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Abstract A method for the nonlinear propagation of uncertainties in Celestial Mechanics
based on differential algebra is presented. The arbitrary order Taylor expansion of the flow of
ordinary differential equations with respect to the initial condition delivered by differential
algebra is exploited to implement an accurate and computationally efficient Monte Carlo
algorithm, in which thousands of pointwise integrations are substituted by polynomial eval-
uations. The algorithm is applied to study the close encounter of asteroid Apophis with our
planet in 2029. To this aim, we first compute the high order Taylor expansion of Apophis’
close encounter distance from the Earth by means of map inversion and composition; then
we run the proposed Monte Carlo algorithm to perform the statistical analysis.

Keywords Uncertainties propagation · Monte Carlo simulation ·
Apophis close encounter · Differential algebra

1 Introduction

The propagation of uncertainties in orbital mechanics is usually addressed by linear prop-
agation models (Battin 1968; Crassidis and Junkins 2004; Montenbruck and Gill 2001) or
full nonlinear Monte Carlo simulations (Maybeck 1982). The main advantage of the linear
methods is the simplification of the problem, but their accuracy drops off for highly nonlinear
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452 R. Armellin et al.

systems and/or long time propagations. On the other hand, Monte Carlo simulations provide
true trajectory statistics, but are computationally intensive. The tools currently used for the
robust detection and prediction of planetary encounters and potential impacts of Near Earth
Objects (NEO) are based on these techinques (Chesley and Milani 2000; Chodas and Yeomans
1999; Milani et al. 2000), and thus suffer the same limitations. The effect of the coordinate
system on the propagated statistics is analyzed by Junkins et al. (1996) and Junkins and
Singla (2004) and used to develop an alternative approach to orbit uncertainty propagation.
However, this method is based on a linear assumption and thus cannot map nonlinearities.
An alternate way to analyze trajectory statistics by incorporating higher-order Taylor series
terms that describe localized nonlinear motion is proposed by Park and Scheeres (2006).
Their approach is based on proving the integral invariance of the probability density function
via solutions of the Fokker–Planck equations for diffusionless systems, and by combining
this result with the nonlinear state propagation to derive an analytic representation of the
nonlinear uncertainty propagation. As a result, the method enables the nonlinear mapping
of Gaussian statistics, bypassing the drawbacks of Monte Carlo simulations. However, it is
limited to systems derived from a single potential.

Differential algebraic (DA) techniques are proposed as a valuable tool to develop an alter-
native approach to tackle the previous tasks. Differential algebra supplies the tools to compute
the derivatives of functions within a computer environment (Berz 1999a,b; Berz and Makino
2006). More specifically, by substituting the classical implementation of real algebra with
the implementation of a new algebra of Taylor polynomials, any function f of n variables
is expanded into its Taylor polynomial up to an arbitrary order k. This has an important
consequence when the numerical integration of an ordinary differential equation (ODE) is
performed by means of an arbitrary integration scheme. Any explicit integration scheme is
based on algebraic operations, involving the evaluation of the ODE right hand side at several
integration points. Therefore, starting from the DA representation of the initial condition and
carrying out all the evaluations in the DA framework, the flow of an ODE is obtained at each
step as its Taylor expansion in the initial condition (Di Lizia et al. 2008). The availability
of such high order expansions is exploited when problems with uncertain initial conditions
have to be analyzed. As the accuracy of the Taylor expansion can be kept arbitrarily high
by adjusting the expansion order, the approach of classical Monte Carlo simulations can be
enhanced by replacing thousands of integrations with evaluations of the Taylor expansion of
the flow. As a result, the computational time reduces considerably without any significant
loss in accuracy.

The algorithm is applied to the prediction of Apophis planetary encounter and potential
impact, taking into account its measurement uncertainties. The availability of high order maps
in space and time, and intrinsic tools for their inversion, are exploited to reduce the compu-
tation of the close encounter distance (CED) from the Earth of all the asteroids belonging to
the initial uncertainty cloud (commonly referred to as virtual asteroids; Milani et al. 2002)
to the simple evaluation of polynomials. Similar techniques exploiting high order Taylor
expansions of the flow of ODE and their inverses obtained with DA techniques have already
been efficiently utilized in beam physics. Two noticeable applications are the reconstruction
of trajectories in particle spectrographs together with the reconstructive correction of residual
aberrations (Berz et al. 1993), and the end-to-end simulations of fragment separators (Erdelyi
et al. 2007). This paper presents an application to Celestial Mechanics.

The paper is organized as follows. Sections 2 and 3 contain a brief introduction to dif-
ferential algebra and some hints on how high order expansion of the flow can be obtained.
These techniques are then applied to obtain the flow expansion of Apophis’ dynamics. The
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DA-based Monte Carlo algorithm is then introduced and utilized to perform the statistical
analysis of Apophis CED in 2029. Some final remarks conclude the paper.

