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POLITECNICO DI MILANO

Motivation

» Space trajectory and space system design is always
affected by uncertainties

« Uncertainties due to navigation systems

e Uncertainties in modeling the dynamical environment

» Operating conditions will generally differ from the nominal

design
v
» Suitable algorithms must be developed to

o estimate the effects of the previous uncertainties
e design control corrections to compensate possible errors

» Differential algebra is applied to:

e expand the solution of TPBVPs around nominal solutions
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o expand the solution of DAEs w.r.t. uncertain parameters
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Outline

» Notes on Differential Algebra (DA)
» High Order expansion of the flow of ODEs

» High Order Two-Point Boundary Value Problem (TPBVP)
Solver

e Lambert problem

e Station keeping (SK) around Halo orbits

» High Order Integration of DAEs
* Reduction of a DAE to an equivalent implicit ODE
e High order integration of implicit ODEs based on DA

e Simple pendulum

» High Order Sensitivity Analysis of DAEs

* Double link manipulator with uncertain viscous friction coefficients
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» Conclusions and Future Work
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Notes on Differential Algebra

» DAis an algebra of Taylor polynomials, which can be readily
iImplemented in a computer environment

.

DA enables the automatic computation of the Taylor expansion
of any function f of v variables up to the arbitrary order 71t

Unlike standard automatic differentiation tool, the analytic
operations of differentiation and antiderivation are introduced

A DA number can be seen as a Taylor Model without the
interval remainder bound:

™ DA
(Pa7f7 IOé,f) } -POé,f G ’n’D’b

D, is the DA framework for Taylor polynomials of
variables and order 7.
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3 Expansion of ODEs Flows (1/2)

» Consider the ODE initial value problem:
= f(x), x(0) = xg

» Any integration scheme is based on algebraic operations,
involving the evaluation of f at several integration points

Replacing xo with [zg] = (20, 1) and carrying out all the
operations in ,, 1), enable the evaluation of the Taylor
expansion of the ODE flow

Example: explicit Euler’s scheme
kg1 = 2]k + f(lz]e) - b

} At each step, |11 is the n-th Taylor expansion of the
flow of the ODE
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S Expansion of ODEs Flows (2/2)

» Example: 2-Body Problem

Eccentricity: 0.5

Starting point: pericenter

Integration scheme: Stérmer/Verlet (order 2 symplectic)
Order of the flow expansion: 5

» Sensitivity analysis with respect to the initial conditions

e An uncertainty box of
size 0.01 AU on the
initial position is
propagated by means of
the 5th order expansion
of the flow
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S Expansion of ODEs Flows (2/2)

» Example: 2-Body Problem

Eccentricity: 0.5

Starting point: pericenter

Integration scheme: Stérmer/Verlet (order 2 symplectic)
Order of the flow expansion: 5

» Sensitivity analysis with respect to the initial conditions

Taylor propagation point propagation
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S High Order TPBVP solver (1/3)

» Example: Lambert problem
Given

* initial position: 71 Find the initial velocity, V1,
e final position: 7°2 } the spacecraft must have to
e time of flight: tof reach 72 in tof

» Various algorithms exist to identify a nominal solution of this
TPBVP, based on iterative procedures
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IS High Order TPBVP solver (2/3)
;&:y'"
» Given a nominal solution, v;, to the Lambert problem:

e Use DA to expand the flow } ory\ o [Mr;] \[ 07
of the ODE w.r.t. 7"; and v; svp | (M., ] Sv;
Build the following map:

5Tf o [Mrf} 57"7;
5’)"7; N [Im] 5'1)7;
Invert it:
—1
5’1"@ _ [Mrf} (57“]6
(S’UZ' B [Im] (S’I"z'

By imposing 5rf — (), the previous map delivers a Taylor
series expansion of the solution of the TPBVP in d7;
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High Order TPBVP solver (3/3)

» Given a displacement from the nominal initial position,
0T;, the evaluation of the previous map delivers the
corrections to the nominal initial velocity, dv;, to reach
the final desired nominal position, 7 ¢

