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Abstract: The time t maps of Hamiltonian flows are symplectic. The
order n Taylor series approximation with respect to initial conditions of
such a map is symplectic through terms of order n. Given an order n

Hamiltonian symplectic map, there are a variety of procedures, called
symplectification methods, which produce exactly symplectic maps with
Taylor series that agree with the initial Taylor map through terms of
order n.

Here we extend the generating function method of symplectifica-
tion. To this end, we develop a general theory of generating functions
of canonical transformations. It is shown that locally any symplectic
map has uncountably many generating functions, each of which is asso-
ciated with a conformal symplectic map. Within the subgroup of linear
conformal symplectic maps, the available types can be organized into
equivalence classes represented by symmetric matrices. Furthermore,
equivalence of symplectification with and without factorization of the
symplectic maps into linear and nonlinear parts is proved.

The method is illustrated with two examples; an anharmonic os-
cillator, and the dynamics in a proposed new particle accelerator, the
so-called Neutrino Factory, which is known to exhibit a wide spectrum
of nonlinear effects.
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1. Introduction

A symplectic integration method is an integration method that preserves
the symplectic structure at every time step. It is well-known that sym-
plectic integration methods have favorable qualitative properties com-
pared to non-symplectic ones when used for long-term integration. The
good long-term behavior has been explained by favorable global error
propagation (which is usually linear in the symplectic case, compared
to generically quadratic in the non-symplectic case, and at least in cer-
tain cases stays bounded in the radial direction [31]), and the fact that
the methods introduce only Hamiltonian perturbations of the original
system; if the perturbations are small enough, according to the KAM
Theorem, most invariant tori, and hence most of the geometric structure,
survive [33]. Also, they have very good energy conservation properties.
Although it is known that in general the symplectic structure and the
energy cannot be conserved simultaneously by a numerical method for a
Hamiltonian system [22], the Hamiltonian is preserved by a symplectic
integration scheme up to a function of the accuracy of the integrator,
up to exponentially long times [7]. Sometimes (as a function of time
step and initial condition) quasi-periodic and bounded energy errors are
observed that seemingly last forever. There are various implementations
of symplectic integrators in the fields of molecular dynamics [27], celes-
tial mechanics [44], non-equilibrium statistical mechanics [6, 36], beam
physics, etc.

However, it is not clear geometrically what is the exact meaning of
symplecticity. This is even more true for symplectic tracking with maps
(symplectic integration, where the “timestep” is one turn around an ac-
celerator, which can be kilometers long) as applied in the case of beam
physics. On the one hand, the element by element symplectic integra-
tion (here the timestep is much smaller than in the above mentioned
case, typically a few meters, or one magnetic element in the accelera-
tor structure) usually is implemented in a second order (called the thin
lens, kick, or leapfrog) approximation. While it is exactly symplectic,
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it is also slow, only second order accurate in the time step, and not
applicable in the case of general, nonseparable Hamiltonians. On the
other hand, to asses the long-term stability of particles in a periodic
accelerator structure in a reasonable amount of time, it is customary to
compute an approximation of the one turn map, and then track with the
map. Unfortunately, by approximating the originally symplectic map,
for example by truncation of the Taylor series of the true map, its sym-
plecticity is lost. Tracking large numbers of turns with truncated Taylor
maps thus can potentially give inaccurate results. But we can hope that
by recovering the exact symplecticity “artificially” from the truncated
map, the long term tracking with the map will restore the properties of
the original system, and will speed up considerably the estimation of the
region, where stable orbits exist (dynamic aperture in the beam physics
jargon). As we shall see, in the Differential Algebraic Framework [8, 10]
this can done to very high orders.

Therefore, tracking symplectically with high order maps is symplec-
tic integration taken in its usual sense, but because of the use of inte-
grators of very high order [10], it is usually more accurate in the time
step and faster. It is also true that the speed is achieved at the ex-
pense of increasing the time step; here the time step is in fact one turn
around the accelerator (using the arclength along the reference orbit as
the independent variable). Sometimes it might be necessary to balance
the length of the part of the system represented by a map with the re-
quired accuracy. This can be done by splitting the whole system into
several pieces and representing each lump by a transfer map. Also, the
map approach has the important advantage to be able to incorporate in
the map effects that are otherwise very time consuming to compute, as,
for example, fringe fields (stray, unwanted fields present at the magnet
ends) [12, 46, 11].

The main step in tracking symplectically with maps is the symplec-
tification of the truncated, order n symplectic, Taylor maps. Several
methods have been developed to achieve the symplectification of maps.
There are two main streams: one is based on factorization methods,
and consist of Cremona symplectification [1], integrable polynomial fac-
torization [34] and monomial factorization [23]; the other one is based
on mixed variable generating function methods [9]. All methods pro-
vide valid symplectification schemes. However, the symplectified map
depends on the specific method used. It was realized that the particular
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schemes applied often make considerable differences in the final results.
This fact triggered the studies of optimal symplectification. For details
concerning optimal Cremona symplectification see [1]. Here we extend
the method of generating function symplectification to an exceedingly
large class of generators. The optimality of generating function symplec-
tification can be expressed in terms of Hofer metric [25]; the problem
was studied in a previous paper [19].

