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A method has been developed to calculate accurate high-order ion-optical maps for electrostatic and
radio-frequency accelerating elements. The method has been incorporated into the arbitrary-order
map-based beam optics code COSY Infinity. The treatment is restricted to the case of negligible
magnetic fields, as is typical of heavy-ion accelerating cavities, and does not include space charge.
For validation purposes, the beam dynamics calculated for these elements is compared against ray
tracing for typical beam and cavity parameters. Different from the ray-tracing approach, parameter
changes of individual components typically require only recalculation of the maps of the particular
components and not the entire system, and thus the method is particularly suitable for optimization.
The approach developed for accurate analytical representation of the on- and off-axis electric fields
of cylindrically symmetric electrostatic lenses and radio-frequency cavities is described. Some of
the many possible applications for using accurate high-order map representations of Einzel lenses,
electrostatic accelerating gaps, and radio-frequency accelerating structures are discussed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1497499#
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I. INTRODUCTION

A wide variety of sophisticated beam transport system
ion-optical spectrographs, and linear accelerators base
independently phased superconducting resonators cann
designed or optimized to high order by the current genera
of matrix- or map-based transport codes in high energy
nuclear physics. For many such systems it is typical to s
with a first- or second-order simulation to obtain the init
tune or layout, and to follow that by detailed ray-tracin
simulations for parameter optimization to higher order.
this work, we extend the formulation of an arbitrary-ord
beam optics code to include maps for acceleration and fo
sing with dc and time-varying electric fields. The fields a
obtained from a Poisson solver for cylindrically symmet
systems of arbitrary geometry. The new beam-optical co
ponents include elements such as Einzel lenses, dc acc
ating gaps, and radio-frequency~rf! accelerating structure
such as superconducting resonators.

Map-based beam optics provides an approach condu
3170034-6748/2002/73(9)/3174/7/$19.00
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to optimization, in that the transfer map explicitly displa
and isolates order-by-order dependence on coordinates.
thermore, most parameter changes occuring in the proce
optimization affect only the local transfer map of the affect
element and do not necessitate recomputation of the e
system, which increases simulation efficiency. The arbitr
order map-based beam optics code COSY Infinity1 is
equipped with fitting algorithms, and further can read
compute the effects of small changes in system parame
on the dynamics. However, previous versions of the co
were not equipped to deal with elements having general fi
profiles that produce a net change in particle energies. In
article we generalize COSY Infinity to calculate transp
maps to arbitrary order including the effects of such e
ments. The extended map-oriented beam optics code is
ful in the design and optimization of a variety of beam tran
port and acceleration systems including arrays
independently phased superconducting resonators for
vanced ion linacs as described below.

We have also developed a method for accurate eva
4 © 2002 American Institute of Physics
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3175Rev. Sci. Instrum., Vol. 73, No. 9, September 2002 High-order maps with acceleration
tion of high-order maps of elements consisting of cylind
cally symmetric electrodes with realistic geometries. An a
lytic expression for the on-axis electric potential is genera
via a Poisson solver and the off-axis fields are then gener
to higher and higher accuracy by an order-by-order fix
point iteration of differential algebraic~DA! vectors. This
DA approach for generating off-axis fields is further d
cussed in the Appendices. The beam dynamics calculate
sample elements is compared against ray tracing to illust
the accuracy of the map methods at various orders.

Finally, we include a section describing a variety of a
plications of this work to ion-optical systems that inclu
electrostatic lenses or rf accelerating cavities. Although
examples considered have cylindrical symmetry, the form
ism employed for evaluating high-order maps with accele
tion can in principle be extended to more general thr
dimensional~3D! field configurations, provided the referenc
trajectory is straight or planar. Extension to nonplanar cu
linear coordinates such as those described in Ref. 2 is
possible after suitable modifications.

