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Abstract

Various modern systems for the transport and manipulation of large acceptance beams of rare and short-lived
particles require the treatment of nonlinear optics of acceleration, absorption, and focusing in a combined approach.
We describe a differential algebraic method for the treatment of such nonlinear dynamics via high-order transfer maps.
We include the processes of scattering and straggling through absorbing material, which are inherently non-
deterministic and hence not representable in the map formalism, in a split operator approach. Some examples of
simulations of muon beam ionization cooling channels are provided.
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1. Introduction

Particle optical systems are usually comprised of
electric and magnetic bending elements, focusing
elements, and high-order multipoles for correction
of aberrations. However, various modern systems
for the transport and manipulation of large
acceptance beams of rare and short-lived particles
require the detailed treatment of more advanced
optical elements. In particular, in recent years the
reduction of the emittance of such beams has
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become of prime importance. The systems per-
forming such reduction of emittance usually
consist of combinations of absorbers that uni-
formly reduce the components of the momenta of
the particles, as well as cavities that increase
predominately the longitudinal components,
which overall leads to a reduction of transversal
emittance. For purposes of optimal focusing,
frequently both cavities and absorbers are placed
inside the body or at least the fringe fields of
quadrupole or solenoidal focusing elements, which
leads to the requirement of treating the nonlinear
optics of acceleration, absorption, and focusing in
a combined approach.

The treatment of such systems in ray-tracing
scenarios based on integration through fields and
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matter is very laborious and time consuming, and
does not lend itself well to optimization and
correction of undesirable nonlinear effects. We
describe a differential algebraic (DA) method [1-3]
for the treatment of such nonlinear dynamics,
based on the spatial and temporal form of the
accelerating fields, any superimposed focusing
magnetic fields, and the geometry and physical
properties of the absorbing material and its
possible vessel. Described by a Bethe—Bloch—
Vavilov formalism [4], the bulk of the effects is
described in terms of a high-order nonlinear
transfer map. The also occurring scattering and
straggling [4-6], which are inherently non-deter-
ministic and hence not representable in the map
formalism, are described in terms of a set of
stochastic kicks in the transversal and longitudinal
dynamics. The stochastics is propagated to the
center of the occurring absorbers and thus allows a
combined treatment of the tracking of both
deterministic and random effects in an efficient
way. The method is implemented in the high-order
code COSY INFINITY [7]. Examples for the
application and performance of the method are
given, using muon beam ionization cooling chan-
nels [8.9].

We start the discussion with the DA methods
and the DA PDE (partial differential equation)
solvers, which provide an efficient mechanism to
treat complicated nonlinear electromagnetic fields.

2. DA PDE solvers

The differential algebraic DA methods [1-3]
allow the efficient computation and manipulation
of high-order Taylor transfer maps. When inte-
grating transfer maps through electromagnetic
fields, the full 3D fields are computed as part of
each integration time step using DA PDE solvers.
In this section, we address the mechanism of the
method of DA PDE solvers.

First, we introduce the basics of the DA
methods briefly to the extent necessary for
discussing the DA fixed point PDE solvers. The
idea of DA methods is based on the observation
that it is possible to extract more information
about a function than its mere values on compu-

ters. One can introduce an operation 7 as the
extraction of the Taylor coefficients of a pre-
specified order n of the function. In mathematical
terms, 7 is an equivalence relation, and the
application of T corresponds to the transition
from the function to the equivalence class com-
prising all those functions with identical Taylor
expansion to order n. Since Taylor coefficients of
order n for sums and products of functions as well
as scalar products with reals can be computed
from those of the summands and factors, the set of
equivalence classes of functions can be endowed
with well-defined operations, leading to the so-
called Truncated Power Series Algebra (TPSA)
[10,11]. The development of algorithms for func-
tions followed, including methods to perform
composition of functions, to invert them, and to
introduce the treatment of common elementary
functions. The power of TPSA can be enhanced by
the introduction of derivations 0 and their inverses
0!, corresponding to the differentiation and
integration on the space of functions, resulting in
a differential algebra [1,2,12,13], which allows the
direct treatment of many questions connected with
differentiation and integration of functions, in-
cluding the solution of the ODEs dx/d¢ :f()_c’, 1)
[14] describing the motion and PDEs describing
the fields.

