
Introduction
Design

Implementation
Outlook

The Design and Implementation of a Rigorous
High Precision Floating Point Arithmetic

for Taylor Models

Alexander Wittig

Department of Physics, Michigan State University
East Lansing, MI, 48824

4th International Workshop on Taylor Methods
Boca Raton, 2006

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

High Precision
FP Representation

Outline

1 Introduction
High Precision
FP Representation

2 Design
Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

3 Implementation
Quadruple Length

4 Outlook

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

High Precision
FP Representation

Why do we need high precision?

Standard floating point numbers only have a limited precision.
In the case of double length FPs, for example, this means that
the ratio δr

r ≈ 10−16.

This is not enough for certain applications. Computer aided
mathematical proofs like Johannes Grote is doing them
sometimes need to get closer to the correct result.

Also COSY GO Kyoko Makino presented yesterday needs
higher precision to find the minima of a function even more
precisely.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

High Precision
FP Representation

Floating Point Representation (IEEE 754)

The representation of floating point numbers used in most
modern computer hardware is defined in the standard IEEE
754.

They are basically stored in a representation like S ·M · 2E

where S is the sign (either + or −), M is the mantissa and E
is the exponent. The precision of such a number is simply
determined by the number of bits in the mantissa.

IEEE 754 defines doubles as effectively having a 53 bit
mantissa and an 11 bit exponent.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

Design Goals

We have three main design goals for this arithmetic:

Rigorous Since we want to use these algorithms in our verified
Taylor models we have to make sure to provide an
error bound that encloses all floating point roundoff
errors that are made during the calculation process.

Fast If this code is to be integrated into COSY we need it
to be fast enough to meet the high COSY standards.

Adaptive In the end we would like to be able to choose the
precision adaptively so that we can represent the
higher order terms in the Taylor model by lower
precision, since they are small anyway.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

Rigorous Arithmetic

To use these algorithms for Taylor models we need to be able to
produce a verified enclosure of the correct result. This has several
consequences for our algorithm:

Whenever we do calculations we need to make sure that we
take all possible round off errors into account and add them
to an error bound.

On the other hand we do not have to be absolutely precise in
our calculations as long as we can give an accurate remainder
bound for the result.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

High Precision using Floating Point Arithmetic

To get a higher precision we want to store numbers as
unevaluated sums of doubles.

The number of terms in this unevaluated sum determines the
achievable precision and is called the length of the number

Thus a high precision number A is represented as

A =
∑

i

ai

where {a1, a2, · · · , ai} are the components that are stored as
a list of doubles in memory.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

High Precision using Floating Point Arithmetic

We call a number normalized, if

|ai+1| < ε · |ai | ∀ai

where ε is the machine precision.
By requiring our numbers to be normalized we can simplify the
algorithms we use later quite a bit.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

Exact Addition and Dekker’s Algorithms

To actually carry out calculations with these numbers we use some
basic algorithms. The exact addition has been published by D.
Knuth, while the multiplication was published by T. J. Dekker.

They allow us to add or multiply two floating point numbers
in such a way that we get two floating point numbers that
again form an unevaluated sum of the correct result.

They only need floating point operations that are IEEE 754
compliant and do not rely on any special features of some
platform.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

Exact Addition

The basic steps in an exact addition of two doubles a and b into r1
and r2. Here � and � are the floating point operations:

1 Set r1 = a � b. This already is the first part of the result.

2 Set bvirt = x � a

3 Set avirt = x � bvirt

4 Set r2 = (b � bvirt) � (a � avirt)

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Design Goals
Rigorous Arithmetic
High Precision
Exact Addition and Dekker’s Algorithm

Dekker Multiplication

The Dekker Multiplication of a and b is a bit more involved. Here
is an outline of how it works:

1 Split up a and b into sums of two “half length” numbers,
called head and tail each of which has only half of its
mantissa bits set.

2 Multiply both heads, and each head with each tail.

3 Add the two cross terms. Then add the head product to this
using exact addition. The first term of the addition result is
also the first term of the multiplication result.