The first mention of the possibility of symplectic integration using
generating functions dates back to 1956 [37]. Later it was rediscovered by
others; see for example [13, 14]. Specifically, in beam physics, symplectic
tracking with maps based on generating functions was proposed in [9, 23,
17]. In particular, it has been shown that in the Differential Algebraic
Framework it is straightforward to compute the order n + 1 truncation
of the generating function from the order n truncation of the one turn
map to any order n [9, 10]. Symplectic tracking to order three was
first implemented in the code marylie [16], and to arbitrary order it was
first implemented in cosy infinity [28], among others. The possibility
to estimate the SSC dynamic aperture with generating functions-based
symplectic tracking with one turn maps has been considered in [45].
Another approach to generating functions and maps is based on fitted
maps [38].

The generating function symplectification methods mentioned above
use only the conventional F1, ..., F4 (in Goldstein notation) types of gen-
erating functions [24]. Recently, in [21, 20] a generating function based
symplectic integration scheme has been developed. The authors of [21]
show that actually there are infinitely many generating functions asso-
ciated to a symplectic map. Their methods are based on [35], which is
basically a linear algebra problem, and its local generalizations to the
nonlinear case. The global theory on manifolds of the classical gener-
ating function theory has been developed in the 70’s [39, 41, 42, 43].
We combine the two, and formulate the general theory of generating
functions of canonical transformations, with an eye on usefulness for
computation in the Differential Algebraic Framework [10] used in cosy
infinity [28].

To be able to say which generating function is the best one, first
requires a characterization of the various different types. This provides
the motivation to develop the general theory of generating functions in
Section 2. We show that locally there is an isomorphism between sym-
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plectic and gradient maps, and this leads to infinitely many generating
function types for every symplectic map. In passing we note that there is
a more general theory, which is based on transformation of the problem
into a problem in symplectic geometry [18]. This approach also gives
insight into various problems of locality versus globality of the generat-
ing functions. We mention that following Weinstein work, the geometric
approach to generating functions in the physics literature appeared at
various degrees of completeness, as, for example, in [2, 4, 29, 32]. How-
ever, for the purpose of this paper it is sufficient to develop only the
local theory.

Also, we present some transformation properties of the generating
functions in Section 3. The transformation rules allow us to form equiv-
alence classes of generating functions in Section 4. Two types of gen-
erating function are equivalent if they produce exactly the same sym-
plectified map when applied to a given order n symplectic Taylor map.
Also, we present briefly in Appendix A how the conventional generators
fit into this framework.

Sometimes it is preferred to factor out the linear part of the map to
be symplectified, and apply the symplectification procedure to the non-
linear part only (in fact this part will have identity as linear part). We
show in Appendix B that there is nothing to be gained by this approach
if we use the appropriate types of generating functions. Appendix C
describes briefly the implications of linear symplectic variable changes
on the outcome of the symplectification process.

Section 5 gives some details about the implementation of the method
in the code cosy infinity.

Finally, Section 6 is devoted to two examples, namely an anharmonic
oscillator and a proposed lattice of the Neutrino Factory, a new type of
accelerator for the future.

2. General Theory of Generating Functions of Canonical

Transformations

In the classical mechanics literature, traditionally only the 4 Goldstein
type of generating functions are well-known. However, it is easy to show
that, for example, the identity transformation cannot be generated by
the type 1 and 4 generating functions. On the other hand, this set can
be easily extended to 22n generating functions. It is showed that for any
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symplectic map, at least one generating function from this set exists
locally [10]. The common factor for this set is that they all depend
on mixed coordinates, more specifically on n initial coordinates and
momenta, and n final coordinates and momenta.

The first sign that in fact there are more generating functions is
dating back to Poincaré, who used a different type of generating function,
which not only is a mixed variable function in the sense discussed above,
but also mixes (linearly) initial and final conditions in all the 2n variables
[30]. Later this generating function reappeared in [40] and [21], where
also a unifying approach to the theory of generating functions has been
presented, from which resulted that there are infinitely many generating
functions.

However, while the approach of [21] gives important computational
insight, the general mathematical foundation of the theory is contained
in the series of papers [39, 41, 42, 40]. On the other hand, the general
theory lacks exactly the computational aspect. Our purpose is to give a
rigorous account of the mathematical basis, and to cast the theory into
a convenient computational tool within the framework of Differential
Algebraic Methods. In order to keep the length of the paper within
acceptable limits we present in detail only the local theory. The detailed
account of the global theory will be published elsewhere.