II. IMPLEMENTATION OF ACCELERATION
AND TIME-VARYING FIELDS

In matrix-oriented beam optics, the beam is regarded
an ensemble of particles with similar classical phase sp
coordinates.3–11 One particle is to be designated as the ref
ence particle, the dynamics of which is specified by ph
space coordinates@r ref(s),pref(s)#, where the independen
variables is chosen to be the arc length along its trajecto
Particle optical coordinatesZ(s)5@Z1(s),...,Zn(s)#, where
n is the dimensionality of phase space, describe variation
the other beam particles’ phase space coordinates relativ
those of the reference particle. It follows thatZ(s) is always
the null vector for the reference particle. Along with ma
other matrix-oriented codes, COSY Infinity uses particle o
tical coordinates (x,a,y,b,l ,dK) which are specified as de
viations from reference particle phase space variables in
following manner:x andy are coordinates along an orthono
mal frame moving with a reference particle.a and b are
components of the momentum along thex andy directions,
respectively, normalized by the reference particle mom
tum. l is a distance proportional to the difference in time
flight from the reference particle times the reference part
velocity, anddK is the fractional deviation in kinetic energ
K from the reference particle, i.e.,dK5(K2K0)/K0 . The
evolution of the particle optical coordinates is described b
set of ordinary differential equations:

d

ds
Z5 f ~Z,p,s!,

wherep is a set of parameters describing the system. Un
mild restrictions onf, this equation has a unique solutio
which defines the transfer mapM, describing the evolution
of the coordinatesZ from positions0 to s.1 In most casesM
is only weakly nonlinear and can be represented in term
its Taylor expansion:

Zi~s!5Mi j
1 Zj~s0!1Mi jk

2 Zj~s0!Zk~s0!1¯,
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where the superscript onMi j ,... denotes the order of the
expansion and repeated indices are summed. Once the t
fer map is computed for a system of optical elements,
final beam coordinates can be obtained from the ini
through simple polynomial evaluation.

Previous versions of COSY Infinity can evaluate ar
trary order maps only for ion-optical elements that produ
no net change in particle energies. Maps of electrostatic
ments such as quadrupoles and Einzel lenses were evalu
by permitting the energies to changelocally within the ele-
ments, but it was implicit that there was no net change in
coordinatedK , which was taken to be a constant of the m
tion in the system maps. This restriction is eliminated in t
present version so that beam energy changes by dc an
electric fields are permitted. In terms of the normalized m
mentum

p

p0
5S a,b,

ps

p0
D ,

using the Lorentz force law with arclength as the indep
dent variable, we arrive at an explicit form for the depe
dence ofdK on s:

dK8 52K relFaa81bb81
ps

p0

Ezv0t8

xe0
G , ~1!

where

v0t85
g

g0

p0

ps

m

m0
,

andK rel is a relativistic correction factor given by

K rel5
p0c

2K0

1

Aa21b21~pz /p0!21~mc/p0!2
. ~2!

Equations~1! and~2! have been simplified to the case
a straight reference particle trajectory and negligible m
netic field, as is typical for the class of relatively low fre
quency rf and electrostatic elements we consider in the
lowing sections. In these expressionsp is particle
momentum,Ez is the electric field,m is the rest mass,K0 is
the reference particle kinetic energy, and the local elec
rigidity of the reference particle is given by

xe05
p0v0

ze
,

wherev0 is the magnitude of the reference particle veloc
and ze is the charge. The subscript zero refers to the re
ence particle.