» Test case: Earth-Mars transfer (Mars Express)

nominal

T
7
~
-
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High Order TPBVP solver (3/3)

» Given a displacement from the nominal initial position,
0T;, the evaluation of the previous map delivers the
corrections to the nominal initial velocity, dv;, to reach
the final desired nominal position, 7 ¢

» Test case: Earth-Mars transfer (Mars Express)

error box of size 0.1 AU
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High Order TPBVP solver (3/3)
Given a displacement from the nominal initial position,
0T;, the evaluation of the previous map delivers the
corrections to the nominal initial velocity, dv;, to reach
the final desired nominal position, 7 ¢

Test case: Earth-Mars transfer (Mars Express)

no corrections 5-th order corrections
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S SK around Halo Orbats (1/2)

» Circular restricted three body problem:

A
”o”ms << M1, M2

0..
./
- ’.
- M+

>

-
-

Ls¢
* M4, M2 move on circular orbits * five equilibrium points

» The Halo orbit is a 3-
dimensional periodic
solution around L4, Lo, L3

> or
-0.02f

—0.041
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S SK around Halo Orbats (2/2)
= -

Station Keeping on a Halo orbit around L1:

Given a nominal halo orbit, design the correction maneuvers to
compensate dynamical perturbations

TPBVP formulation: given a displacement from the current
nominal state, cancel the error after a given time

Example: No corrections

Reference halo orbit
(Az = 8000 km)

Uncertainty on
spacecraft positionat > o

intersection with x-z _0.00!

Error cancellation
after 0.5 period

—-0.04}

0.8
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S SK around Halo Orbats (2/2)
= -

Station Keeping on a Halo orbit around L1:

Given a nominal halo orbit, design the correction maneuvers to
compensate dynamical perturbations

TPBVP formulation: given a displacement from the current
nominal state, cancel the error after a given time

Example: 1st order corrections

Reference halo orbit
(Az = 8000 km)

Uncertainty on
spacecraft positionat > o
intersection with x-z

Error cancellation
after 0.5 period
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S SK around Halo Orbats (2/2)
= -

Station Keeping on a Halo orbit around L1:

Given a nominal halo orbit, design the correction maneuvers to
compensate dynamical perturbations

TPBVP formulation: given a displacement from the current
nominal state, cancel the error after a given time

Example: 3rd order corrections

Reference halo orbit
(Az = 8000 km)

Uncertainty on
spacecraft positionat > o

intersection with x-z 0.0l

Error cancellation
after 0.5 period

—-0.04}

0.8
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S SK around Halo Orbats (2/2)
A 1
Station Keeping on a Halo orbit around L1:

Given a nominal halo orbit, design the correction maneuvers to
compensate dynamical perturbations

TPBVP formulation: given a displacement from the current
nominal state, cancel the error after a given time

Example: 10th order corrections

Reference halo orbit
(Az = 8000 km)

Uncertainty on
spacecraft positionat > o
Intersection with x-z

Error cancellation
after 0.5 period
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POLITECNICO DI MILANO

Outline

» Notes on Differential Algebra (DA)

» High Order Two-Point Boundary Value Problem (TPBVP)
Solver

 Lambert problem

e Station keeping (SK) around Halo orbits

» High Order Integration of Differential Algebraic Equations
(DAEsS)

* Reduction of a DAE to an equivalent implicit ODE
e High order integration of implicit ODEs based on DA

e Simple and double pendulums

» High Order Sensitivity Analysis of DAEs
* Double link manipulator with uncertain viscous friction coefficients
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e Any function f with nonvanishing Ot order has A(|f]) =0

» Given an operator O onthe set M C ,D,, itis said to be
contracting on M if, for any a,b € M with a # b,

AMO(a) — O(b)) > Aa —b)

} After the application of O, the derivatives in @ and b
agree to a higher order than before
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POLITECNICO DI MILANO

Fixed Point Theorem

A
Theorem:

Let O be a contracting operatoron M C ,,D, that maps M
into M. Then:

« (O has a unique fixed point a € M that satisfies the fixed
point problem

a= O(a)

» The sequence ax = O(ag_1), starting from ag € M for
k=1,2, ..., converges to the fixed point @ in finitely many
steps

.