Let us start by introducing a few notations. Every map is regarded
as a column vector. Let

α =

(

α1

α2

)

(1)

be a diffeomorphism of a subset of R
4n onto its image, and let

α−1 =

(

α1

α2

)

(2)

be its inverse. Notice that αi and αi, i = 1, 2, are the first 2n and
second 2n components of α and α−1 respectively. This entails that
αi : U ⊂ R

4n → V ⊂ R
2n, and analogously for αi. It is worthwhile

to note that there is a geometric significance to the use of R
4n. Both

symplectic maps and functions under certain conditions can be given
a geometric interpretation in the form of Lagrangian submanifolds of
R

4n (Lagrangian submanifolds are 2n dimensional submanifolds of 4n
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dimensional symplectic manifolds on which the symplectic forms vanish
identically [18]). Let

Jac (α) =

(

A B

C D

)

(3)

be the 4n × 4n Jacobian of α, split into 2n × 2n blocks. Let

J̃4n =

(

J2n 02n

02n −J2n

)

, (4)

where

J2n =

(

0n In

−In 0n

)

, (5)

and In is the unit matrix of appropriate dimension. A map α is called
conformal symplectic if

(Jac (α))T J4n Jac (α) = µJ̃4n, (6)

where µ is a non-zero real constant [5]. Also, we denote by I the identity
map of appropriate dimension. A map M is called symplectic if its
Jacobian M satisfies the symplectic condition [15], that is

MT JM = J. (7)

We always assume that the symplectic maps are origin preserving. We
call a map gradient map if it has symmetric Jacobian N . It is well-
known that gradient maps can be written as the gradient of a function
(hence the name) [10], that is

N = Jac (∇F )T (8)

(∇F is regarded as a row vector [3]). Strictly speaking, this is true over
any simply connected domain, but we always assume that this is true.
The function F is called the potential of the map.

The best way to formulate the main result of this section is a theo-
rem.

Theorem 1. Let M be a symplectic map. Then, for every point z

there is a neighborhood of z such that M can be represented by functions
F via the relation

(∇F )T =

(

α1 ◦

(

M
I

))

◦

(

α2 ◦

(

M
I

))−1

, (9)
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where α is any conformal symplectic map such that

det (C (M (z) , z) · Mz + D (M (z) , z)) 6= 0 . (10)

Conversely, let F be a twice continuously differentiable function. Then,
the map M, defined by

M = (NC − A)−1 (B − ND) , (11)

is symplectic. The matrices A,B,C,D,M, and N are defined above.

Definition 2. The function F is called the generating function of
type α of M, and denoted Fα,M.

The theorem says that, once the generator type is fixed, locally there
is a one-to-one correspondence between symplectic maps and scalar func-
tions, which are unique up to an additive constant. The constant can be
normalized to zero without loss of generality. Due to the fact that there
exist uncountably many maps of the form (6), we can conclude that
to each symplectic map one can construct infinitely many generating
function types.

Remark 3. It can be shown that an alternate way to compute M
from F is by inverting (9); it gives [18]

M =

(

α1 ◦

(

(∇F )T

I

))

◦

(

α2 ◦

(

(∇F )T

I

))−1

. (12)

In fact, (12) holds if and only if (9) holds.

We note that (9) and (12) cannot be simplified, due to the fact that
the entries in the equations have different dimensions. For instance,

αi, α
i : R

4n → R
2n and

(

M
I

)

,

(

(∇F )T

I

)

: R
2n → R

4n.

Proof of Theorem 1. We notice that, by the implicit function the-
orem, the proof can be reduced to the linear case. In particular, the
linearization of (9) at some point reads

N = (AM + B) (CM + D)−1 . (13)

Here all the entries in the equation are matrices. Therefore, by the im-
plicit function theorem, if (9) is well defined at some point, i.e.
det (CM + D) 6= 0, then it also holds in a neighborhood of that point.
Therefore, the proof is complete if we prove the following lemma.
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Lemma 4. Let A,B,C,D ∈ R
2n×2n be such that

(

A B

C D

)T (
0 I

−I 0

)(

A B

C D

)

= µ

(

J 0
0 −J

)

(14)

holds. Let M ∈ R
2n×2n be given. If A,B,C,D is chosen such that

det (CM + D) 6= 0, (15)

and if N is defined as

N = (AM + B) (CM + D)−1 , (16)

which is equivalent to

M = (NC − A)−1 (B − ND) , (17)

then the following are equivalent:

1) M is symplectic, i.e. MT JM = J,

2) N is symmetric, i.e. NT = N.

In the proof of the lemma we will need the following proposition.

Proposition 5. Let det (CM + D) 6= 0 and N defined as in (16).
Then det (NC − A) 6= 0.

