttt{for} \ i = 2:n \\ [\texttt{h,r}] = \texttt{TwoMult}(x_i,y_i) \\ [\texttt{p,q}] = \texttt{TwoSum}(\texttt{p,h}) \\ \texttt{s} = \texttt{s} \oplus (\texttt{q} \oplus \texttt{r}) \\ \texttt{err} = \texttt{err} \oplus (|\texttt{q}| \oplus |\texttt{r}|) \\ \texttt{res} = \texttt{p} \oplus \texttt{s} \\ \texttt{err} = \texttt{err} \oslash (1 - (n+2)\varepsilon) \end{array}$$

Multiplication of $(\sum_{i=0}^{n} a_i x^i, I)$ by $(\sum_{j=0}^{n} b_j x^j, J)$ $(\sum_{i=0}^{n} a_i x^i, I) \cdot (\sum_{j=0}^{n} b_j x^j, J) = (\hat{c}, \hat{K})$

where

$$\hat{c} = \sum_{k=0}^{n} \hat{c_k} x^k$$

with $(\hat{c_k}, e_k) = \text{DotErr1} ((a_i), (b_{k-i}))$

 $E = (1 \oplus n\varepsilon) \odot \bigoplus_{k=0}^{n} |e_k|$ where the factor $(1 + n\varepsilon)$ accounts for roundoff when computing E

$$\hat{K} = I + J + [-E, E]$$

 \hat{K} is computed using interval arithmetic.

- introduction to Taylor models arithmetic
- implementation using floating-point arithmetic
- details of various operations
 - addition of two Taylor models
 - multiplication of a Taylor model by a scalar
 - multiplication of two Taylor models
 - better multiplication of two Taylor models

conclusion

Conclusion

• quality :

- better, tighter bounds for roundoff errors
- thus interval remainder should contain only "true" error

• price :

- a few extra operations, especially in the presence of a FMA
- but maybe not much more than in existing COSY
- maybe even better in practice, since no test and branching

Possible improvements

• assumption :

- algorithms work only with rounding to nearest
- cf. Christoph Lauter's talk
 algorithms exist that work for any faithful rounding mode
- even higher precision (double-double, triple-double) :
 - use of (truncated) expansions
 - care must be taken to bound tightly the roundoff errors
- arbitrary precision :
 - more expensive
 - resort to more naive error bounds for efficiency reason

Disclaimer

I did not prove totally yet the algorithms given here. What might be slightly modified are the safety factors of the kind $1 + n\varepsilon$, which may be something like $1 + (n+2)\varepsilon$...

Bibliography

- DEKKER T. J., A floating point technique for extending the available precision, Numerische Mathematik, vol 18, no 3, pp 224-242, 1971.
- HIGHAM N., Accuracy and stability of numerical algorithms (2nd edition), SIAM, 2002. Chapter 4 : Summation.
- LAUTER C., Basic building blocks for a triple-double intermediate format, Research report LIP, ENS Lyon RR2005-38, 2005. http://www.ens-lyon.fr/LIP/ Pub/Rapports/RR/RR2005/RR2005-38.pdf
- OGITA T., RUMP S. and OISHI S., Accurate sum and dot product, SIAM Journal on Scientific Computing, 2004.
- PRIEST D., Algorithms for arbitrary precision floating point arithmetic, KORNE-RUP P. and MATULA D., *10th Symposium on Computer Arithmetic*, Grenoble, France, pp 132-144, 1991. http://www.cs.cmu.edu/afs/cs/project/quake/ public/papers/related/Priest.ps
- SHEWCHUK J. R., Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, *Discrete and Comput. Geometry*, vol 18, pp 305-363, 1997.
- STERBENZ P. H., Floating Point Computation, Prentice Hall, 1974.