Although for electrostatic accelerating elements the lo
value of the kinetic energy can be determined from the
tential V directly as

K~x,y,s!5K02zeV~x,y,s!, ~3!

this formula is not valid for systems with time-varying ele
tric fields. We note that in these systems it is necessar
instead determine the kinetic energy by integrating throu
the local electric fields.
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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III. MODEL FOR FIELDS OF RF AND ELECTROSTATIC
STRUCTURES

A. Fields and potentials

To evaluate the elements of high-order maps for cy
drically symmetric electrostatic elements, COSY requires
analytic expression for the electrostatic potential on the a
of the element. This electrostatic potential is Taylor e
panded using DA methods to obtain the off-axis terms
arbitrary order. The on- and off-axis electric field comp
nents are determined through the derivatives of the on-
potential using DA. It is also possible to start from an e
pression for the electric field on axis, and use DA to Tay
expand it and obtain off-axis terms. Details of such a fi
expansion are provided in Appendix A, and the implemen
tion of such expansions in DA is further discussed in App
dix B. Inaccuracies in the functional form for the field o
potential on-axis can lead to unphysical terms in the Tay
expansion due to the high-order derivatives required. T
approach described in Sec. III A is robust against this pr
lem and is well suited to generating accurate high-or
maps.

After determining the electrostatic field expansions,
consider simple harmonic time dependence of the form

E~x,y,s,t !5E~x,y,s!cos~vt1f!, ~4!

where induced magnetic fields from Maxwell’s equation

“ÃB5
1

c2

]E

]t
~5!

are neglected in the examples that follow. These fields
negligible for frequencies in the hundreds of megahertz
gap lengths on the order of centimeters, as is typical
heavy-ion linear accelerators.~The magnetic fields can pro
duce significant steering effects in some types of accelera
cavities that do not have cylindrical symmetry. See Ref.
for example. However, these perturbations are not prese
cylindrically symmetric cavities.!

B. Accurate cavities and electrostatic lenses

In the past it has been common to use an approxim
analytical fit to the numerical expression for the potential
axis of an Einzel lens.11 However, this expression is not ap
propriate for higher order maps since small errors in t
approximation are greatly amplified in the Taylor expans
involving its derivatives. To reduce the resulting errors
off-axis fields, the map-optics code can take as input an a
lytic expression for an axial potential due to rings of char
at the surfaces of the cylindrical electrodes located off-a
The charge densities on the rings are determined throu
Poisson solver by using the equivalent potential bound
condition. The fields of a typical element are represen
quite well by subdividing the electrodes into 100 or mo
charge rings. The resulting axial potential is robust aga
small errors in these determined charge densities, and co
quently a more exact expression for the axial potentia
obtained. Thus the growth of error with increased differe
tiation is greatly reduced. To facilitate the use of this meth
in COSY, a Poisson solver based on the method of mom
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has been incorporated. Given a particular cavity geome
the resulting potential on axis can be determined all wit
the modified program.

The Poisson solver relies on the routine ‘‘CYLEST
written previously by one of us~K.W.S.!. Given a set of
cylindrically symmetric electrodes taken as equipotentia
the solver determines the charge densities on the surface
these electrodes. The electrodes are approximated by a
quence of ring segments (r i ,zi ,d i) whered i is the width of
the ith segment. The electrostatic potentialf is given by

f~r !5
1

4pe0
(

i
E s i

ur2r 8u
dAi8 , ~6!

where the sum is performed over each ring segment w
charge densitys i and areadAi . Given f on the boundary,
Eq. ~6! is an integral equation in the unknowns. Employing
cylindrical coordinates (r ,u), we can write

f~r !5
1

4pe0
(

i
Qi

1

2p

3E
0

2p du

@r 21r i
222rr i cosu1~z2zi !

2#1/2, ~7!

where the charge on theith segment isQi52pr id is i . Mak-
ing a change of variables, we find

f~r !5
Qi

p~Bi1Ci !
1/2E

0

p dc

12~2Ci /Bi1Ci !cosc2 ~8!

with Bi5r 21r i
21(z2zi)

2 and Ci52rr i and c5u/2. The
integral is simply twice the complete elliptic integral of th
first kind K(k) with k5(2Ci /Bi1Ci)

1/2.13 By evaluating
the potentialf~r ! on the surface of thejth electrode atr
5(r j ,zj ) we can write the above equation as a matrix:

f j5
1

4pe0
(

i
Pi j Qi . ~9!

