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Introduction to Taylor models arithmetic

A function f can be represented by a Taylor model (p, I)
where p is a polynomial and I is an interval if

Ve € Dy, f(x) € p(x) + 1.

(p,I) is a Taylor model for f.

Typically, p is the Taylor expansion of f and I encloses the truncation
error of D¢, hence the name of Taylor model.
Assumption : interval [—1, 1] as domain.
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Operations on Taylor models : addition

Addition of two Taylor models :

(p,I)+(q,J) = (p+q, 1+ J).

If (p,I) is a Taylor model for f
and (q, J) is a Taylor model for g,

then (p+q,I + J) is a Taylor model for f + g.

Example : (14+x,1)+(2—3z,J)=(3—-2x,1+J).
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Operations on Taylor models : multiplication by a scalar

Multiplication of a Taylor model by a scalar :
cx (p,I) = (cxp,exI).

If (p,I) is a Taylor model for f,
then (¢ X p,c x I) is a Taylor model for ¢ x f.

Example : 5 x (2 —3x,1) = (10 — 15z, 51).
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Operations on Taylor models : multiplication

Multiplication of two Taylor models :

(p, 1) x (q,J) = (truncy(p X q),
truncation error + Rg(p) X J +1 x Rg(q) + I x J).

If (p, ) is a Taylor model for f
and (q, J) is a Taylor model for g,
then (p,I) x (q,J) is a Taylor model for f x g.
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Example :

reminder : z € [—1,1].

(1+2,[2,3]) x (2—2,[-1,0])

= 24z, Rg(—2*) + Rg(1 +=x)-[-1,0] + Rg(2 — x) - [2, 3]
+[2,3] - [-1,0])
(24 x,[—1,0] 4+ [0,2] - [-1,0] + [1,3] - [2,3] + [2,3] - [-1,0])
(24 x,]—4,9])
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Implementation of Taylor models arithmetic

Cf. COSY.

Implementation of Taylor models using floating-point arithmetic :
e coefficients of the polynomial and endpoints of the interval

= floating-point numbers
e operations on Taylor models performed using floating-point arithmetic.

Advantage : benefit from the speed of floating-point arithmetic
(implemented in hardware, thus very fast).
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Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

|dea : for each computed coefficient,
bound the error on the computed coefficient by E
and add |[—F, E] to the interval remainder 1.

I thus becomes a big "bin", enclosing every possible source of error
(truncation error, roundoff error. . . ).
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Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of (3°"a;x',I) and (3 7_,ba’, J).
Using exact arithmetic :

(Zaixi,l) + (ijxj,J) = (¢, K),

where

c:chxk with ¢ = ar + b and K =1 + J.
k=0
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Implementation of Taylor models arithmetic

Roundoff errors must be taken into account.

Example : addition of (3°._a;x",I) and (3 7_,b;a7, J).

Using exact arithmetic :
(Z?:O CLiiCi, I) -+ (Z?:O bjilj‘j, J) — (C, K)

with ¢, = ar + by
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Implementation of Taylor models arithmetic

Elementary roundoff errors :
er = Cr — Ck.

Let B> > 1 lex],
then when x varies in [—1, 1],
the difference between c¢(x) and ¢(z) lies in |[—F| E].

Roundoff errors are properly accounted for if

K=K+ |-E,El=1+J+|-E, E].
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Addition of two Taylor models using FP arithmetic

Addition of (> "  ja;xz",I) and (> o bjz?,J) using FP arithmetic :
(Z?:O aixi71) S2 (Z?:O bjxja J) = (¢, f()

where

A n A
¢ =D k=0 CkT
with ¢, = ar D by,

k

€l — (ak + bk) — (Clk S, bk)
E=(1®ne)© Py lex]
K=I+4+J+[-E,E]|
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Addition of two Taylor models using FP arithmetic

Cl — (a,k + bk) — (ak S, bk)
for k = 0 to n, e is computed using the TwoSum algorithm
more precisely, (¢, ex) = TwoSum (a, by)