Proof. Denote

α =

(

A B

C D

)

. (18)

Taking the determinants on both sides of (14) if follows that det (α) 6= 0.
Thus, denote its inverse by

α−1 =

(

Ā B̄

C̄ D̄

)

. (19)

Then, if we expand the relations α · α−1 = α−1 · α = I, we obtain

AĀ + BC̄ = ĀA + B̄C = CB̄ + DD̄ = C̄B + D̄D = I, (20)

AB̄ + BD̄ = ĀB + B̄D = CĀ + DC̄ = C̄A + D̄C = 0. (21)
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First we compute
(

C̄N + D̄
)

(CM + D)

=
[

C̄ (AM + B) (CM + D)−1 + D̄
]

(CM + D) (22)

= C̄ (AM + B) + D̄ (CM + D) (23)

=
(

C̄A + D̄C
)

M +
(

C̄B + D̄D
)

(24)

= I. (25)

Taking determinants on both sides we obtain that

det
(

C̄N + D̄
)

6= 0. (26)

Next consider the identity

(

I 0
C̄ I

)(

I −N

0 C̄N + D̄

)(

A B

C D

)

=

(

A − NC B − ND

0 I

)

. (27)

Taking determinants on both sides yet again, we obtain that

det
(

C̄N + D̄
)

· det (α) = det (A − NC) . (28)

But det (α) 6= 0, hence

det
(

C̄N + D̄
)

6= 0 ⇒ det (A − NC) 6= 0. (29)

Combining (26) and (29) we arrive at

det (CM + D) 6= 0 ⇒ det (NC − A) 6= 0, (30)

and the proposition is proved.

Proof of Lemma 4. We can proceed to prove the lemma. First, we
show that from (14) together with N being symmetric follows that M

is symplectic. From (16) we can deduce that

NT =
(

(CM + D)−1
)T

(AM + B)T . (31)

Using the assumption that NT = N , we get that

(

(CM + D)−1
)T

(AM + B)T = (AM + B) (CM + D)−1 . (32)
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Recall that for any regular matrix X, we have
(

X−1
)T

=
(

XT
)−1

. To
remove the inverses, (53) can be rewritten as

(

MT CT + DT
)

(AM + B) =
(

MT AT + BT
)

(CM + D) . (33)

Performing the operations and regrouping of terms gives

MT
(

CTA − AT C
)

M + MT
(

CT B − AT D
)

+
(

DT A − BtC
)

M

+
(

DT B − BTD
)

= 0. (34)

From the expansion of (14) it follows that

AT C − CT A = µJ , BTD − DT B = −µJ, (35)

AT C − CT A = 0, BT C − DT C = 0. (36)

This entails that (34) reduces to

MT JM = J, (37)

that is M is symplectic.
To complete the proof now we need to show that (14) together with

M being symplectic implies that N is symmetric. First we notice that,
according to the above proposition, (16) always can be solved for M to
give

M = (NC − A)−1 (B − ND) . (38)

Therefore,

MT = (B − ND)T
(

(NC − A)−1
)T

, (39)

M−1 = (B − ND)−1 (NC − A) . (40)

Also, from the symplectic condition M T JM = J it follows that JMT =
M−1J. Inserting (39) and (40) in this equation, it gives

J (B − ND)T
(

(NC − A)−1
)T

= (B − ND)−1 (NC − A) J, (41)

which can be expressed as

(B − ND) J
(

BT − DT NT
)

= (NC − A) J
(

CTNT − AT
)

. (42)
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Rearrangement of terms gives

N
(

CJCT − DJDT
)

NT − N
(

CJAT − DJBT
)

−
(

AJCT − BJDT
)

NT +
(

AJAT − BJBT
)

= 0. (43)

Next, we need to manipulate (14), which can be written in the com-
pact form αT Jα = µJ̃. It is equivalent to αT J = µα−1J̃ . Transposition
gives Jα = µα−T J̃ , where we used that JT = −J and J̃T = −J̃ . Also,
from J−1 = −J and J̃−1 = −J̃ it finally follows that

αJ̃αT = µJ. (44)

This relation expanded reads

AJAT − BJBT = 0, CJCT − DJDT = 0, (45)

AJCT − BJDT = µI, CJAT − DJBT = −µI. (46)

As the last step, inserting them in (43) results that

NT = N. (47)

This completes the proof.

Theorem 1 has a simple, intuitive interpretation. It provides a way
to construct infinitely many generating function types to any given sym-
plectic map. The various types are parametrized by the group of confor-
mal symplectic maps. For the existence of a certain type of generator,
det (CM + D) 6= 0 must hold. Conversely, given any function and a
conformal symplectic map, it provides a method for generation of sym-
plectic maps.

Once we have the pool of types of generating functions to choose
from, we can reduce the complexity of the optimal symplectification
problem by noticing that the generating functions can be organized into
equivalence classes. First, we need some transformation properties of
the generating functions.

3. Transformation Properties of Generating Functions

If we look at how the generating functions transform under modifications
of α and/or M, we obtain a set of rules which we call transformation
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properties. These properties are based on the fact that if α is a conformal
symplectic map such that

(Jac (α))T J4n Jac (α) = µJ̃4n, (48)

then for any β and γ such that

(Jac (β))T J4n Jac (β) = J4n, (49)

(Jac (γ))T J̃4n Jac (γ) = J̃4n, (50)

the map β ◦ α ◦ γ is also a valid conformal symplectic map, that is, it
follows from (49) and (50), and repeated application of the chain rule
that β◦α◦γ satisfies (48). Therefore, it gives another type of generating
function.