2.1. The differential algebra ,,D, and the DA fixed
point theorem

For the purpose of further discussion, we briefly
review a differential algebra that allows to
compute derivatives up to order n of functions in
v variables. On the space C"(R"), we introduce an
equivalence relation. For f and g in C"(R") we say
f = gifand only if f(0) = ¢(0), and all the partial
derivatives of f and g agree at 0 up to order n. The
relation =, is an equivalence relation. We group
all those elements that are related to f together
in one set, the equivalence class [ /'] of the function
f. The resulting equivalence classes are often
also referred to as DA vectors or DA numbers.
Intuitively, each of these classes is then specified by
a particular collection of partial derivatives in all v
variables up to order n. We call the collection of all
these classes ,D,. For more details, see Ref. [1].
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To any element [f ]e,D, we define the depth
MLSD as
ALSD

Order of first non-vanishing
= derivative of f if [f]#0
n+1 if [f]1=0.

In particular, any function f that does not vanish
at the origin has A([f]) = 0. In a similar way, on
the set (,D,)" that describes vector functions f =
(f1, ..., fm) from R’ to R, we define

HAAY s Ufu) = min AQAD.

Let ¢ be an operator on the set M =(,D,)". Then
we say that ¢ is contracting on M if for any d,
be M with d+#b,

H0O@) — Ob)) > M@ — b).

In practical terms this means that after application
of 0, the derivatives in @ and b agree to a higher
order than before application of (. For example,
the antiderivation 8,;1 is a contracting operator.

Contracting operators have a very important
property, namely they satisfy a fixed point
theorem.

Theorem 1 (DA fixed point theorem). Let O be a
contracting operator on M <, D, that maps M into
M. Then O has a unique fixed point ae M that
satisfies the fixed point problem

a = 0U(a).

Moreover, let ay be any element in M. Then the
sequence

ar = O(ag_y) for k=1,2,...

converges in finitely many steps (in fact, at most
(n + 1) steps) to the fixed point a.

The fixed point theorem is of great practical
usefulness since it assures the existence of a
solution, and moreover allows its exact determina-
tion in a very simple way in finitely many steps.
The proof of the theorem can be found in Ref. [1].

The fixed point theorem and its proof have
many similarities to its famous counterpart due to
Banach on Cauchy-complete normed spaces. In

the DA version of the fixed point theorem,
convergence happens even very conveniently
already after finitely many steps. Similar to the
case of the Banach fixed point theorem, also the
DA fixed point theorem has many useful applica-
tions, in particular a rather straightforward solu-
tion of ODEs and PDEs.

2.2. DA fixed point PDE solvers

The direct availability of the derivation 0 and its
inverse 0~! allows to devise efficient numerical
PDE solvers of any order. The DA fixed point
theorem allows to solve PDEs iteratively in finitely
many steps by rephrasing them in terms of a fixed
point problem. The details depend on the PDE at
hand, but the key idea is to eliminate differentia-
tion with respect to one variable and replace it by
integration. As an example, consider the rather
general PDE

0 0 0 0
— —V bi—| b=V
a18X<a26x )+ 16y<26y >
0 0
+Cl§<02§V)—

where ay, ay, by, by, ¢, ¢; are functions of x, y, z
The PDE is re-written as

71 ov
v 55
/ / a 0 5V
b] ax
1 ov
+b—1§<62 aZ))dydy

The equation is now in fixed point form. The
partial derivative operators 6/0x and 9/dz act to
evaluate the regular partial derivatives in DA.
Now assume the derivatives of ¥ and 6V /dy with
respect to x and z are known in the plane y = 0.
If the right-hand side is contracting with respect to
y, the various orders in y can be iteratively
calculated by mere iteration. We will now consider
various versions of the operators and try to assess
contractivity.