2 Notes on differential algebra

DA techniques, exploited here to obtain k-th order Taylor expansions of the flow of a set of
ODE with respect to the initial condition, find their origin in the attempt to solve analytical
problems by an algebraic approach (Berz 1999b). Historically, the treatment of functions in
numerics has been based on the treatment of numbers, and the classical numerical algorithms
are based on the mere evaluation of functions at specific points. DA techniques rely on the
observation that it is possible to extract more information on a function rather than its mere
values. The basic idea is to bring the treatment of functions and the operations on them to
the computer environment in a similar way as the treatment of real numbers. Referring to
Fig. 1, consider two real numbers a and b. Their transformation into the floating point repre-
sentation, a and b, respectively, is performed to operate on them in a computer environment.
Then, given any operation ∗ in the set of real numbers, an adjoint operation ! is defined in
the set of floating point (FP) numbers so that the diagram in Fig. 1 commutes. (The diagram
commutes approximately in practice due to truncation errors.) Consequently, transforming
the real numbers a and b into their FP representation and operating on them in the set of
FP numbers returns the same result as carrying out the operation in the set of real numbers
and then transforming the achieved result in its FP representation. In a similar way, let us
suppose two k differentiable functions f and g in n variables are given. In the framework of
differential algebra, the computer operates on them using their k-th order Taylor expansions,
F and G, respectively. Therefore, the transformation of real numbers in their FP representa-
tion is now substituted by the extraction of the k-th order Taylor expansions of f and g. For
each operation in the space of k differentiable functions, an adjoint operation in the space of
Taylor polynomials is defined so that the corresponding diagram commutes; i.e., extracting
the Taylor expansions of f and g and operating on them in the space of Taylor polynomials
(labeled as k Dn ) returns the same result as operating on f and g in the original space and
then extracting the Taylor expansion of the resulting function.

The straightforward implementation of differential algebra in a computer allows to com-
pute the Taylor coefficients of a function up to a specified order k, along with the function
evaluation, with a fixed amount of effort. The Taylor coefficients of order k for sums and
product of functions, as well as scalar products with reals, can be computed from those of
summands and factors; therefore, the set of equivalence classes of functions can be endowed
with well-defined operations, leading to the so-called truncated power series algebra (Berz
1986, 1987). Similarly to the algorithms for floating point arithmetic, the algorithms for func-
tions followed, including methods to perform composition of functions, to invert them, to

Fig. 1 Analogy between the floating point representation of real numbers in a computer environment (left
figure) and the introduction of the algebra of Taylor polynomials in the differential algebraic framework (right
figure)
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solve nonlinear systems explicitly, and to treat common elementary functions (Berz 1999a,b).
In addition to these algebraic operations, the DA framework is endowed with differentiation
and integration operators, therefore finalizing the definition of the DA structure. The differ-
ential algebra sketched in this section was implemented in the software COSY-Infinity (Berz
and Makino 2006).

2.1 The minimal differential algebra

The key feature of differential algebra is that it enables the automatic computation of deriv-
atives in a computer environment. In this section the simplest nontrivial differential algebra
is introduced to present an outline on the basic concepts that its implementation relies on.
For a detailed description refer to Berz (1999b), where the extension to arbitrary order and
multivariate functions is discussed.

Consider two ordered pairs (q0, q1), (r0, r1), and a scalar t , with q0, q1, r0, r1, and t real
numbers. Define the addition “+” and the multiplication “·” by a scalar and between two
pairs as:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)

t · (q0, q1) = (tq0, tq1) (1)

(q0, q1) · (r0, r1) = (q0r0, q0r1 + q1r0).

The ordered pairs with the introduced arithmetic are referred to as 1 D1. The multiplica-
tion of vectors is seen to have (1, 0) as the unity element. The multiplication is commu-
tative, associative, and distributive with respect to addition. Together, the three operations
defined in (1) form an algebra. Furthermore, they do form an extension of real numbers, as
(r, 0) + (s, 0) = (r + s, 0) and (r, 0) · (s, 0) = (rs, 0), so that the reals can be included.
However 1 D1 is not a field, as (q0, q1) has a multiplicative inverse in 1 D1 if and only if
q0 "= 0. If q0 "= 0 then

(q0, q1)
−1 =

(
1
q0

,− q1

q2
0

)

. (2)

The algebra in 1 D1 becomes a differential algebra by introducing a map ∂ from 1 D1 to
itself, and proving that the map is a derivation. Define ∂ : 1 D1 → 1 D1 by

∂(q0, q1) = (0, q1). (3)

Note that

∂{(q0, q1) + (r0, r1)} = ∂(q0 + r0, q1 + r1) = (0, q1 + r1)

= (0, q1) + (0, r1) = ∂(q0, q1) + ∂(r0, r1) (4)

and

∂{(q0, q1) · (r0, r1)} = ∂(q0r0, q0r1 + q1r0) = (0, q0r1 + q1r0)

= (0, q1) · (r0, r1) + (0, r1) · (q0, q1)

= ∂{(q0, q1)} · (r0, r1) + (q0, q1) · ∂{(r0, r1)} (5)

This holds for all (q0, q1), (r0, r1) ∈ 1 D1. The ∂ operator is linear over addition and obeys
the Leibniz rule over the algebra multiplication, thus it is a derivation and (1 D1, ∂) is a
differential algebra.
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The most important aspect of 1 D1 is that it allows the automatic computation of deriva-
tives. Let us assume to have two functions f and g and to put their values and their derivatives
at the origin in the form ( f (0), f ′(0)) and (g(0), g′(0)); i.e., as two vectors in 1 D1. If the
derivative of the product f g is of interest, it has just to be looked at the second component
of the product ( f (0), f ′(0)) · (g(0), g′(0)); whereas the first component gives the value of
the product of the functions. Therefore, if two vectors contain the values and the deriva-
tives of two functions, their product contains the values and the derivatives of the product
function.