We begin with studying what happens to the generating function
Fα,M under the transformation α1 7→ λα1, for some non-zero real λ.
This affects only the conformality factor µ, of α, which becomes λµ.
Slight rearrangement of (9) gives

(

(∇Fα,M)T ◦ α2 − α1

)

◦

(

M
I

)

= 0. (51)

Then, we also have




(

∇F(λα1

α2

)

,M

)T

◦ α2 − λα1



 ◦

(

M
I

)

= 0, (52)

which is equivalent to




(

∇

(

λ−1F(λα1

α2

)

,M

))T

◦ α2 − α1



 ◦

(

M
I

)

= 0. (53)

Comparing (51) with (53) we see that

∇Fα,M = ∇

(

λ−1F(λα1

α2

)

,M

)

, (54)

that is

F(λα1

α2

)

,M
= λFα,M + c, (55)
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for some arbitrary constant c.
Next, we study what happens if we change the symplectic map, for

example, by M 7→ M◦A, for some symplectic map A. From (9) we
have

(

(∇Fα,M◦A)T ◦ α2 − α1

)

◦

(

M◦A
I

)

= 0 , (56)

(

(∇Fα,M◦A)T ◦ α2 − α1

)

◦

(

M
A−1

)

= 0 , (57)

(

(∇Fα,M◦A)T ◦ (α2 ◦ TA) − (α1 ◦ TA)
)

◦

(

M
I

)

= 0 , (58)

where TA is defined by TA (ẑ, z) =
(

ẑ,A−1 (z)
)

. Equation (58) can also
be interpreted as

(

(∇Fα◦TA ,M)T ◦ (α2 ◦ TA) − (α1 ◦ TA)
)

◦

(

M
I

)

= 0, (59)

from where we conclude

Fα,M◦A = Fα◦TA,M + c. (60)

In the same manner, the left action of another symplectomorphism
on the map, i.e. M 7→ K ◦M leads to

(

(∇Fα,K◦M)T ◦ α2 − α1

)

◦

(

K ◦M
I

)

= 0. (61)

Define TK (ẑ, z) = (K (ẑ) , z). Then,

Fα,K◦M = Fα◦TK,M + c. (62)

We are also interested what happens when we change the coordinates
in the generating function, F 7→ F ◦L, by a diffeomorphism L (here not
necessarily a symplectomorphism); we have

(

(∇ (F ◦ L))T ◦ α2 − α1

)

◦

(

M
I

)

= 0 , (63)

(Jac (L))T ·
(

∇F )T ◦ L ◦ α2 − α1

)

◦

(

M
I

)

= 0 , (64)

(

∇FTL◦α,M)T ◦ (L ◦ α2) −
(

(Jac (L))−T · α1

))

◦

(

M
I

)

= 0 , (65)
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where we defined TL (ẑ, z) =
(

(Jac (L))−T · ẑ,L (z)
)

. Hence,

∇ (FTL◦α,M ◦ L) = ∇Fα,M, (66)

that is

FTL◦α,M = Fα,M ◦ L−1 + c. (67)

We will use these transformation rules in the following sections.

4. Equivalence Classes of Generating Functions

We call two types of generating function equivalent if both types gen-
erate exactly the same symplectified map when applied to a truncated,
order n symplectic, Taylor map. As we showed, the different types are
parametrized by conformal symplectic maps. In this section we show
that all the types generated by linear α, and which exist at least locally
for a given symplectic map, can be organized into equivalence classes
characterized by symmetric matrices.

Assume that for a given symplectic map M there exists a generating
function of type α given by

(∇F )T =

(

α1 ◦

(

M
I

))

◦

(

α2 ◦

(

M
I

))−1

, (68)

and

Jac (α) =

(

A B

C D

)

. (69)

From (14) it readily follows that

(Jac (α))−1 =

(

JCT −JAT

−JDT JBT

)

. (70)

First of all, it is straightforward to see that one can always change
the conformality factor to µ = 1 using the transformation rule (55), by
choosing λ = µ−1. From (12) and (70) it easily follows that we get the
same symplectified map in both cases. Therefore, the conformality fac-
tor does not introduce any flexibility into the symplectification process.
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Hence we can always assume that µ = 1, which is the most convenient
value from the numerical implementation point of view [18].

Denote the linear part of M by M . Then the generating function of
the same type that generates the linear part M is given by

(∇F0)
T =

(

α1 ◦

(

M

I

))

◦

(

α2 ◦

(

M

I

))−1

. (71)

Subtraction of (71) from (68) gives

(∇ (F − F0))
T =

[

(

α1 − (∇F0)
T ◦ α2

)

◦

(

M
I

)]

◦

(

α2 ◦

(

M
I

))−1

(72)

=

(

ᾱ1 ◦

(

M
I

))

◦

(

α2 ◦

(

M
I

))−1

= (∇G)T ,

(73)

where we used the notations G = F − F0 and ᾱ1 = α1 − (∇F0)
T ◦ α2.