As a particularly important example, consider
the Laplace equation. It can be represented in
general curvilinear coordinates [15,16]. In the

dy
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special case of a planar curvilinear coordinate
system, the Laplace equation is obtained as

[15,16]
1+ hx ox 8y2

ey
1 +hxos\1+hx ds )

In the case of a straight section, where 4 = 0, it
reduces to nothing but the Cartesian Laplace
equation. The fixed point form of the Laplace
equation in the planar curvilinear coordinates is

Ny
L e {( #m )

1 oV
+14—hx@s<1+hx asﬂ dydy. M

In this form, the right-hand side has the interesting
property that, regardless of what function V is
inserted, the parts not depending on y are
reproduced exactly, since all integrals introduce y
dependence. Thus considering the subspace com-
prising V'(y) for a given choice of x and s, the right
hand side is contracting. In COSY INFINITY [7],
the planar curvilinear Laplace equation is solved
by the following very compact code:

AV =———

dy

POLD := P;
HF = 1+H*DA(IX);
HI = 1/HF;

LOOP I 2 NOC+2 2;
P = POLD - INTEG(IY,INTEG(IY,
HI* (DER(IX,HF#*DER(IX,P))
+ DER(IS,HI*DER(IS,P)))));
ENDLOOP;

where  the  boundary condition  V|_,+
fo (aV/ay)‘ o 4y is provided through the incom-
ing P using the DA expression in COSY. The DA
fixed point iteration converges to the solution
potential P in finitely many steps. DA(IX) repre-
sents the identity for x, NOC is the current transfer
map computation order, and DER(I,...) and
INTEG(I,...) correspond to the DA derivative
and the DA anti-derivative operations with respect
to the variable specified by the first argument I,

namely “0y,” and ° 0 " dx;”. The full 3D field is
derived from the solution potential P, using again
the DA technique as

BX := DER(IX,P);
BY = DER(IY,P);
BZ := DER(IS,P);

The advantages of the method are:

® One needs code for the field only for the
midplane.

® The resulting field will always satisfy stationary
Maxwell’s equations.

® [t works to any order.

As a simple but illuminating example that can be
done by hand, let us consider the s-independent
potential of an electric quadrupole in Cartesian
coordinates. From Eq. (1), the fixed point form of

the Laplace equation is
Yoy
/ / =z dydy.

e [ ()

We have V|],_y= Mx? and (6V/6y)| _,=0 as the
boundary condition. Since & V/ ox? =2M,
fo Jo @V /ox*dydy = My?, thus the evaluation
of the right-hand side provides M(x*> — y?), which
is the expression of the potential after one iteration
V(). The application of the fixed point operator to
V(1) gives the same result as V{1, thus the DA fixed
point iteration converged, and the solution poten-
tial is V = M(x? — y?).

Another important coordinate system often
suitable for computations under consideration
are the cylindrical coordinates, for which the
Laplace equation is

1o/ oV 1°V oV
AV =——r— =

r@r( 6r>+r2 o¢? Tt o o5
If VV does not depend on ¢, namely V is
rotationally symmetric, as in solenoid magnets,

the fixed point form of the Laplace equation is
simplified to

V=" / / drdr
r=0""
o’

and the right-hand side is contracting with respect
to r. Since we are only interested in cases in which
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V(r,s) is expressed in DA, if &*V/8s® is non-zero,
the integral [) r6?V//0s* dr contains r to a positive
power. Thus, the factor 1/r in the outer integral
simply lowers the power of r by one, and the right-
hand side of the fixed point form can be evaluated
in DA without posing trouble. To perform the DA
fixed point iteration for the purpose of obtaining
the full potential V(r,s), one only needs to prepare
the on-axis potential expression V(r,s)|,_, as the
boundary condition.

2.3. Example

For solenoid magnets, the DA PDE solver only
requires the analytical expression of the potential
on axis, as seen in the last section. For various
practical systems, it can even be usually easily
described. For example, the on-axis longitudinal
field and the on-axis potential of a thin solenoid,
namely a solenoid with zero thickness, are
explicitly given as [17]

_ Moln s _ s—L
2\VEHR sy R

V(s) :'MOTIH(\/S2 +R>—\/(s— L) +R2>

where R is the radius, 7 is the current in the coil,
n is the number of turns per unit s-direction length,

B.(s)

08t

0.6

Bz (T)

0.4}

0.2}

-1 -05 0 05 1 15
s (m)

Average Difference
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and the coil extends from s=0 to L. If the
solenoid is infinitely long, i.e. L> R, the field in
the middle of the solenoid approaches the asymp-
totic value B.(L/2)— uyIn. While this on-axis
form is easily obtained, the out of axis form
cannot be represented in closed form as it
involves elliptic integrals [18]; thus the ability of
the DA PDE solver to generate the power series
representation of the field to any order is very
useful.