E = (1®ne) © By lexl
where ¢ is 1 ulp, (1 + ne) is computed exactly with FP arithmetic
and the factor (1 + ne) accounts for roundoff when computing E

A

K=I+J+|-E E|
K is computed using interval arithmetic.
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Multiplication of a Taylor model by a scalar

Multiplication of (> "  a;z",I) by a scalar b using FP arithmetic :

A

b- (Yimgair’, 1) = (& )

where

A mn A
C=) 1_oCkT
with ¢, = ar © b

k

-b) — (ar © b)

ne) © @j_ lexl
J+|[—FE, F]

(ak
E (1@
K=1+
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Multiplication of a Taylor model by a scalar

€l — (ak-b)—(aka)
for Kk =0 to n, e; is computed using the TwoMult algorithm
more precisely, (¢, ex) = TwoMult (ag, b)

E = (1®ne) © By lexl
where again € is 1 ulp, (1+ne) is computed exactly with FP arithmetic
and the factor (1 + ne) accounts for roundoff when computing E

A

K=I1I+J+|-E E|
K is computed using interval arithmetic.
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Multiplication of two Taylor models using FP arith.

Multiplication of (> ,a;z",I) by (Z?:o bjz?,J) using FP arith. :

A

(Z?:O a”ixia I) ' (Z?:O bjxja J) — (év K)

€L — Cr — CAk.
E=(1®ns)©@r_olex

A

K=I1I+J+|-E E|
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Multiplication of two Taylor models using FP arith.

€ = Zf:o a; - b1 — @f:o a; ® bp_;
for each operation (& or ®),
the roundoff error is computed using either a TwoSum or a TwoMult
finally, ex is computed by summing (using &) all these terms

and by multiplying by a security factor (of the kind (1 4 2ke)).

E=(1®ne)0P,_, ek
where the factor (1 + ne) accounts for roundoff when computing E

K=I+J+[-E,E]
K is computed using interval arithmetic.
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Multiplication of two Taylor models using FP arith.

Multiplication of (> ,a;z",I) by (Z?:o bjz?,J) using FP arith. :

A

(Z?:O a;z", I)- (Z?:O bjxja J) = (¢ K)

where
A ~ Kk
C= ) 1_oCkT

with ¢, = @’i—l—j:k a; © bj
or equivalently ¢, = {(a;)* ® (br_;)} is a FP dot product

ekzck—ék
E = (1®ne) © Brylexl
K=I+J+|-E E|
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Accurate dot product by Ogita, Rump and Oishi (2004)

function |res, err|= DotErri(z,y)
p, s| = TwoMult(xy,y1)
err = |s|
for 1=2:n
lh,r| = TwoMult(x;,y;)
p,q] = TwoSum(p,h)
s =5 ®(qe r)
err = err @(|q @ z)
res = p @ s
err O(1 — (n+ 2)e)

err
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Multiplication of (3 . a;z’, 1) by (3 7_bja/, J)

(Z?:O a;z", I)- (Z?:() bjxjv J) = (¢, K)

with (¢, ex) = DotErrl ((a;), (bg_;))

E = (1&ng) © @y lexl
where the factor (1 4+ ne) accounts for roundoff when computing £

K=I+J+[-E,E]
K is computed using interval arithmetic.
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Conclusion

e quality :
— better, tighter bounds for roundoff errors
— thus interval remainder should contain only "true” error
e price :
— a few extra operations, especially in the presence of a FMA
— but maybe not much more than in existing COSY
— maybe even better in practice, since no test and branching
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Possible improvements

e assumption :

— algorithms work only with rounding to nearest

— cf. Christoph Lauter’s talk

algorithms exist that work for any faithful rounding mode

e even higher precision (double-double, triple-double) :

— use of (truncated) expansions

— care must be taken to bound tightly the roundoff errors
e arbitrary precision :

— more expensive

— resort to more naive error bounds for efficiency reason
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Disclaimer

| did not prove totally yet the algorithms given here. What might be
slightly modified are the safety factors of the kind 1 + ne, which may be
something like 1+ (n 4 2)e. . .
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