Care must be taken for the diagonal termi 5 j , which is
handled by splitting the ring into two regions: The first co
tains the contribution

f i i
~1!5

1

4pe0
QiE

d i /2r i

2p2~d i !/2r i du

~2r i
222r i

2 cosu!1/2 ~10!

and the second contribution is evaluated by replacing
remaining unintegrated square by a circle of equival
charge, so

f i i
~2!5

1

4pe0
E

0

d i /Ap 2pr dr

r
s i . ~11!

The sum results in the diagonal component ofP:

Pii 5FAp1 lnS 16pr i
2

Ai
D G Y ~pr i !. ~12!

The matrixP can be inverted to obtain the resulting char
on each ring:

Qi54pe0(
j

Pi j
21f j . ~13!
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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A typical two-gap cylindrical lens or cavity is illustrate
in Fig. 1 and later utilized for beam-optics calculations. R
alistic dimensions including electrode corner radii can
specified as indicated. Reference 14 contains a complete
ing of this procedure. Other types of cylindrically symmet
cavities such as one-gap, three-gap, or four-gap struct
have also been included by extending the Poisson solve
such parametrizations. For brevity, these will not be furt
elaborated in this article.

IV. BEAM DYNAMICS COMPARISON WITH RAY
TRACING

In order to verify the changes to the map-optics form
ism that permit calculation of rf structures, a comparis
with ray tracing was carried out. To facilitate the comparis
a two-gap cylindrical resonator is modeled according to
nominal parameters listed in Table I. The potential on-axi
taken as the analytic expression for the superposition of h
dreds of charged rings, with corresponding charge den
determined by the Poisson solver. The same electrode ge
etry was used in the ray-tracing codeSIMION 6.0,15 which
solves Laplace’s equation via relaxation techniques on a
to determine the on- and off-axis electrostatic potentials
fields. Charged particle trajectories are then numerically
tegrated using the local electric fields. Although the charg
rings used by COSY and the geometry used inSIMION extend

FIG. 1. Accurate two-gap cavity geometrical parameters for user inp

TABLE I. Nominal parameters for two-gap cavity comparison with r
tracing.

Quantity Symbol Nominal value

Beam energy K0 0.33 MeV
Mass M0 10 amu
Charge Z0 11
Velocity/c b 0.008 419
Inner tube radius ri 0.01 m
Outer tube radius ro 0.02 m
Resonator radius r res 0.03 m
Radii of curvature re 0.002 m
Center tube length rldt1 0.067 m
Resonator length rl res 0.1 m
Peak tube voltage np 0.1112 MV
Radio frequency n 15.114 MHz
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for one inner radius beyond the resonator wall,SIMION pre-
scribes an equipotential boundary condition at this locat
in z. Thus, to avoid boundary effects, the comparison is c
ried out only within the resonator itself, from the start of th
first gap until the end of the second gap. The axial poten
and electric fields calculated by COSY andSIMION agree
nearly exactly, as expected, and the transverse electric
slightly off-axis agrees very well as shown in Fig. 2. Th
very slight differences may be due in part to finite grid si
effects, either in numerical differentiation of the potential
specification of the boundary conditions, as well as the
erance chosen for convergence of the relaxation meth
taken to be one part in 10 000. At half of the inner tu
radius, the transverse electric field off axis up to fifth orde
shown in Fig. 3. The peak field is nearly 20% off at fir
order, but the COSY result converges toward theSIMION

value as the order of the expansion is increased, as expe
After establishing agreement for the electrostatic fie

inside the resonator, a comparison of the dynamics in

FIG. 2. Comparison of radial electric field at 1/50 radius off axis betwe
SIMION and COSY to first order.