Suppose a fixed point problem a = H(a) is to be solved

 Bring the probleminto ,D, P a = H(a)
* Use the fixed point theorem to converge to the DA solution of it
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P Reduction of DAESs to Implicit ODEs

» Consider the generalization of the first order ODE problem:

¥ = f(t,x,2)
0 = g(tz,2)

» An implicit form can be obtained by introducing ¢ = (z, 2)*

e G D R

» However, the resulting Jacobian matrix is not regular:
‘8F(t,u,v) B ‘ I 0

Ov OO‘ZO

- The regularity assumption of a general implicit ODE
problem is not met
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» The most general DAE is readily obtained:

fl(t,ajl,...,a:ggll),...,:BU,...,:USJ&”))

fv(t,azl,...,x&g"’l),...,azv,...

» The most common approach to solve a DAE is to
differentiate the system until v equations can be picked
up such that the Jacobian of the new system is regular

W

The DAE problem is reduced to an implicit ODE problem
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POLITECNICO DI MILANO

DA Integration of Implicit ODEs

Consider the first order implicit ODE initial value problem:
F(t,x,2") =0, z(ty) = xg

with regular Jacobian matrix 0F (¢, u,v)/0v

Algorithm for a single n-th order integration step:

» Solve F(tg,xo,x’) = 0 for a consistent z'(tg) =
» Reuwrite the original problem in a derivative-free form ( £ = z'):
O(t,z9,&) = F (t,xo + /t E(r)dr, f) =0
to
» Substitute ((t) = £(t) — x; to obtain the origin-preserving form:

U(t, 20, ¢) = O(t, o, ((t) + xp) =0
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POLITECNICO DI MILANO

DA Integration of Implicit ODEs

» Consider the Taylor expansion of W around (¢, () = (9, 0) .
Since V(tg, xp,0) = 0, we have:

U (t, @o,¢) = Lc(C) + Lr(t) + N (t,¢) =0
» Obtain the equivalent fixed point formulation for ( :
C(t) =H(¢) = =L (¥(t, 20, ) — L¢(C))
» Using H, define a sequence (ax) of DA vectors by ag = 0 and:
ap+1 = H(ag)
» The following statements can be demonstrated:

e 'H is a contracting operator It has a unique fixed point

—/
* The fixed point a, 41 is a DA representative for the derivative
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of the solution: a, 11 = [a:’(t) — 336]71
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DA Integration of Implicit ODEs

» The algorithm can be generalized to higher order problems

» Example: 2nd order implicit ODE initial value problem
e +a'+x = 0
r(0) =z = 1
' (0)=z5 = 0

== Matlab odel51
— COSY 20th order

step size

o | Matlab ode151

. * COSY 20th order

4 8 10
t

0.0156 s on a AMD Athlon(tm) 2.01 GHz desktop pc
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Simple Pendulum

o
» Constraints:

q1 — Lcosqs =0
v, go — Lsings =0

» Extended Lagrangian:

| . |
L = §m(q% +43) + 5 GQ?Q, — MU — AWy
» Virtual work of external forces:

OW = —mgdgs

» Resulting system: miiy + A

mga + A2 + mg

Iqgs + M Lsings — As L cosqs
G1 + L cos q3¢5 + L sin g3

G2 + Lsingzgs — L cos g3

» Parametersvalue: ¢=98m/s* m=1kg L=1m
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Simple Pendulum

.
» Integrator parameters: step size: 0.1 s; integration order: 16

5i5

10 B 45 5
time [s] 9, [rad]

0.2656 s on a AMD Athlon 2.01 GHz desktop pc

» Constraints satisfaction:

» A 1 o AAN A/ MNy—
"\/ w“/l\v ["“‘\ ,H\l-"‘ A' N\ "\"‘-,\ ~y \‘I

ST

!
: N
(i
Yo A .
L \r._' I W

—8th order ‘ —8th order
== 12th order == 12th order

== 16th order R == 16th order
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Sensitivity Analysis of DAEs using DA