4 Add the tail product to the second term of the addition. This
is the second term of the result.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Precision

First we want to implement “Quadruple Precision” addition and
multiplication. That means for now each high precision number
consists of two double precision numbers.
I will show two versions of the algorithms:

A non-rigorous one, which will demonstrate the basic principle

And a rigorous version, which will actually take all the errors
we make into account and sum them up in an error interval.

Since COSY is written in FORTRAN those algorithms will also be
written in FORTRAN as well, so they can be easily integrated into
our current code base.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Precision

In the following slides I will use this notation:

The boxed operators �,�,� refer to floating point operations

⊕ and ⊗ represent the exact operations.

The regular operators +,−, · are the normal mathematically
exact operations.

There are three quadruple length numbers: A = (a1, a2, aerr),
B = (b1, b2, berr) and C = (c1, c2, cerr). The error parts are
only used in the rigorous part.

We will assume that A and B are normalized

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Addition

To calculate C = A + B we only have to do the following:

QuadrupleAdd(A, B)

1 (c1, c2) = a1 ⊕ b1

2 c2 = c2 � a2 � b2

1 Exact addition of the biggest two components.

2 Use regular floating point operations to add up the rest.
Here it does not make sense to use expensive exact addition

because we would throw away the smaller part anyway!

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Addition

To calculate C = A + B we only have to do the following:

QuadrupleAdd(A, B)

1 (c1, c2) = a1 ⊕ b1

2 c2 = c2 � a2 � b2

1 Exact addition of the biggest two components.

2 Use regular floating point operations to add up the rest.
Here it does not make sense to use expensive exact addition

because we would throw away the smaller part anyway!

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Addition

To calculate C = A + B we only have to do the following:

QuadrupleAdd(A, B)

1 (c1, c2) = a1 ⊕ b1

2 c2 = c2 � a2 � b2

1 Exact addition of the biggest two components.

2 Use regular floating point operations to add up the rest.
Here it does not make sense to use expensive exact addition

because we would throw away the smaller part anyway!

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Multiplication

To calculate C = A× B we only have to do the following:

QuadrupleMult(A, B)

1 (c1, c2) = a1 ⊗ a2

2 c2 = c2 � (a1 � b2) � (a2 � b1)

1 Multiply the two biggest terms exactly.

2 Add the cross terms to the correction term obtained above.
Again we do not need to do this using exact multiplication because

the error term would be thrown away anyway!

Note that we do not even calculate a2 � b2 because with
normalized input this will be below our precision.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Multiplication

To calculate C = A× B we only have to do the following:

QuadrupleMult(A, B)

1 (c1, c2) = a1 ⊗ a2

2 c2 = c2 � (a1 � b2) � (a2 � b1)

1 Multiply the two biggest terms exactly.

2 Add the cross terms to the correction term obtained above.
Again we do not need to do this using exact multiplication because

the error term would be thrown away anyway!

Note that we do not even calculate a2 � b2 because with
normalized input this will be below our precision.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Multiplication

To calculate C = A× B we only have to do the following:

QuadrupleMult(A, B)

1 (c1, c2) = a1 ⊗ a2

2 c2 = c2 � (a1 � b2) � (a2 � b1)

1 Multiply the two biggest terms exactly.

2 Add the cross terms to the correction term obtained above.
Again we do not need to do this using exact multiplication because

the error term would be thrown away anyway!

Note that we do not even calculate a2 � b2 because with
normalized input this will be below our precision.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Quadruple Length Multiplication

To calculate C = A× B we only have to do the following:

QuadrupleMult(A, B)

1 (c1, c2) = a1 ⊗ a2

2 c2 = c2 � (a1 � b2) � (a2 � b1)

1 Multiply the two biggest terms exactly.

2 Add the cross terms to the correction term obtained above.
Again we do not need to do this using exact multiplication because

the error term would be thrown away anyway!