Defining the operation [ ] from the space of differential functions to 1 D1 via

[ f ] = ( f (0), f ′(0)), (6)

it holds

[ f + g] = [ f ] + [g]
[ f g] = [ f ] · [g] (7)

and

[1/g] = [1]/[g] = 1/[g] (8)

by using (2). This observation can be used to compute derivatives of many kinds of functions
algebraically by means of the arithmetic rules on 1 D1, starting from applying the operator
[ ] to the identity function

[x] = (x, 1). (9)

Note that this is equivalent to extract the coefficients of the first order Taylor expansion of
the identity function; i.e., [x] = (x, 1) = x + δx .

Consider the example

f (x) = 1

x + 1
x

(10)

and its derivative

f ′(x) = (1/x2) − 1
(x + (1/x))2 . (11)

The function value and its derivative at the point x = 3 are

f (3) = 3
10

, f ′(3) = − 2
25

. (12)

If the function (10) is evaluated in 1 D1 by substituting x with its DA at 3; i.e., (3, 1) = 3+δx ,
it results

f ((3, 1)) = 1
(3, 1) + 1/(3, 1)

= 1
(3, 1) + (1/3,−1/9)

= 1
(10/3, 8/9)

=
(

3
10

,−8
9

/100
9

)
=

(
3

10
,− 2

25

)
. (13)

123



456 R. Armellin et al.

As it can be seen after the evaluation of the function, the first element of the result is the value
of the function at x = 3, whereas the second is the value of the derivative of the function at
x = 3. This result is simply justified by applying the relations (7) and (8)

[ f (x)] =
[

1
x + 1/x

]
= 1

[x + 1/x]

= 1
[x] + [1/x] = 1

[x] + 1/[x]
= f ([x]). (14)

The method can be generalized to allow the treatment of common intrinsic functions like sin
and exp. This differential algebra can be straightforwardly implemented on the computer by
exploiting operation overloading.

3 High order expansion of the flow

The extension of the differential algebra introduced in Sect. 2.1 to k Dn allows the derivatives
of any function f of n variables to be computed up to an arbitrary order k, along with the
function evaluation. This has an important consequence when the numerical integration of
an ODE is performed by means of an arbitrary integration scheme. Any explicit integration
scheme is based on algebraic operations, involving the evaluation of the ODE right hand side
at several integration points. Therefore, carrying out all the evaluations in the DA framework
allows differential algebra to compute the arbitrary order expansion of the flow of a general
ODE with respect to the initial condition.

Without loss of generality, consider the scalar initial value problem
{

ẋ = f (x, t)
x(t0) = x0

(15)

and the associated phase flow ϕ(t; x0). We now want to show that, starting from the DA rep-
resentation of the initial condition x0, differential algebra allows us to propagate the Taylor
expansion of the flow in x0 forward in time, up to the final time t f .

Replace the point initial condition x0 with the DA representative of its identity function
up to order k, which is a (k + 1)-tuple of Taylor coefficients. (Note that x0 is the flow eval-
uated at the initial time; i.e, x0 = ϕ(t0; x0).) As for the identity function only the first two
coefficients, corresponding to the constant part and the first derivative respectively, are non
zeros, we can write [x0] as x0 + δx0, in which x0 is the reference point for the expansion.
If all the operations of the numerical integration scheme are carried out in the framework of
differential algebra, the phase flow ϕ(t; x0) is approximated, at each fixed time step ti , as a
Taylor expansion in x0.

As an example, consider the forward Euler’s scheme

xi = xi−1 + f (xi−1)$t (16)

and substitute the initial value with the DA identity [x0] = x0 + δx0. At the first time step
we have

[x1] = [x0] + f ([x0]) · $t. (17)
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If the function f is evaluated in the DA framework, the output of the first step, [x1], is the
k-th order Taylor expansions of the flow ϕ(t; x0) in x0 for t = t1. Note that, as a result of
the DA evaluation of f ([x0]), the (k + 1)-tuple [x1] may include several non zeros coef-
ficients corresponding to high order terms in δx0. The previous procedure can be inferred
through the subsequent steps. The result of the final step is the k-th order Taylor expansion
of ϕ(t; x0) in x0 at the final time t f . Thus, the flow of a dynamical system can be approx-
imated, at each time step ti , as a k-th order Taylor expansion in x0 in a fixed amount of
effort.

