
Implementation of Taylor Model Arithmetic

MSU Report MSUHEP-20511
May 13, 2002

Kyoko Makino
Department of Physics

University of Illinois Urbana-Champaign
Martin Berz

Department of Physics and Astronomy
Michigan State University

In the following, we describe in detail the current implementation of Taylor
model arithmetic in version 8.1 of the code COSY INFINITY. Since in the
Taylor model approach, the coefficients are floating point (FP) numbers, care
must be taken that the inaccuracies of conventional FP arithmetic are properly
accounted for. Algorithmically the methods are rather straightforward; however
for practical use of the methods, the more important question is that of the
soundness of the actual implementation. To assure the latter, besides the tests
performed by ourselves in the development of the methods, we have decided to
ask an outside group to perform extensive and hopefully sufficiently exhaustive
independent testing using various test suites.

Definition 1 (Admissible FP Arithmetic) We assume computation is per-
formed in a floating point environment supporting the four elementary operations
⊕, ⊗, Ä, ®. We call the arithmetic admissible if there are two positive constants
denoted

εu : underflow threshold

εm : relative accuracy of elementary operations

such that

1. If the FP numbers a, b are such that a ∗ b exceeds εu in magnitude, then
the product a ∗ b differs from the floating point multiplication result a⊗ b
by not more than |a⊗ b|⊗ εm.

2. The sum a + b of FP numbers a and b differs from the floating point
addition result a⊕ b by not more than max(|a|, |b|)⊗ εm.

Definition 2 (Admissible Interval Arithmetic)We assume that besides an
admissible FP environment, there is an interval arithmetic environment of four
elementary operations ⊕, ⊗, Ä, ®, as well as a set S of intrinsic functions. We
call the interval arithmetic admissible if for any two intervals [a1, b1] and [a2, b2]

1

of floating point numbers and any ° ∈ {⊕, ⊗, Ä, ®} and corresponding real
operation ◦ ∈ {+,×,−, /}, we have

[a1, b1]° [a2, b2] ⊃ {x ◦ y|x ∈ [a1, b1], y ∈ [a2, b2]}, (1)

and furthermore, for any interval intrinsic s ∈ S representing the real function
s, we have

s([a, b]) ⊃ {s(x)|x ∈ [a, b]}. (2)

For the specific purposes of Taylor model arithmetic, some additional con-
siderations are necessary. First we note that combinatorial arguments show [?]
that the number of nonzero coefficients in a polynomial of order n in v variables
cannot exceed (n+v)!/(n! ·v!). Furthermore, as also shown in [?], the number of
multiplications necessary to determine all coefficients up to order n of the prod-
uct polynomial of two such polynomials cannot exceed (n+ 2v)!/ (n! · (2v)!) .

Definition 3 (Taylor Model Arithmetic Constants) Let n and v be the
order and dimension of the Taylor model computation. Then we fix constants
denoted

εc : cutoff threshold

e : contribution bound

such that

1. ε2c > εu

2. 2 ≥ e > 1 + 2 · εm · (n+ 2v)!/ (n! · (2v)!)

We remark that in a conventional double precision floating point environ-
ment, typical values for the constants of the admissible FP arithmetic may be
εu = 10−307 and εm = 10−15. The Taylor arithmetic cutoff threshold εc can
be chosen over a wide possible range, but since it is later used to control the
number of coefficients actively retained in the Taylor model arithmetic, a value
not too far below εm, such as εc = 10−20, is a good choice for many cases. Fur-
thermore, for essentially all practically conceivable cases of n and v, the choice
e = 2 is satisfactory, and this is the number used in our implementation.
Under the assumption of the above properties of the floating point arith-

metic, interval arithmetic, and the Taylor model arithmetic constants, we now
describe the algorithms for Taylor model arithmetic, which will lead to the de-
finition of admissible FP Taylor model arithmetic.

Storage. In the COSY implementation, a Taylor model T of order n and
dimension v is represented by a collection of nonzero floating point coefficients
ai, as well as two coding integers ni,1 and ni,2 that contain unique information

2

allowing to identify the term to which the coefficient ai belongs. The coeffi-
cients are stored in an ordered list, sorted in increasing order first by size of
ni,1, and second, for each value of ni,1, by size of ni,2. For the purposes of our
discussion, the details about the meaning of the coding integers ni,1 and ni,2 is
immaterial; we merely note in passing that the efficiency of our implementation
depends critically on them, and details can be found in [?]. There is also other
information stored in the Taylor model, in particular the information of the ex-
pansion point and the domain, as well as various intermediate bounds that are
useful for the necessary computation of range bounds; however this information
is not critical for the further discussion. For simplicity of the subsequent argu-
ments, all coefficients are always stored normalized to the interval [−1, 1] with
expansion point 0.
Only coefficients ai exceeding the cutoff threshold εc in magnitude, i.e. sat-

isfying |ai| > εc, are retained. In many practical cases, this entails significant
savings in space and execution time; more on how the non-retained terms are
treated is described below. Since by requirement, ε2c > εu, the multiplication
of two retained coefficients can never lead to underflow. Besides the coefficients
and coding integers, each TM also contains an interval I composed of two float-
ing point numbers representing rigorous enclosures of the remainder bound.

Error collection. In the elementary operations of Taylor models, the errors
due to floating point arithmetic are accumulated in a floating point “tallying
variable” t which in the end is used to increase the remainder bound interval
I by an interval of the form e⊗ εm ⊗ [−t, t]. The factor e assures a safe upper
bound of all floating point errors of adding up the (positive) contributions to t.
Accounting for the error through a single floating point variable t with the factor
e · εm “factored out” notably increases computational efficiency. In addition,
there is a “sweeping variable” s that will be used to absorb terms that fall below
the cutoff threshold εc and are thus not explicitly retained.