FIG. 3. Comparison of radial electric field at 1/2 radius off axis betwe
SIMION and COSY.
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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electrostatic case was performed. Again using beam par
eters as in Table I, the effect of initial displacementx on final
beam coordinatesx, a, andl was calculated to third order in
COSY and compared withSIMION. For small initial trans-
verse perturbations, within'1/10 radius results are shown
Table II. Agreement is better than 1% betweenSIMION and
first-order matrix elements in COSY. The slight effect of t
second-order matrix element (l /xx) also agrees within 2%
The slight discrepancy may be attributed to the fact that m
trix elements are obtained fromSIMION through numerical
differentiation of final ray coordinates, while COSY obtai
them directly via DA integration of the transfer map.1 Also,
small differences in the electric fields as shown in Fig. 2 m
contribute.

For larger initial displacement~half-radius!, inclusion of
the third-order term (xuxxx) reduces the deviation in th
magnification from 1.17% at first order to 0.21%. The thir
order aberration term (auxxx) characterizes a change in th
effective focal length of the lens. Inclusion of this term r
stores agreement for the exit angle of incident parallel ray
half-radius from roughly 2% to better than 1%. This is due
the increased agreement in transverse electric field at t
order as shown in Fig. 3, as well as to the general impro
ment in geometric optics at higher order.

In order to accurately calculate optics for beams wh
fill half or more of the aperture, third-order terms becom
essential. For example, at 70% of the full aperture, the ef
of the aberration term (auxxx) becomes a 5.1% correction t
the exit angle, and including it restores agreement with
tracing to within 1%. The fifth-order correction (auxxxxx) at
this large initial displacement also becomes sizable at 0.6
The matrix elements for these aberrations and their contr
tions relative to the first-order term are listed in Table III.

Given this agreement for the electrostatic case, a c
parison of dynamics was done for the full time-varying ca
This example is typical of a two-gap, low-beta supercondu
ing resonator. Chosen for comparison were the reference
ticle energy gain versus cavity phase, and the dependen
the bunch length coordinatel on initial energy offsetdK . As
Fig. 4 indicates, results are in good agreement for both qu
tities.

V. APPLICATIONS

A. Accurate electrostatic lenses and accelerating
gaps in map optics

The need for accurate calculation of electrostatic len
has been long since recognized,16–18 and there is a rich his
tory of low-order treatment of them.11,19–22The conventional
calculation of formulas for higher order aberrations is e
ceedingly difficult and thus has not been developed.19 For

TABLE II. Comparison of longitudinal and transverse perturbations
electrostatic case with initial offset less than one-tenth cavity radius.

Matrix element COSY SIMION Deviation ~percent!

(xux) 0.6907 0.6934 0.39
(aux) (rad/m) 25.316 25.271 0.85
( l uxx) (m21) 212.3 212.5 1.6
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example, first-order matrix-optics has been provided
single gap lenses under asymptotic approximations, but
to the lack of accurate estimates of nonlinear aberrations
a restricted class of geometries, these results are of lim
applicability. More accurate calculations of geometric ab
rations in electrostatic lenses using a charged-ring appro
similar to the one we employ have been previously p
formed for certain geometries.17,18 Despite this, electrostatic
lenses have formerly been implemented inmatrix codes only
as rough approximations, and again only to low order and
specialized geometries. Our formulation permits for the fi
time the implementation of accurate electrostatic lenses
particular the two-gap ‘‘Einzel’’ lens, in an arbitrary-orde
general-purpose map-oriented beam-optics code. The ge
etry of the lens can be chosen with great flexibility includi
parameters such as the radii of curvature, and the assoc
axial potential can be determined accurately as an ana
expression. This expression can be differentiated preci
using DA methods to provide accurate off-axis~lensing!
fields and their associated aberrations, within the map-op
formalism. Further, one can readily fit lens geometry a
voltage to obtain desired optics.