Note that we do not even calculate a2 � b2 because with
normalized input this will be below our precision.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Rigorous Quadruple Length Addition

Now let’s look at the rigorous error handling. To calculate
C = A + B rigorously, we have to do some modifications to the
code:

QuadrupleAddR(A, B)

1 (c1, c2) = a1 ⊕ b1

2 c2 = c2 � a2

3 cerr = (ε � c2)

4 c2 = c2 � b2

5 cerr = (cerr � (ε � c2) � aerr � berr) � 2

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Quadruple Length

Rigorous Quadruple Length Multiplication

QuadrupleMultR(A, B)

1 (c1, c2) = a1 ⊗ b1

2 temp = a2 � b1

3 cerr = (ε � temp)

4 c2 = c2 � temp

5 cerr = cerr � (ε � c2)

6 temp = a1 � b2

7 cerr = cerr � (ε � temp)

8 c2 = c2 � temp

9 cerr = (cerr � (ε � c2) � (aerr � |b1|) � (aerr � |b2|) � (berr �
|a1|) � (berr � |a2|) � (aerr � berr)) � 2

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Further steps

Further areas that we will have to look into are:

1 Make output of our functions normalized again.

2 Compilers and platform dependence.

3 Extension to higher precision than just double double.

4 Integration into the current COSY Taylor model code.

5 Implementation of input/output from/to ASCII
representation.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Compilers and platforms

As we have heard we need several preconditions for our algorithms
to work:

1 IEEE 754 compliance:
Here we right now rely on our Intel Fortran compiler flags to
force floating point operations to be standard compliant
(-mp). At some later point we will probably set this using
functions from the F90 standard at the start of the COSY
program.

2 Round to nearest:
Round to nearest is the rounding mode we need for our
multiplication. Right now, again, we set this at compile time
using a compiler flag and rely on the compiler to do it right.
Later we will again do that at the start up of COSY using F90
functions.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Extension to higher precision

Our needs for high speed have to be combined with existing high
precision libraries.

1 For “low” high precision, such as double-double or possibly
triple-double we need to implement operations directly in
COSY since we can’t use the C libraries directly due to the
overhead of function calls.

2 For higher precisions we can use existing libraries since here
the cost of additional computation will outweigh the cost of
the function call.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Integration into COSY: Precision

Taylor models have only few large coefficients in the low order
terms, but many small ones in the higher order. Therefore we
will not store all coefficients with the same precision, but only
those that really need to be high precision.

By fixing a targeted remainder bound size for the whole Taylor
model, COSY should automatically adapt the precision of the
coefficients based on that cutoff. Thus we can probably
reduce the performance impact significantly.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Integration into COSY: Storage

In COSY Taylor models are stored as a sequence of doubles
and their “address”, i.e. their order.

It is very easy to just store several doubles for one address and
just interpret them as the unevaluated sums needed for our
high precision approach.

This way most of the COSY Taylor model implementation as
it exists now will remain unchanged.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Rigorous Input/Output

At some point we surely want to output the result in human
readable form. For this we need rigorous output and a way to
specify the number of digits to be printed.

Since in COSY code you still want to use decimal constants as
you do now, we also need a converter to parse strings into
high precision numbers.

The problem with both is the rigorous conversion from the
binary storage format to the decimal output format and vice
versa. We have to make sure, that if the output is somehow
inexact, we add the uncertainty to the remainder bound.

Machine readable exact output could be done as hex digits
encoding the bit pattern of the doubles. So you can store a
full Taylor model in a file and read it again without any loss of
precision due to rounding during I/O.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

Introduction
Design

Implementation
Outlook

Integration into COSY

Thank you.

Thank you for your attention.

Alexander Wittig A Rigorous High Precision Floating Point Arithmetic

	Introduction
	High Precision
	FP Representation

	Design
	Design Goals
	Rigorous Arithmetic
	High Precision
	Exact Addition and Dekker's Algorithm

	Implementation
	Quadruple Length

	Outlook
	