Integration schemes based on DA pave the way to the nonlinear mapping of uncer-
tainties investigated in this paper. A first example is presented hereafter about the prop-
agation of errors on initial conditions. The Taylor polynomials resulting from the use of
DA-based numerical integrators expand the solution of the initial value problem (15) with
respect to the initial condition. Thus, the dependence of the solution x(t) with respect to
the initial condition is available, at a time ti , in terms of a k-th order polynomial map
Mx0(δx0), where δx0 represents the displacement from the reference initial condition.
The evaluation of the map Mx0(δx0) for a selected value of δx0 supplies the k-th order
Taylor approximation of the solution x(t) at ti corresponding to the displaced initial con-
dition. The accuracy of the result depends on the expansion order k and the value of the
displacement δx0. The main advantage of the DA-based approach is that the new solu-
tion is obtained by evaluating a polynomial map, thus avoiding any additional numerical
integration. Consequently, if many values of δx0 are to be processed, multiple polynomial
evaluations can be efficiently performed in place of multiple intensive numerical integra-
tions. Based on this observation, we introduce a DA-based Monte Carlo algorithm, whose
performances are assessed using Apophis close encounter with the Earth in 2029 as test
case.

As a final remark, it is worth noting that methods to obtain high order expansions of
the flow of ODE have been already explored in detail by Griffith et al. (2004) and Park
and Scheeres (2006, 2007). These authors have shown the potentials of these techniques by
applying them to the development of high order methods for the solution of relevant space-
related problems such as low-thrust Earth-Mars transfers, spacecraft targeting in two-body
and Hill three-body dynamics, and trajectory estimation in the circular restricted three-body
problem. It has to be stressed that their approach firstly requires to derive the ODE for the
so-called state transition tensors and secondly to integrate them along with the reference solu-
tion, a technique more commonly known as solving the variational equations. On the other
hand, it is not required to write any additional set of ODE within the differential algebraic
approach, being the arbitrary high order expansion of the flow a straightforward result of the
implemented algebra.

4 DA integration of Apophis dynamics

4.1 Dynamical models

The study of the motion of a NEO in the Solar System with an accuracy sufficient to
predict collisions requires the inclusion of various relativistic corrections to the well-known
Newtonian forces based on the Kepler’s force law. Specifically, the full equation of motion
in the Solar System including the relevant relativistic effects is given by
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r̈ = G
∑

i

mi (r i − r)
r3

i




1 − 2(β + γ )

c2 G
∑

j

m j

r j
− 2β − 1

c2 G
∑

j "=i

m j

ri j
+ γ |ṙ|2

c2

+ (1 + γ )|ṙ i |2
c2 − 2(1 + γ )

c2 ṙ · ṙ i − 3
2c2

[
(r − r i ) · ṙ i

ri

]2

+ 1
2c2 (r i − r) · r̈ i

}

+ G
∑

i

mi

c2ri

{
3 + 4γ

2
r̈ i + {[r − r i ] · [(2 + 2γ )ṙ − (1 + 2γ )ṙ i ]}(ṙ − ṙ i )

r2
i

}

,

(18)

where r is the point of interest, G is the gravitational constant; mi and r i are the mass and the
Solar System barycentric position of body or planetary system i ; ri = |r i − r|; c is the speed
of light in vacuum; and β and γ are the parametrized post-Newtonian parameters measuring
the nonlinearity in superposition of gravity and space curvature produced by unit rest mass
(Seidelmann 1992).

In Eq. 18 it is assumed that the object we are integrating is affected by the gravitational
attraction of n bodies, but has no gravitational effect on them; i.e., we are adopting the
restricted (n + 1)-body problem approximation. The positions, velocities, and accelerations
of the n bodies are considered as given values, computed by cubic spline interpolations of
data retrieved from HORIZONS Web-Interface (http://ssd.jpl.nasa.gov/horizons.cgi). These
interpolations are necessary as in the DA framework all the computations must be performed
within COSY-Infinity and the use of external code is not permitted. The cubic splines are
built so as to keep the maximum error with respect to HORIZONS’ ephemerides of the order
of 10−9 AU and 10−10 AU/day for bodies’ position and velocity, respectively (see Bernelli-
Zazzera et al. (2009) for details). In our integrations n includes the Sun, planets, the Moon,
Ceres, Pallas, and Vesta. For planets with moons, with the exception of the Earth, the center
of mass of the system is considered. The dynamical model is written in the J2000.0 Ecliptic
reference frame and is commonly referred to as Standard Dynamical Model (Giorgini et al.
2008). To improve the integration accuracy the dynamics are scaled by Earth semi-major
axis and Sun gravitational parameter (i.e., aE = 1 and µS = Gms = 1). We must mention
that, to obtain a full understanding of the dynamics of a body in the Solar System, other
effects should be taken into account, such as: the forces due to other natural satellites and
asteroids, the J2 (and higher order harmonics of the potential) effect of the Earth and other
bodies, Yarkovsky and solar radiation pressure effects (Giorgini et al. 2008; Vokrouhlický et
al. 2001).