B. The Rare Isotope Accelerator Facility

Designs of several subsystems for the Rare Isotope
celerator Facility~RIA!23 are currently underway at Argonne
Two ion-optical systems for RIA are being designed us
the new higher order elements made possible by the pre
work. One of these is a large-acceptance, high-resolution
bar separator that includes an imaging and decelerating e
trostatic section to permit energy-spread compensation.24 To
achieve the desired mass resolving power of 20 000 this
tem must be calculated to fifth order. The second of th

FIG. 4. Comparison of fractional energy gain and matrix element (l udK)
betweenSIMION and COSY.

r TABLE III. Contributions of angular aberrations at 70% aperture relative
first order.

Matrix element Value Contribution at 0.70 aperture

(aux) (rad/m) 25.316 1.000
(aux3) (rad/m3) 25.533E3 0.051
(aux5) (rad/m5) 21.328E7 0.006
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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systems is the beam transport between driver linac sect
following stripping of heavy ions to higher charge state
This section must be achromatic and isochronous~equal path
lengths for all charge states!, as well as, provide the rf re
bunching for matching into the down stream linac section25

Fitting the six-dimensional beam ellipses for all these c
straints is enabled by the newly implemented higher or
map elements for superconducting rf cavities.

C. Optimizing rf structures and lattices

As an alternative to ray tracing through a large amo
of phase space by trial and error, the fitting algorithms
COSY can be implemented to obtain desired bunching
energy gain conditions in order to optimize a lattice of re
nators. As a simple example of how the code can be utiliz
we consider the optimization of a system consisting of th
magnetic solenoids separated by independently phase
cavities. Table I describes the initial beam used for the
case. The solenoids can be calculated using an existing a
rithm provided in the code. A beam passing through a
cavity experiencing acceleration and longitudinal bunch
can in general simultaneously experience a transverse d
cusing. By placing magnetic solenoids and rf cavities in
lattice structure, additional transverse focusing can
achieved to counteract this effect. Using COSY, it is poss
to fit the magnetic field strength in each solenoid indep
dently in order to minimize the transverse beam envelop
the center of the rf cavity that follows it.

The transfer map for the first solenoid is computed
first order, and the magnetic field strength is fit to the va
providing a first-order image at the center position where
following resonator will be placed. The map can then
computed to second or higher order in a single iteration.

As an alternative method, a distribution of randomly s
lected rays from a given initial beam emittance profile can
calculated to second or higher order as it travels through
solenoid, and iterations can be performed in order to m
mize the transverse beam envelope as a function of mag
field. This method is slightly more time consuming as it i
volves performing iterations each involving the determin
tion of higher order transfer maps. For cases tes
previously,26 both methods have produced comparable o
mal magnetic field strengths.

Once the optimized transfer map for the first solenoid
calculated, it can be stored and reapplied to the initial be
vector in order to fit the composition transfer map for t
following resonator and the solenoid without having to rec
culate the transfer map for the solenoid during each iterat
The phase corresponding to maximal energy gain was de
mined and this phase was then offset by a nominal amoun
provide bunching. The resonator map was subsequently
culated to second order. This composed map was then st
and used in a fitting loop to optimize the map of the comp
sition of the first solenoid, the resonator, and the second
lenoid, without having to recompute the map for the fi
two. This procedure was carried forth in similar fashion f
the second resonator and the third solenoid and the ti
involved were comparable. Since the fitting for the magne
Downloaded 22 Mar 2003 to 171.64.106.45. Redistribution subject to A
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solenoids can be done at first or second order and the fit
for the rf cavities can be done to first order, the time sc
involved is fairly reasonable. These lower order solutio
can be fine-tuned to third and higher order if desired.