T
W.l.g., suppose a sensitivity analysis is of interest on

F(t,z,x',p) =0, z(tg) = xg
with respect to parameter p

A single step of the algorithm can be modified to allow the
expansion of the solution in time and parameter p:

Solve F(to,xq,x’,p) = 0 for a consistent =’ (tg, p) = x5(p)

Note: suitable DA techniques are available to solve this parametric
implicit equation

Rewrite the original problem in a derivative-free form

(&(t,p) = 2'(t,p) ):

t
(I)(t,.ilﬁo,f,p) = F (ta To +

S(T,p)dﬂf,p) =0

to

» The fixed point of operator ‘H, a,, 1 is a Taylor expansion of the
solution w.r.t. time and p
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Same physical parameters
as the simple pendulum

Motion on the horizontal
plane

Torques C4 and C'p
acting on joints A and B:

20
0.25 1
Cg[Nm| = 5 (cos (27‘(" 1—Ot> — 1)

» Viscous friction acting at
joints A and B with
coefficients:

Cu,A = Cy,B = 0.03 Nms

Ca[Nm] = 0.25 - sin (27r : it)




-
Initial conditions:

q3(0) = ¢6(0) =0 and ¢3(0) = ¢s(0) =0
Integration interval: 0 <t<10 s

Step Size: 0.1 s

Integration order: 10
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0.3438 s on a AMD Athlon 2.01 GHz desktop pc
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Uncertainty on Friction Coefficients
!

» 10% uncertainty introduced on ¢, 4 and ¢, B :
Co.4 € [Cya (1—01), Cy,a* (1+0.1)]

o €[ 5 (1-0.1),&0 - (1+0.1)]

» A uniform grid of 121 , , .
points has been - .

settled on the previous B I e
intervals in the space - *final states |

Cv,A — Cy,B

121, 10-th order, point
integrations have
been carried out
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POLITECNICO DI MILANO

Uncertainty on Friction Coefficients
e

» Uncertainty intervals have .
been represented as additional .
DA variables b il etares

+ final states ||

» A 10-th order sensitivity
analysis was carried out
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POLITECNICO DI MILANO

Uncertainty on Friction Coefficients
e

» Uncertainty intervals have .
been represented as additional .
DA variables b il etares

+ final states ||

» A 10-th order sensitivity
analysis was carried out
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» Uncertainty intervals have
been represented as additional
DA variables

A 10-th order sensitivity
analysis was carried out

* pomt mtegrations
Error on the final position and | —Daendosue ||
velocity of point C: 85 09 0 105 11

N &8
L i

final C velocity error [m/s]

final C position error [m]

=
;

0.032 0.032 0.032

0.03 0.03 0.03
Nms] & & [Nms] 0.028 0.028 Coh [Nms]

(]

0.03 0028
. MNmg 008 N

24.125 s on a AMD Athlon 2.01 GHz desktop pc
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POLITECNICO DI MILANO

Conclusions and Future Works
.

» Conclusions

« High order corrections maneuvers can be designed using the
high order TPBVP solver

* A high order time integration scheme for DAEs has been
implemented based on differential algebra

e The use of DA techniques allows to expand the solution w.r.t.
Initial conditions and dynamical model parameters

W

* The previous algorithms can be effectively used to both
analyze and manage uncertainties and errors

» Future Works

* Integration error estimation based on Taylor coefficients analysis
e Development of suitable laws to vary step size and order
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« Different expansion orders for time and parameters
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8 DA Integration of Implicit ODEs

» The algorithm can be generalized to higher order
problems:

e Consider the following 2nd order implicit ODE:

G(t,z,x',2") =0, z(ty) = o, 2'(tg) = xj
e Substitute ¢ = 2" to obtain:

¢ ¢ ¢
P(t, &) =G <t,£[3() —I—/ <£U6 —I—/ f(a)da) dr, 1, —I—/ E(T)dr, £)
to to to

and the previous algorithm works with minor adjustment

* The previous argument can be generalized to higher
order implicit ODE problems
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