Using a part of the code ICOOL [19,20] for the
field computation of a thin solenoid with elliptic
integrals [18], we computed the 3D fields of a thin
solenoid with L=1m and R=0.3m and the
current density /n adjusted to py/n =1 T, and the
result was compared with that of the DA PDE
solver using the code COSY INFINITY. In the
range of longitudinal position s from —1 m to L +
I m=2m, the on-axis longitudinal field has
agreement to nearly machine precision
between ICOOL and COSY INFINITY; the field
profile is shown in the left picture in Fig. 1.
The longitudinal and the transversal fields B.
and B, are evaluated in ICOOL and COSY
INFINITY over the longitudinal position from
—1to 2 mat every 0.05 m position at various radii,
and the average differences are plotted as a
function of the expansion order of the fields
computed by the DA PDE solver at 60%, 70%,
80% and 90% of the full radius R in the right

,_.
i
W

=
P
IN

9
Expansion Order

Fig. 1. The axial field profile of a thin solenoid with L =1 m and R = 0.3 m (left). The DA PDE solver is compared with the
computation with elliptic integrals (right). At various radii (90%, 80%, 70% and 60% of R downward), the differences in B. (with
marks) and B, (without marks) over the range from s = —1 to 2 m are averaged.
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picture in Fig. 1. In the picture, the average
differences of B, is shown with marks, and B, is
shown without marks.

The decrease of the differences as the expansion
order increases shows the expected decrease of
error with order. The fact that the curves are
nearly linear shows that the dependence is nearly
of the form «", where the logarithm of a
corresponds to the slope of the curves. It is
apparent that the larger the ratio of radius to
aperture of the coil becomes, the smaller the slope
becomes. Extrapolation of the visible slopes
suggests that zero slope is achieved close to the
case where radius equals aperture, and thus the
radius of convergence of the power series is nearly
the aperture.

More quantitatively, at 90% of the full radius R,
the average differences are much less than 1%, and
the average differences of B, tend to be larger than
those of B., differing from the smaller radius cases.
This is attributed to diverging values of B,
computed by ICOOL when the radius gets close
to the full radius R at the end positions of the
solenoid (s = 0 and 1 m).

Since the solenoid field computation using
elliptic integrals in ICOOL is limited to thin
solenoids, it is necessary to overlay several of
them to represent a thick solenoid in ICOOL.
Because of the inherently approximate nature of
the results, we did not perform a one-to-one
comparison of field computations for a thick
solenoid.

While analytical expression of on-axis field and
potential of solenoids can be obtained theoreti-
cally, this is not the case for multipoles where the
actual current wiring affects the longitudinal end
field profile. However, once appropriate boundary
conditions to the DA PDE solver are provided,
namely an on-axis potential for a magnetic multi-
pole, and B, in the midplane for a magnetic dipole,
the similar level of performance comparable to the
above solenoid example is expected by the off-axis
or the off-plane expansion. The Enge function is
widely used to describe such longitudinal end field
profile, and the function is easy to handle, but any
expression which fits into the framework of DA
can be used to describe such boundary conditions
to the DA PDE solver.