VI. DISCUSSION

We have developed a formulation of an arbitrary-ord
map-oriented beam optics code which implements a clas
rf and electrostatic structures intended for particle accele
tion, bunching, and focusing. The implementation of rf stru
tures in a map-optics formalism provides advantages for
peated occurrence of particle optical elements and for fitt
on system parameters. Inclusion of higher order maps all
straight-forward optimization with respect to nonlinearitie
Field models for high accuracy evaluation of the Taylor ma
of cylindrically symmetric electrostatic lenses~zero rf fre-
quency! and time-varying cavities have been provided. T
map formulation was compared with ray-tracing calculatio
to illustrate the importance of higher order terms. Examp
of ion-optical systems currently under design using the e
ments enabled by the present work were given.
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APPENDIX A: FIELD EXPANSIONS

We adopt cylindrical coordinates (r ,f,z) and begin with
an expression for the axial electric fielda0(z). In charge free
regions, we have

1

r

]

]r
~rEr !1

]Ez

]z
50, ~A1!

]Er

]z
2

]Ez

]r
50. ~A2!

Assuming a solution of the form

Ez5Sna2nr 2n, ~A3!

Er5Snb2nr 2n11 ~A4!

leads to a recurrence relation

a2n125
21

~2n12!2 a2n9 , ~A5!

b2n5
21

~2n12!
a2n8 , ~A6!

where a and b are functions ofz only and primes denote
differentiation with respect toz. As we expect by symmetry
the axial component of the electric field depends only
even powers ofr and the radial component depends only
odd powers ofr. This expansion method can also be appli
beginning with a potentialV on axis, since

a0~z!52V8. ~A7!
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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APPENDIX B: IMPLEMENTATION IN DA

In this Appendix, we discuss the implementation of fie
expansions such as those described in Appendix A within
DA formalism. These field expansions and recursion re
tions can be explicitly executed to determine the off-a
fields. However, for practical arbitrary order calculations u
ing DA as in current map codes, the treatment of the ac
solution of the ODE for the potentials and fields is reform
lated to avoid the need for coding of high-order derivativ
of a2n with respect tos and the need to execute the recursi
relations explicitly. Thus the method has the advantage th
works to any order outright.

Even though Appendix A describes an expansion in tw
dimensional geometry, as is adequate for the cylindrica
symmetric elements we consider, the DA method is ap
cable for general 3D motion with or without midplane sym
metry as long as the fields are known. In the general set
of the LaplacianDC in 3D curvilinear coordinates (x,y,s)
~see Ref. 2! we have

DCf 5
1

a S ]

]s
1t1y

]

]x
2t1x

]

]yD F 1

a S ] f

]s
1t1y

] f

]x

2t1x
] f

]yD G1
1

a

]

]x S a
] f

]xD1
1

a

]

]y S a
] f

]yD ,

wheret1 is the rate of rotation aroundes , t2 andt3 are the
curvatures iney2es and ex2es planes, respectively, anda
512t3x1t2y. Performing some partial integrations, th
expression can be rewritten as a fixed point problem

f 5 f y501]y
21F 1

a S a
] f

]yD
y50

G
2]y

21F 1

a
]y

21H ]

]x S a
] f

]xD J G2]y
21F 1

a
]y

21H S ]

]s

1t1y
]

]x
2t1x

]

]yD H 1

a S ] f

]s
1t1y

] f

]x
2t1x

] f

]yD J J G .
This representation of Laplace’s equation has the follo

ing important property. Iff as well as its first partial]yf are
known to ordern in x ands, and furthermoref is known to
order n,n in y, then applying the right-hand side of th
fixed point equation tof yields the dependence ony to order
n11. This is due to the fact that the right-hand side conta
two integrations with respect toy, both of which raise the
ordern to which f is known iny, but only one differentiation
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with respect toy. The also occurring differentiations with
respect tox and s have no influence onn and are possible
because we assume to knowf to ordern in x and s. So in
practical DA computations, one begins with a DA vector th
contains only the midplane derivatives of the potentia
which can be obtained by evaluating the respective formu
in Sec. III with DA. Then, iterating the expression thus a
tomatically fills up the order to which the dependence
known in they direction in an order-by-order manner.
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