When the asteroid approaches the Earth, a different set of ODE are integrated to avoid
cancellation errors associated to repetitive subtraction of Apophis and Earth’s position vec-
tors occurring across the flyby pericenter. The equation of motion, written in the J2000.0
Earth-Centered Inertial reference frame, is

r̈ = G
∑

i

mi (r i − r)
r3

i

+ aJ2 − r̈ E , (19)

where aJ2 is the effect of Earth’s oblateness due to J2 harmonic
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aJ2,x = J2Gm E R2
E x

r5

(
1 − 5z2

r2

)

aJ2,y = J2Gm E R2
E y

r5

(
1 − 5z2

r2

)
(20)

aJ2,z = J2Gm E R2
E z

r5

(
3 − 5z2

r2

)
,

and r̈ E is the absolute acceleration of the Earth. The same gravitational bodies of the helio-
centric phase are considered, whereas relativistic corrections are neglected as their effect
during a fast close encounter is negligible. In this phase the dynamics are scaled by the radius
of the Earth and by the Earth gravitational parameter (i.e., RE = 1 and µE = Gm E = 1).

4.2 Flow expansion

The high order expansion of the flow of ODE can be straightforwardly obtained by evalu-
ating any explicit numerical integration scheme within the DA framework, as explained in
Sect. 3. The results presented here are obtained by applying a DA-based 8-th order Runge–
Kutta–Fehlberg (RKF78) scheme with absolute and relative tolerance of 10−12. The integra-
tion window is June 18, 2009 to April 16, 2029, being April 13, 2029, the date of the close
approach.

The nominal initial state and the associated σ of Apophis, expressed in equinoctial vari-
ables p = (a, P1, P2, Q1, Q2, l), are taken from the Near Earth Object Dynamic Site (new-
ton.dm.unipi.it/neodys) and summarized in Table 1. With reference to the notation of Eq.
15, Apophis’ initial condition is initialized as DA variables [ p0] = p0 + 3σ δ p0, where 3σ
is used as a scaling factor. These variables are converted into cartesian coordinates using
the relations given in Battin (1968), evaluated in the DA framework and then numerically
propagated. Note that the solution of the Kepler equation, required for the computation of
the eccentric longitude, is carried out by applying the DA-algorithm introduced in Bernelli-
Zazzera et al. (2009).

The nominal heliocentric trajectories of Apophis and the Earth are shown in Fig. 2 by the
solid and dotted lines, respectively. Figure 3 shows a zoom of Apophis’ close approach with
the Earth in the geocentric reference frame. It is worth mentioning that the maximum norm
of the difference between the computed trajectory and Apophis’ HORIZONS ephemerides
is less than 5 × 10−8 AU. The mismatch is due to all different initial conditions, dynamical
and ephemeris model, and integration scheme.

An analysis on the accuracy of the flow expansion is mandatory before introducing the
DA-based Monte Carlo algorithm. Figure 4 shows the maximum position and velocity error of

Table 1 Apophis’ equinoctial
variables at 3456 MJD2000 (June
18, 2009) and associated σ values

Nom value σ

a 0.922438242375914 2.29775 × 10−8 AU

P1 −0.093144699837425 3.26033 × 10−8 –

P2 0.166982492089134 7.05132 × 10−8 –

Q1 −0.012032857685451 5.39528 × 10−8 –

Q2 −0.026474053361345 1.83533 × 10−8 –

l 88.3150906433494 6.39035 × 10−5 deg
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Fig. 2 Apophis heliocentric
phase trajectory

Fig. 3 Apophis close encounter
trajectory

the Taylor representation of the flow at the corners of the initial set, with respect to the point-
wise integration of the same points. Initial widths of 3, 6, and 9 σ and expansion orders from 1
to 5 are considered. The expansion error decreases when higher expansion orders are selected
and when smaller uncertain sets are considered. The errors tend to decrease exponentially
with the expansion order, until reaching a lower limit of approximately 5 × 10−11 [AU] on
position and 3 × 10−10 [AU/day] on velocity. It is worth noticing that a fifth order expansion
guarantees a gain of approximately three order of magnitude in the flow representation with
respect to linear methods. This gain can be crucial when impact probability and/or resonant
returns are studied. The figure clearly shows that Taylor polynomial accuracy is a function of
both the expansion order and domain width. The drawback for obtaining the Taylor expansion
of the flow with respect to the initial condition is the computational time to perform a single
integration, as shown in Fig. 5. In this figure the ratio between the computational time of a
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Fig. 4 Accuracy of the Taylor expansion of the flow corresponding to different expansion orders and initial
uncertainty sets. Left: Position error; Right: Velocity error

Fig. 5 DA integration
computational time compared to
single pointwise integration

k-th order DA integration and a single pointwise integration is illustrated, underlining that a
5-th order integration is approximately eight times slower. On the other hand, the availability
of the flow expansion enables the development of a computationally efficient Monte Carlo
method, as described in the next section.

5 DA-based Monte Carlo

Within the dynamical models adopted and the chosen integration scheme, the asteroid refer-
ence solution has a close encounter distance from the Earth center of mass of 38161.55420
km at epoch 10695.907094 MJD2000. In order to evaluate the possibility of an Earth impact
it is necessary to accurately propagate the statistics of the asteroid. The accurate computation
of statistics in nonlinear dynamical systems often relies on Monte Carlo simulations. The
algorithmic flow of a Monte Carlo simulation is:

1. Generate random samples based on the statistical distribution of the uncertainty to be
propagated.

2. Run a pointwise integration of each sample in the fully nonlinear dynamics.
3. Perform the statistical analysis of the results.
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There are three critical disadvantages when using this approach:

– convergence of the statistics usually requires a large number of sample trajectories to be
propagated,

– the simulation needs to be repeated for different initial distributions,
– it does not provide the user with analytical information, useful for additional analyses.