Scalar multiplication. The multiplication of a Taylor model T with co-
efficients ai, coding integers (ni,1, ni,2) and remainder bound interval I with a
floating point real number c is performed in the following manner. The tallying
variable t and the sweeping variable s are initialized to zero. Going through
the list of terms in the Taylor polynomial, each floating point coefficient ai
is multiplied by the floating point number c to yield the floating point result
bk = ai ⊗ c. The tallying variable t is incremented by |bk|, accounting for the
roundoff error in the calculation of bk. If |bk| ≥ εc, the term will be included
in the resulting polynomial, and k will be incremented. If |bk| < εc, the sweep-
ing variable s is incremented by |bk|. After all terms have been treated, the
total remainder bound of the result of the scalar multiplication is set to be
[c, c]⊗ I ⊕ e⊗ εm ⊗ [−t, t]⊕ e⊗ [−s, s], which is performed in outward rounded
interval arithmetic.

Addition. Addition of two Taylor models T (1) and T (2) with coefficients
a
(1)
i and a(2)j , coding integers (n(1)i,1 , n

(1)
i,2) and (n

(2)
j,1 , n

(2)
j,2), and remainder bounds

3

I1, I2, respectively, is performed similar to the merging of two ordered lists.
The pointers i, j of the two lists and pointer of the merged list k are initialized
to 1. Then iteratively, the terms (n(1)i,1 , n

(1)
i,2) and (n

(2)
j,1 , n

(2)
j,2) are compared. In

case (n(1)i,1 , n
(1)
i,2) 6= (n(2)j,1 , n

(2)
j,2), the term that should come first according to the

ordering is merely copied, and its pointer as well as k are incremented. In
case (n(1)i,1 , n

(1)
i,2) = (n

(2)
j,1 , n

(2)
j,2), we proceed as follows. We determine the floating

point coefficient bk = a
(1)
i ⊕ a

(2)
j . To account for the error, we increment t

by max(|a(1)i |, |a(2)j |). If |bk| ≥ εc, the term will be included in the resulting
polynomial, and k will be incremented. If |bk| < εc, the sweeping variable s is
incremented by |bk|. Finally i, j are incremented by one. After both the lists of
T (1) and T (2) are completely transversed, the remainder bound is determined
via interval arithmetic as I1⊕I2⊕e⊗εm⊗[−t, t]⊕e⊗[−s, s], which is performed
in outward rounded interval arithmetic.

Multiplication. The multiplication of two Taylor models T (1) and T (2) of
order n with coefficients a(1)i and a(2)j and coding integers (n(1)i,1 , n

(1)
i,2) and (n

(2)
j,1 ,

n
(2)
j,2), respectively, is performed as follows. The contributions I to the remainder
bound due to orders greater than n are computed using interval arithmetic as
outlined in [?]. Next, the terms of the polynomial T (2) are sorted into pieces
T
(2)
m of exact order m respectively. Then, each term in T (1) with order k is
multiplied with all those terms of T (2) of order (n− k) or less.
For each one of the contributions, using the coding integers (n(1)i,1 , n

(1)
i,2) and

(n
(2)
j,1 , n

(2)
j,2), we determine the location l of the product using the method de-

scribed in [?]. We determine the floating point product p = a
(1)
i ⊗ a

(2)
j of the

coefficients. To account for the error, we increment t by |p|. We add the term p
to the coefficient bl. To account for the error, we increment t by max(|p|, |bl|).
After all monomial multiplications have been executed, all resulting total

coefficients bl of the product polynomial will be studied for sweeping. If |bl| ≥ εc,
the term will be included in the resulting polynomial, and l will be incremented.
If |bl| < εc, the sweeping variable s is incremented by |bl|, but l will not be
incremented, i.e. the term is not retained. In the end, the remainder bound
I is incremented by e ⊗ εm ⊗ [−t, t]⊕ e⊗ [−s, s] which is executed in outward
rounded interval arithmetic

Intrinsic Functions. All intrinsic functions can be expressed as linear com-
binations of monomials of Taylor models, plus an interval remainder bound Ii[?].
The coefficients are obtained via interval arithmetic, including elementary in-
terval operations and interval intrinsic functions. The necessary scalar multi-
plications, additions, and multiplications are executed based on the previous
algorithms, and in the end the interval remainder bound Ii is added to the thus
far accumulated remainder bound.

The various algorithms just discussed form the basis of a computer imple-
mentation of Taylor model arithmetic:

4

Definition 4 (Admissible FP Taylor Model Arithmetic) We call a Tay-
lor model arithmetic admissible if it is based on an admissible FP and interval
arithmetic and it adheres to the algorithms for storage, scalar multiplication,
addition, multiplication, and intrinsic functions described above.

Remark 5 (FP Taylor Model Arithmetic in COSY INFINITY) The
code COSY INFINITY contains an admissible Taylor model arithmetic in ar-
bitrary order and in arbitrarily many variables. The code consists of around
50, 000 lines of FORTRAN77 source that also cross-compiles to standard C. It
can be used in the environment of the COSY language, as well as in F77 and
C. It is also available as classes in F90 and C++. The code is highly optimized
for performance in that any overhead for addressing of polynomial coefficients
amounts to less than 30 percent of the floating point arithmetic necessary for
the coefficient arithmetic[?]. It also has full sparsity support in that coefficients
below the cutoff threshold do not contribute to execution time and storage.

5