3. Superimposed solenoids

In practice, solenoids have non-zero thickness,
and often even very thick solenoids are used as in
the case of an sFOFO muon beam ionization
cooling cell as described in Table 1 and Fig. 3. Asa
preparation for the treatment of general solenoidal
fields, we describe a single solenoid with non-zero
thickness, the on-axis longitudinal field of which is
given by the following expression [17]:

R2+1/R%+S2
R + /R} +
Ry+/RE+(s— L)
—(s—L)log
Ry + /R +(s— L)

where Ry and R, are the inner and outer radii. If
the solenoid is infinitely long, i.e. L> R, Ry, (R, —
R;), the field approaches the asymptotic value
B.(L/2)— pyIn. The on-axis potential expression
can be derived easily from the above field
expression by integration with respect to s as

Ry + /R +5*

toln

Bds) = 2(Ry — Ry)

slog

I
Oy R by e
(R = Ry) Ry + /R + 5
. (Rt /B +(s— LY
—(s— L) log
Ry + /R +(s— L)
+ Ry\/R3 + 5> — Ri\/ R} + 5
— R/ RS+ (s — L)’ + Ri\/ R} + (s — LY’
Table 1

Properties of the coils in a 2.75 m sFOFO cell [§]

Position Length Inner radius Thickness Current density
s(m)  L(m) Ry (m) R, — Ry (m) j (A/mm?)

0.175 0.167  0.330 0.175 75.20
1.210 0.330  0.770 0.080 98.25
2.408 0.167  0.330 0.175 75.20
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Compared to the asymptotic field strength uyln,
the field strength is much lower for solenoids, in
which L=~ R. It is interesting that in case of thick
solenoids, the characteristic aperture is the outer
radius Ry, rather than the inner radius R; [17]. The
left picture in Fig. 2 shows the relative field
strength compared to the ideal strength uy/n for a
thin solenoid with the equal length and diameter,
i.e. L =2-R. The actual size, which is irrelevant
here, is chosen to L = 0.6 m, representing the size
of magnets used in the quadrupole muon beam
ionization cooling cell as shown in Fig. 5. In this
case the relative field strength reaches only to
1% (= 1/\/5), and the fringe field extends for a
long distance; for example, at the outside point L
away from the solenoid, the relative field strength
still maintains 4%.

The major idea in some of the current designs of
various muon beam ionization cooling channels is
to use strong solenoids to guide the beams with
large transversal emittance. Those solenoids are
planned to have very large aperture such that
cavities and absorbers can be nested inside, which
makes the fringe field extension longer and the
maximum field strength lower, and altogether the
thickness of the coils becomes quite large. As a
result, the fringe field extends yet farther, and the
entire solenoid is comprised of “fringe” fields. An
approximation based on B.(s)oc[tanh(s/R) —
tanh((s — L)/ R)] is commonly adopted for describ-
ing an on-axis solenoid field, because it drops more

0.8 B

0.6 | E

04t -

02+ p

swiftly in the fringe region compared to the pure
theoretical field, making the simulation effort
easier. On the other hand, the discrepancy from
the actual field becomes very large particularly for
thick solenoids [17], which are important in
practice to provide high field strength.

As an example of superposition of several thick
solenoids, we present a 2.75 m sFOFO muon beam
ionization cooling cell in Muon Feasibility Study
II [8]. Table 1 lists the geometry and current
densities of the coils in the cell, and the pictures in
Fig. 3 show the coil layout and the axial field
profile as well as the field distributions B.(r,s),
B,(r,s) that are obtained via the DA fixed point
PDE solver. There are three coils in the cell, and
the thickness is very large. As a result, the
superimposed field maintains high strength
throughout the cell except for the ends of the cell,
where the axial field drops to zero due to the
alternating field direction in the preceding and
following cells.

4. Cells consisting of magnets, cavities and
absorbers

The sFOFO muon beam ionization cooling cell
discussed above includes accelerating cavities and
absorbers as illustrated in Fig. 4 [8]. The absorbers
reduce the transversal and longitudinal compo-
nents of momenta of muons uniformly, and the

0.8 |-

0.6 |

0.4+

0.2+

-0.5

m

0.5

15

-0.5

m

0.5

15

Fig. 2. The fringe field extension of a solenoid (left) and an example quadrupole (right) of the same geometry. The length is equal to

the diameter, and both are 60 cm. The field strength is relative to the infinitely long case.
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Fig. 3. The coil layout, the axial field profile B.(s), and the field distribution B.(r, s), B,(r,s) of a 2.75 m sFOFO cell. The full 3D field
distributions B.(r,s), B.(r,s) are derived only from the on-axis potential V(s) = [ B.(s) using the DA fixed point PDE solver.