Define

β (ŵ, w) =

(

ŵ − (∇F0)
T (w)

w

)

. (74)

Obviously, being a kick, i.e. changing only one component, β is a
symplectic map for any function F0. Clearly, with ᾱ2 = α2 we have
ᾱ = β ◦ α. Therefore, according to the transformation properties of the
previous section, G is a valid generating function of type ᾱ. If we denote
N = Jac (∇F0)

T = (AM + B) (CM + D)−1, the Jacobian of ᾱ is given
by

Jac (ᾱ) =

(

A − NC B − ND

C D

)

, (75)

and its inverse by

(Jac (ᾱ))−1 =

(

JCT −J
(

AT − CT N
)

−JDT J
(

BT − DT N
)

)

. (76)

Notice that N is actually the Hessian of a function, and hence symmetric,
i.e. NT = N .
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Here we have to make an important observation. The symplectifica-
tion procedure consists of starting with Mn and an a priori fixed α, and
computing Fn using (9). Then (12) gives an exactly symplectic map,
which we call the symplectified map. Unfortunately, on a computer (9)
has to be represented by implicit equations and solved by fixed point
iterations, but formally the Taylor expansion of the symplectified map
(12) will be Mn up to order n. The point to be emphasized is that
one needs an a priori fixed α that is exactly symplectic (not only up to
order n) for the procedure to work. However, in general it is not easy
to construct exactly symplectic polynomial maps of degree at most n.
Even in the case that one constructs such a map, in general there is
no reason to believe that (∇F0)

T as given by (71) will be a polynomial
map of degree at most n. Thus, in this case the exact symplecticity of
ᾱ will be spoiled. Therefore, we are constrained to consider equivalence
classes of the types of generating functions associated with the subgroup
of linear conformal symplectic maps.

To this end, we can compare the two symplectified maps, that is the
map obtained from Fn and α, and the map obtained from Gn and ᾱ.
Notice that if α is linear, (∇F0)

T and hence ᾱ are also linear. Then for
the Jacobians of the symplectified maps we obtain from (12)

Jac (MFn,α) =

[

(

JCT −JAT
)

(

Jac (∇Fn)T

I

)]

·

[

(

−JDT JBT
)

(

Jac (∇Fn)T

I

)]−1

=
(

JCT · Jac (∇Fn)T − JAT
)

·
(

−JDT · Jac (∇Fn)T + JBT
)−1

,

(77)
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Jac (MGn,ᾱ)

=

[

(

JCT −J
(

AT − CT N
) )

(

Jac (∇Fn)T − N

I

)]

(78)

·

[

(

−JDT J
(

BT − DT N
) )

(

Jac (∇Fn)T − N

I

)]−1

(79)

=
(

JCT · Jac (∇Fn)T − JCTN − JAT + JCT N
)

(80)

·
(

−JDT · Jac (∇Fn)T + JDT N + JBT − JDT N
)−1

(81)

=
(

JCT · Jac (∇Fn)T − JAT
)

·
(

−JDT · Jac (∇Fn)T + JBT
)−1

.

(82)

Since the maps are assumed to be origin preserving, we can conclude
that

MFn,α = MGn,ᾱ. (83)

Thus we get the same symplectified map regardless of using Fn of type
α, or Gn of type ᾱ. So why is Gn interesting? It is interesting because
of the following property: if we denote the Jacobian of ᾱ by

(

Ā B̄

C D

)

, (84)

from (75) we observe that

ĀM + B̄ = (A − NC)M + (B − ND) (85)

= (AM + B) − N (CM + D) (86)

= (AM + B) − (AM + B) (CM + D)−1 (CM + D) (87)

= 0. (88)

Therefore we need to consider only the types that satisfy ĀM + B̄ = 0,
in addition to the usual constraints imposed by (14).

However, it is possible to further reduce the equivalence classes. We
will use the transformation rule (67) with linear L. Denoting Jac (L) = L

and α̃ = TL ◦ ᾱ we obtain

Jac (α̃) =

(

(

L−1
)T

Ā
(

L−1
)T

B̄

LC LD

)

. (89)
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We choose L = (CM + D)−1. After writing out explicitly the con-
straints contained in (14), a straightforward calculation shows that

(CM + D)−1 = −M−1JĀT , (90)

(CM + D)T = −MTJĀ−1. (91)

This entails that

Jac (α̃) =

(

−MT J J

−M−1JĀT C −M−1JĀT D

)

, (92)

and

(Jac (α̃))−1 =

(

JCT ĀMJ M

−JDT ĀMJ I

)

. (93)

As mentioned above, from (67) we obtain that Gᾱ,M = Fα̃,M ◦ L.
We drop the subscript as there is no danger of confusion. Since L is
linear, we also infer that