These problems affect both the computational burden associated to the Monte Carlo sim-
ulation and its validity for different statistics (Park and Scheeres 2006). The previous draw-
backs become dramatic when thousands of long-term integrations are required, as for the
analysis of possible NEO close encounter with the Earth (Milani et al. 2002).

In Sect. 3 it has been shown that a single DA integration delivers an arbitrary order Taylor
expansion of the flow of the ODE, which is analytic. Furthermore, it has been remarked that
the accuracy of the map expansion can be controlled by acting on the expansion order. For
these reasons, it is possible to substitute the thousands of pointwise integrations required
for classical Monte Carlo simulations with an equal number of map evaluations, i.e. fast
polynomials evaluations.

The resulting DA-based Monte Carlo simulation can be summarized as:

1. Perform a single DA integration selecting the expansion order according to the demanded
accuracy.

2. Generate random samples based on the statistical distribution of the uncertainty to be
propagated.

3. Evaluate the flow expansion map for all the samples, requiring only fast polynomial
evaluations.

4. Perform the statistical analysis of the results.

The ratio between the computational time of a DA-based Monte Carlo simulation and its
pointwise counterpart is given by

tn + nste
ns t0

, (21)

where tn , te, and t0 are the computational times of a k-th order DA integration, a flow map
evaluation, and a pointwise integration, respectively; and ns is the number of samples of the
Monte Carlo simulation. The computational cost of a Taylor map evaluation depends on the
expansion order, but it is negligible compared to a pointwise integration. For this reason,
expression (21) can be approximated by m

ns
, in which m is the ratio between the computa-

tional time of a k-th order DA integration and a pointwise integration (see Fig. 5). The value
of m strongly depends on the expansion order, but it is few orders of magnitude smaller than
the number of samples required for a good representation of the statistics. For this reason,
the ratio m

ns
is small, proving that the proposed DA-based Monte Carlo simulation is com-

putationally efficient. As an example, in Sect. 6.3, Fig. 11 will show that the computational
time is reduced by a factor of at least 100 for 10000 virtual asteroids.

In case new statistics need to be propagated, it is not necessary to perform an additional
DA integration as only steps 2–4 are required. Furthermore, if the statistical analysis is per-
formed for a different final time, the possibility of obtaining Taylor expansions with respect
to the final time can be exploited (see Sect. 6.1). Moreover, as the flow expansion is analyti-
cal, an analytic framework is delivered. In conclusion, all the major drawbacks of a classical
Monte Carlo approach are circumvented. These properties are better highlighted in Sect. 6
by applying the algorithm to the study of Apophis’ close encounter with the Earth in 2029.
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6 Apophis close encounter study

As highlighted by Milani et al. (2000), impact solutions could occur for different virtual aster-
oids at a time when the nominal asteroid is far from the Earth. For this reason, performing
DA-based Monte Carlo simulations using the Taylor expansion of the flow at the epoch of
the CED of the nominal solution is not appropriate, as each virtual asteroid belonging to the
set of possible initial conditions has a different close encounter epoch.

A DA-based algorithm is introduced to reduce the computation of the CED, as well as its
associated epoch, to the simple evaluation of polynomials for each virtual asteroid. Being
at the basis of the algorithm, a technique is illustrated in Sect. 6.1 to obtain the arbitrary
order Taylor expansion of the flow of ODE also with respect to the final time. The algorithm
for the computation of the Taylor expansion of the CED is then presented and applied to
Apophis’ case. The results obtained by running on it the DA-based Monte Carlo algorithm
are illustrated.

6.1 High order expansion of the flow in time

The algorithm for the computation of the CED relies on the availability of the Taylor expan-
sion of the flow of the ODE with respect to both the initial condition and the final integration
time. In Sect. 3 it was shown how the flow expansion with respect to the initial condition can
be computed; in the following we explain how the expansion in the final time is achieved.

Consider the ODE system

dx
dt

= f (x, t) (22)

to be integrated from t = t0 to t = t f . Suppose the Taylor expansion of the flow with respect
to t f is of interest. We first shift the starting time by introducing the variable

t̃ = t − t0. (23)

Using the variable t̃ , equation (22) reads

dx
dt̃

= f (x, t̃ + t0), (24)

and it must be integrated from t̃ = 0 to t̃ = t f − t0. Then, we introduce the variable

τ = t̃
t f − t0

. (25)

Consequently,

dt̃ = (t f − t0) dτ (26)

and equation (24) now reads

dx
dτ

= (t f − t0) · f (x, t0 + (t f − t0)τ ), (27)

that must be integrated from τ = 0 to τ = 1. Integrating Eq. 27 from τ = 0 to τ = 1
is equivalent to integrate the original ODE (22) from t = t0 to t = t f . However, a major
advantage can be highlighted: the final time t f , as well as the initial time t0, have been moved
from the integration interval to the ODE right hand side, where they appear as parameters.
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Fig. 6 Apophis’ distance from
the Earth: comparison between
the pointwise integration and the
Taylor expansion of the flow with
respect to the final integration
epoch

This allows the flow of the ODE to be expanded also with respect to the final epoch. More
specifically, the final time t f can be initialized as a DA variable:

[t f ] = t f + δt f , (28)

in which t f is the reference final epoch. Then, Eq. 27 is integrated from τ = 0 to τ = 1.
Carrying out all the algebraic operations involved in the integration scheme in the DA frame-
work allows the dependence of the solution on δt f to be carried forward all throughout the
integration. The result at time τ = 1 is

[x f ] = x f + Mx f (δt f ); (29)

i.e., the Taylor expansion of the final solution with respect to the final time. Note that the
Taylor expansion of the solution with respect to the initial condition and the final time can
be obtained by initializing both x0 and t f as DA variables.