accelerating cavities increase the longitudinal
components, thus achieving the desired ionization
cooling in the cell. Both the absorbers and the
cavities are situated in the superimposed solenoi-
dal field, and the axial field strength drops to zero
in the middle of the absorbers. The need to
combine the cavities, the absorbers and the
guiding magnetic fields together requires the
solenoids to have very large aperture and high
current. This kind of nested layout of different
elements is typical of muon ionization cooling cell
designs using solenoids as focusing magnets. While
the idea is against the modern concept for
designing beam optical systems with single func-
tion elements, we can treat such systems with
transfer maps in the frequently used split operator
approach, which is based on the fact that
for operators 4, B we have exp(4+ B)x
exp(A4) - exp(B). The approximation holds to

second order in the norms of 4 and B and is a
simple consequence of the Baker Campbell
Hausdorff formula for exponentials of non-com-
muting operators.

For the specific case at hand, the operator
describes the flow of the ODE, the solution of
which is written as an exponential of the direc-
tional derivative operator. The operator consists
of three parts, one describing the action of the
field-free drift D, including all higher order terms
sometimes referred to as the kinematic correction,
the field contributions due to the solenoid S, and
the field contributions due to the cavity C. The
solution for the time step At is now first split into
N parts as

N
exp(Ar-(D+ S+ C) =[] exp<]AVt-(D+S+ C))

i=1
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Fig. 4. The layout of the 2.75 m sFOFO muon beam ionization cooling cell.

and then for each of these parts, the split-operator
technique is applied as

exp(%(D—i—S—l— C))

= exp (?vt -(D+S)+(—D)+ D+ C))>

X exp (% (D + S)) - exp (% . (—D))
'exp<%~(D+ C)).

The end result consists of short flows of the ODEs
for a negative plain drift exp(At/N(—D)), a plain
solenoid exp(At/N(D + S)), as well as a plain
cavity exp(At/N(D + C)), all of which are directly
available within the framework of the code COSY
INFINITY.

So in practice, the cell under consideration is
sliced into short pieces that are solved separately,
and the superposition of the separate pieces is
achieved by inserting suitable negative drifts. For
example, the 2.75 m sFOFO cell is sliced into
about 80 pieces. We note that when in advanced
stages of design, more information of the details of

the cavity fields are known, and a higher degree of
accuracy is required, it is also possible to directly
integrate through the superposition of these fields,
in a way similar to Refs. [21,22].

If we can avoid the nesting of different beam
optical elements, the treatment of the systems can
be simplified. The following robust quadrupole
muon beam ionization cooling cell is such an
example; the cell consists of alternating short
magnetic quadrupoles, cavities and absorbers
without nesting [9] (Fig. 5). In this design, each
element can be treated independently as a single
function element. Because of the large transversal
emittance of muon beams, the aperture is set to be
30 cm radius, comparable to that of the sFOFO
cell. For the purpose of keeping the total size of
the cell small, the length of the magnetic quadru-
poles is chosen to be 60 cm. The ratio of length to
aperture of the quadrupoles is comparable to that
of the solenoid discussed earlier for Fig. 2, i.e. the
length is equal to the diameter, and the whole field
is dominated by the fringe fields. At this early
design stage, we use a set of standard data for
the fringe field fall off, which is based on the
measurement of PEP/SLAC magnets [7,23]. The
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Fig. 5. The layout of a quadrupole muon beam ionization cooling cell [9].
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Fig. 6. The mean energy loss (left) and the Vavilov energy loss distribution (right) of muon beams going through 35 cm liquid

hydrogen.

points to be stressed here are that the fringe field
consideration has to be included from the begin-
ning stage of the cell design as we do, although the
effects of the fringe field is much more benign than
those for solenoids allowing the single function
element treatment in the transfer map approach. It
also should be noted that the pole tip field strength
is about 0.5 T, thus the magnets can be built
without having to resort to superconducting coils.