Gn = Fn ◦ L, (94)

and as a consequence

(∇Gn)T = LT · (∇Fn)T ◦ L, (95)

or

(∇Fn)T =
(

L−1
)T

· (∇Gn)T ◦ L−1. (96)

We are now in position to compare the Jacobians of the two symplectified
maps, and obtain

Jac (MGn,ᾱ)

=

[

(

JCT −JĀT
)

(

Jac (∇Gn)T

I

)]

·

[

(

−JDT −JMT ĀT
)

(

Jac (∇Gn)T

I

)]−1

=
(

JCT · Jac (∇Gn)T − JĀT
)

·
(

−JDT · Jac (∇Gn)T − JMT ĀT
)−1

, (97)
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where we used B̄ = −ĀM in the second line. Similarly, a somewhat
cumbersome calculation shows that

Jac (MFn,α̃)

=

[

(

JCT ĀJ
(

MT
)−1

M

)

(

(

L−1
)T

· Jac (∇Gn)T · L−1

I

)]

·

[

(

−JDT ĀMJ I
)

(

(

L−1
)T

· Jac (∇Gn)T · L−1

I

)]−1

=
(

JCT AJ
(

MT
)−1

MT JĀ−1 · Jac (∇Gn)T − MM−1JĀT
)

·
(

JDT AMJMT JĀ−1 · Jac (∇Gn)T − M−1JĀT
)−1

=
(

JCT · Jac (∇Gn)T − JĀT
)

·
(

−JDT · Jac (∇Gn)T − JMT ĀT
)−1

, (98)

where we used MJMT = J . Hence, we obtained again that

MGn,ᾱ = MFn,α̃, (99)

and after combining (83) and (99) we finally arrive at

MFn,α = MFn,α̃. (100)

Thus, the symplectified map obtained from a truncated generating func-
tion of type α (linear) agrees with the symplectified map obtained from
type α̃. Denote

Jac (α̃) =

(

Ã B̃

C̃ D̃

)

. (101)

Notice that the property from the first step of the reduction, that is

ÃM + B̃ = −MTJM + J (102)

= −J + J = 0 , (103)

is preserved, and in addition it has another very nice property, namely

C̃M + D̃ = −M−1JĀT (CM + D) (104)

= −M−1JĀT
(

ĀT
)−1

JM = I, (105)
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where we used (90) in the second line.
Therefore, every generating function type associated with linear maps,

which exists at least locally for a given symplectic map, is equivalent for
symplectification purposes with another type associated with

(

A B

C D

)

, (106)

such that the following relations hold:

AM + B = 0, (107)

CM + D = I. (108)

Equations (107) and (108) have to be imposed in addition to the usual
constraints derived from (14), that is

AJAT − BJBT = 0, CJCT − DJDT = 0, DJBT − CJAT = I. (109)

These five conditions restrict very much the pool of independent genera-
tor types. From (107) and (108) we obtain B = −AM and D = I−CM

respectively, which inserted in (109) gives

A = −JM−1, (110)

and re-inserted in (107) gives

B = −AM = −
(

−JM−1
)

M = J. (111)

The first condition in (109) is automatically satisfied if we impose
(107) and (108). Inserting D = I − CM in the second relation of (109)
we obtain

CMJ − (CMJ)T = J. (112)

We put

CM =
1

2
(I + JS) . (113)

This is always possible for some matrix S. Insertion of (113) in (112)
gives that S must be symmetric, i.e.

ST = S, (114)
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but can otherwise be arbitrary. Thus we obtained

C =
1

2
(I + JS) M−1, (115)

D =
1

2
(I − JS) . (116)

Therefore, every generator type belongs to an equivalence class [S]
associated with

(

−JM−1 J
1
2 (I + JS)M−1 1

2 (I − JS)

)

, (117)

and represented by the symmetric matrix S.
Given an arbitrary type of generating function, how do we know

which equivalence class it belongs to? We saw that

C̃ = (CM + D)−1 C, D̃ = (CM + D)−1 D, (118)

and similarly

C̃ =
1

2
(I + JS) M−1, D̃ =

1

2
(I − JS) . (119)

We can express C̃M − D̃ from the first two and second two relations
respectively, obtaining

(CM + D)−1 (CM − D) = JS, (120)

or equivalently

S = −J (CM + D)−1 (CM − D) . (121)

To remind ourselves, equivalence means that generating functions
from the same equivalence class will produce indistinguishable results
if used to symplectify a given order n symplectic map. Thus we just
proved the following theorem.

Theorem 6. Every generating function type associated with a lin-
ear conformal symplectic map that exists at least locally for a given
symplectic map belongs to an equivalence class represented by a sym-
metric matrix. An arbitrary type of generator, associated with a linear
α satisfying conditions (109) and (15), belongs to a class associated with
(117), and characterized by the symmetric matrix given by (121).
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In Appendix A we show how the conventional generating function
types fit into this framework.

Symplectification can be performed on the nonlinear part only by
first factoring out the linear part, or on the whole map. The next ques-
tion that arises naturally is whether there is something to be gained if
one first factors out the linear part of the symplectic map to be sym-
plectified. We address this problem in Appendix B.