The previous technique can be immediately applied to the integration of Apophis’ motion
in order to obtain the Taylor expansion of the final position and velocity with respect to
the final epoch. In order to show the performances of the algorithm, set the initial condi-
tion x0 to be the nominal Apophis’position and velocity at the initial epoch t0, and choose
the reference epoch t f to be the epoch of the close encounter for the nominal Apophis’
initial condition. The DA-based RKF78 scheme is then used to expand the solution of the
ODE governing the asteroid motion with respect to t f . Figure 6 compares the nominal Apo-
phis’ distance from the Earth obtained through a pointwise integration with that computed
by evaluating the Taylor expansion of Apophis’ position with respect to t f , in the inter-
val t f − 0.05 days < t f < t f + 0.05 days. More specifically, the results corresponding to
three different expansion orders are illustrated. As it can be seen, the accuracy of the Taylor
representation increases with the expansion order.

The accuracy of the Taylor representations is better assessed in Fig. 7. In particular, the
absolute difference between the results of the pointwise integration and Taylor expansion
evaluation is plotted. As expected, the error is maximum at the boundary of the interval,
whereas it decreases toward the center; i.e., toward the reference epoch of the Taylor expan-
sions. The fifth order expansion in time guarantees an accuracy comparable with that in the
transversal coordinates for a time interval consistent with the analysis proposed in Sect. 6.3.
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Fig. 7 Analysis of the error of
the Taylor expansion of the flow
with respect to the final
integration epoch for Apophis’
position
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The accuracy analyses presented in this section and in Sect. 4.2 are based on checking
how well the coordinates are predicted by the flow map versus direct integration. It is worth
mentioning that in principle it is possible to get rigorous error bounds on the maps by using
Taylor models (TM) and Taylor model integrators (Hoefkens et al. 2003). As the outcome
of a TM integration is the validated enclosure of the flow of the dynamics, a single integra-
tion (without any further additional analysis) would suffice for the study of Apophis’ close
encounter. On the other hand, the use of TM requires a careful coding of both the dynamical
model and the ephemeris function in order to efficiently compute the rigorous enclosure of the
flow during the asteroid’s close encounter phase. This aspect is currently under investigation
by the authors.

6.2 CED algorithm

Let us suppose the close approach of the nominal asteroid occurs at the epoch t f , and consider
the integration of the asteroid dynamics in the form (27) from t = t0 to t = t f . Initialize the
initial state and the final integration epoch as DA variables; i.e.,

[x0] = x0 + δx0[
t f

]
= t f + δt f ,

(30)

where x0 is the initial condition corresponding to the nominal asteroid. Using the DA-based
RKF78 integrator and the technique introduced in Sect. 6.1 obtain the map

[x f ] = x f + Mx f (δx0, δt f ). (31)

The map (31) is the k-th order Taylor expansion of the flow of (27) with respect to the initial
condition and the final epoch about their nominal values x0 and t f . Based on a mere DA-
based computation, the final solution x f can be used to compute the Taylor expansion of
distance from the Earth

[d f ] = d f + Md f (δx0, δt f ). (32)

More specifically, map (32) describes how the distance varies depending on the virtual aster-
oid and the final integration epoch.
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Using the derivation operator available in the DA framework, the Taylor expansion of the
derivative d ′

f = d(d f )/dt f can be obtained

[d ′
f ] = d ′

f + Md ′
f
(δx0, δt f ). (33)

The constant part of the map (33), d ′
f , is the derivative of the distance from the Earth of the

nominal solution at its close encounter; i.e., at CED epoch. Consequently, this is a stationary
point for the nominal solution, and d ′

f = 0. Then, the map (33) reduces to

δd ′
f = Md ′

f
(δx0, δt f ), (34)

in which we omit the bracket operator for the sake of a simpler notation. Consider the map
(

δd ′
f

δx0

)
=

(
Md ′

f

Ix0

) (
δx0
δt f

)
, (35)

which is built by concatenating Md ′
f

with the identity map for δx0. Map (35) can now be
inverted to obtain

(
δx0
δt f

)
=

(
Md ′

f

Ix0

)−1 (
δd ′

f
δx0

)
. (36)

This is a full nonlinear map inversion that is obtained by applying the algorithm illustrated
in Berz (1999b). This algorithm reduces the map inversion problem to the solution of an
equivalent fixed point problem, which can be solved with a fixed amount of effort in the DA
setting.