5. Differential algebraic treatment of dynamics
through material

To treat microscopic phenomena happening
when charged particle beams go through absorb-
ing material, the average of changes is taken as

deterministic macroscopic phenomena to be in-
cluded in the description of dynamics by transfer
maps. By its nature, the transfer map approach
assumes deterministic motion, and thus non-
deterministic random effects happening when
going through material cannot be represented in
the standard manner. In this section, we describe
how to combine those two conflicting phenomena
in transfer map-based simulations.

The deterministic effect of passing through
material is the mean energy loss, and it is
characterized by the Bethe—Bloch formula

dE Z 2 2mey*v* Winax
—a = 27'5Nar(2:mec2p Z E |:1n (%)
C
—2pP—56-2—=
p z
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where r. is classical electron radius, / is mean
excitation potential, Wy,x is the maximum energy
transfer in a single collision, ¢ is the density
correction, and C is a shell correction [4]. The left
picture in Fig. 6 shows the mean energy loss of
muon beams going through 35 cm liquid hydrogen
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as a function of the incoming beam momentum.
The 2.75 m sFOFO cell has an absorber section
consisting of 35 cm of liquid hydrogen and a vessel
with two aluminum windows with a minimum
thickness of 300 um at the center [8,24]. The
absorbers of the same material and of the same
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Fig. 7. Muon beam tracking through the quadrupole muon beam ionization cooling cells. Random processes due to multiple

scattering and straggling are included in the Monte Carlo approach.
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thickness are used for the quadrupole cooling cells,
too [9]. Once the geometry and the physical
properties of the absorber are determined, the
mean energy loss through the absorber is deter-
mined uniquely based on the mass, charge, and
spin, and the phase space coordinates of the
incoming particle, and thus can be included into
the transfer map of the system.

The incoming muon beam momentum ranges
from 150 to 400 MeV/c, and we consider the
following two non-deterministic random pro-
cesses. One is multiple scattering, a transversal
effect, and the other is energy straggling, a
longitudinal effect [5,6,24]. We treat the random
effects as a set of stochastic kicks in the dynamics.
In a similar manner, muon decay can be treated,
but because of its relatively low rate, it is not
included in our current simulations [9,24] at this
time. The multiple scattering is represented by a
random kick in the transversal components of
momenta, and the kick follows a Gaussian
distribution centered at zero. We denote this
random event as #ys. The straggling is a set of
random kicks in energy, and the kicks have an
energy loss distribution depending on the thickness
and physical properties of material and the kind
and energy of incoming particles. We denote it as
Rsi. In the absorbers under consideration, the
distribution follows Vavilov’s theory [4-6,24], and
is shown in the right picture in Fig. 6 in case of
35 cm liquid hydrogen.

The random kicks are treated in a Monte Carlo
approach. The transversal kicks have a Gaussian
distribution, so a set of Gaussian random numbers
are generated for horizontal and vertical compo-
nents of momentum. The longitudinal kicks have a
complicated asymmetric distribution, so random
numbers following this distribution are generated
for energy loss. We include the stochastic kicks in
the dynamics through tracking. For efficiency, we
describe all stochastic effects by kicks longitudin-
ally placed in the middle of the absorber. In order
to match, the cell starts and ends in the middle of
the absorber, and we first prepare the deterministic
high-order transfer map .# of the cell, where the
cavities are driven to replenish the mean energy
lost in the absorber. A set of particles is tracked via
the high-order map for the cell; then the Monte

Carlo kicks are executed, so that
Zr = (AmsoRsioM)(Z;).

Again this approach is based on the split operator
method, except that here, the straggling and
multiple scattering terms are localized only within
the absorber which comprises only a small fraction
of the entire lattice. Thus if any subdivision is
needed at all, it is limited to a short part of the
system under consideration. This procedure is
iterated for the next cell. The tracking pictures in
Fig. 7 show an example of the method for the
quadrupole muon beam ionization cooling chan-
nel. The initial distribution of 200 MeV /¢ muons
is prepared to fill the maximum transversal beam
acceptance without longitudinal distribution. The
particle distribution is plotted using the symbols
“4+7, “x” and “%” for the horizontal, vertical
and longitudinal phase space after various num-
bers of repetition of the cell, respectively. Trans-
versal beam cooling effect is observed, while the
longitudinal emittance reaches an equilibrium
quickly.
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