Map (32) is then concatenated to the identity map for δt f to obtain
(

d f
δt f

)
=

(
Md f

It f

) (
δx0
δt f

)
. (37)

Map (37) can now be composed with map (36) to obtain

(
d f
δt f

)
=

(
Md f

It f

)
◦

(
Md ′

f

Ix0

)−1 (
δd ′

f
δx0

)
, (38)

which relates d f and δt f to the displacements of the derivative of the final distance δd ′
f and

of the initial state vector of the virtual asteroid δx0 from their values. As for the reference
value d ′

f = 0, the necessary condition for CED computation is

δd ′
f = 0. (39)

Substituting into (38) yields

(
d f

∗

δt f
∗

)
=

(
Md f

It f

)
◦

(
Md ′

f

Ix0

)−1 (
0

δx0

)
. (40)

Eventually, map (40) delivers the desired explicit relation between the CED (d f
∗) and the

epoch at which it is reached (t f +δt f
∗) with the displacement δx0 in terms of Taylor polyno-

mials. Given any virtual asteroid belonging to the initial set (which corresponds to a specific
value of the displacement δx0), the simple evaluation of the polynomials in (40) delivers the
CED and the epoch at which it is reached. In this way, the problem highlighted by Milani et
al. (2000) is solved.
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6.3 CED statistical analysis

The DA-based Monte Carlo simulation introduced in Sec. 5 is run on map (40) to perform the
nonlinear mapping of the initial uncertainties on the close encounter distance (CED). More
specifically, 10000 virtual asteroids are generated with a normal random distribution with
mean value and standard deviation as in Table 1. For each sample, the displacement with
respect to the nominal initial conditions is computed and map (40) is evaluated to obtain its
CED and the associated epoch. The result is reported in Fig. 8(left) in terms of probability
distribution for the CED. The analysis of the results shows that the mean value is 38161.54
km with a standard deviation of 492.1 km, thus the possibility of having an Earth impact in
2029 is ruled out.

For the same virtual asteroids, map (40) is also evaluated to obtain the close encounter
epochs. The result is presented in Fig. 8(right) in terms of the probability distribution of the
displacement δt f

∗ from the nominal epoch t f . The maximum displacement is of the order of
30 s, which is compatible with the accuracy of the Taylor expansion with respect to the final
epoch shown in Fig. 7. In Fig. 9 the 10000 virtual asteroids are plotted in the CED-δt∗f plane.

Fig. 8 Monte Carlo analysis of virtual asteroids close encounter distances (CED). Left: The distances; Right:
The epochs

Fig. 9 CED vs δt∗f for 10000
virtual asteroids

123



468 R. Armellin et al.

Fig. 10 Accuracy of the CED
algorithm: virtual asteroids actual
trajectories

Fig. 11 Percentage of
computational time required by a
DA-based Monte Carlo run
versus a classical Monte Carlo
simulation for 10000 virtual
asteroids

For the sake of completeness, an accuracy analysis of the results is presented in Fig. 10.
Ten virtual asteroids are randomly selected from the initial set. For each virtual asteroid,
the minimum distance and the corresponding epoch, resulting from map (40), are reported
in the figure. Then, a pointwise integration of the motion of each asteroid is performed to
obtain the profile of Earth’s distances shown in the dotted lines. Although the accuracy on
the identification of the epoch of the close encounter is not clearly visualized, due to the very
little displacement in t f

∗, it is clearly shown that the algorithm is able to accurately identify
the CED values of the resulting trajectories. Figure 11 concludes the analysis by showing the
ratio of the computational time between the proposed DA-based Monte Carlo simulation and
its pointwise counterpart as a function of the expansion order when 10000 virtual asteroids
are considered. It is apparent that the drawback of the higher computational cost required by
a DA integration is rewarded by the significant time saving achieved by substituting 10000
pointwise integrations with the same number of polynomials evaluations.

123



Asteroid close encounters characterization 469

7 Conclusions

The paper introduced a Monte Carlo simulation based on the high order Taylor expansion of
the flow of ODE, enabled by the use of differential algebra. Being based on the replacement
of pointwise integrations with fast evaluation of polynomials, the proposed algorithm guar-
antees significant computational time savings. The accuracy of the algorithm can be suitably
tuned by varying the flow expansion order. Furthermore, the availability of analytic Taylor
expansions and the use of DA embedded tools as map inversion, composition, and deriva-
tion allow the user to compute arbitrary order maps of the quantities on which the statistical
analysis is performed; thus, the algorithm is not limited to the flow of ODE. More specifically,
a technique for the automatic computation of both CED and CED epochs for all the virtual
asteroids belonging to the initial uncertainty cloud has been developed. The efficiency and
effectiveness of the methods are proven by applying them to the analysis of Apophis’ close
encounter with the Earth occurring in April 2029. In particular, it is shown that

– the nonlinear mapping of uncertainties can be performed for any complex and arbitrary
dynamics, even when long-term integrations are required;

– a fifth order expansion increases the accuracy of the computation of the CED by approx-
imately two orders of magnitude with respect to classical linear methods;

– the expansion in time allows for the proper identification of the CED epoch for all the
virtual asteroids.

As an additional result, the occurrence of an impact with the Earth in April 2029 can be ruled
out.
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