Combining results of Appendix B, we show in Appendix C that
not even a linear symplectic change of variables can provide additional
freedom in the symplectification process.

5. Implementation

In this section we describe the implementation of symplectification in
cosy infinity. The method starts with Mn given, and some arbitrary
initial condition z. Utilizing equation (9) with α given by (117) we obtain
the truncated α-generating function Fn+1. The arbitrary symmetric
matrix S must be specified, fixing the type of generator utilized. All the
necessary operations of map composition, map inversion, differentiation
and integration are readily available in cosy. Then, notice that (9) can
be expressed as

ẑ − M · z = M · J · (∇Fn)T (C · (ẑ − M · z) + z) , (122)

where we denoted ẑ = M[S] (z), M[S] representing formally the sym-
plectified map, and

C =
1

2
(I + JS)M−1. (123)

To avoid as much as possible any problems with cancellation of digits,
we denote

w = ẑ − M · z, (124)

which leads to

w = M · J · (∇Fn)T (C · w + z) . (125)

This can be solved by a fixed point iteration for w, and gives the final
result by

ẑ = w + M · z. (126)
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The orbit of z is then computed by iteration of the procedure (in the
next step we take ẑ as the initial condition, etc.).

Writing (125) as w = f (w), we observe that to be able to solve (125)
by a fixed point iteration, the right hand side must be contracting for a
fixed z, i.e. is guaranteed to succeed if

|f (w2) − f (w1) | ≤ q · |w2 − w1|, (127)

for some q < 1. To have a good chance of contractivity over an extended
region, the first and second order derivatives of the generating functions
must be small. From our experience, in general the fixed point iteration
converges in the region where the generating function is defined.

Of course, (125) can be expressed as f (w) − w = 0, and solved
for w by Newton method. We noticed that the results not only are
sometimes dependent on the generating function type employed, but
also on the numerics, that is the particular numerical method used to
solve the implicit equations. Of course, if we start with an exactly
order n symplectic map, and the convergence to the solution of the
implicit equations is achieved over the tracking region for both methods,
then the resulting pictures are identical. However, in practice the fixed
point iteration works in a more stable manner. It is faster than Newton
method when many particles are tracked simultaneously, and, in the
vast majority of cases studied, its domain of convergence is larger. For
maps of practical interest, Newton method often does not converge close
to the dynamic aperture. Moreover, if the symplectification starts with
truncated maps that are not exactly order n symplectic, the results
depend on the way the truncated generating functions are computed. It
seems that the general theory provides a good order n symplectification
scheme. More about the performance of the algorithm will be presented
in the next section, where we turn our attention to examples.

6. Examples

We illustrate the performance of the symplectification methods devel-
oped in this paper with two examples. In two dimensions we can easily
generate symplectic maps to high orders. We can assume that these
high order truncated maps are approximating the exact maps so well
as to be considered numerically symplectic over a sizable phase space
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region. Then we can compute their generating functions, truncated at
some modest order (say 7), and use them to generate exactly symplectic
maps according to the above symplectification procedure. Finally, we
can compare the various maps obtained this way. We will present some
typical cases using various types of generating functions.

We study two examples: an anharmonic oscillator that has been
studied previously in the symplectification literature [23, 1], and a lattice
of the proposed Neutrino Factory [26]. Although we track the muons for
their lifetime (only 1000 turns), it is still an interesting case due to the
wide array of nonlinear effects which the lattice exhibits [12, 46, 11].

6.1. An Anharmonic Oscillator

We consider the 2D anharmonic oscillator described by the Hamiltonian

H =
1

2

(

p2 + q2
)

−
1

4
q4, (128)

which has been studied previously in [23] to compare various symplec-
tification methods, and in [1] to study optimal Cremona symplectifica-
tion. To make the comparison easier we follow the same guidelines, and
present the performance of our method by symplectifying the order 7
Taylor map of the time 1 map of the flow of (128). We track for 1000
turns and use as initial conditions

{

q = 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0, 99, 1.0 ,

p = 0 .
(129)

In Figure 1 we present the order 19 Taylor map for comparison purposes.
We applied 8 different generating function symplectifications to the 7-th
order Taylor map, which is shown in Figure 2. We displayed the results
for the conventional F1 through F4 generators in Figure 3. Notice that
F1 is the best conventional generator for this example. Next we tracked
with generators based on random symmetric matrices. In general, if the
elements of S are chosen in Sij ∈ [−1, 1] we obtain better results than
if we increased the norm of S. For example see Figure 4, and Figure 5
for another random type with Sij ∈ [−10, 10]. These figures represent
typical results. While one might say that F1 is acceptable for estimating
the dynamic aperture, we can show that it is not the optimal type. For
now let us present two more generator types that give better results.
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Figure 1: 1000 turn tracking of the anharmonic oscillator with
the 19-th order Taylor map

These are the generators associated to S = 0, and to

Sb =

(

0.1 0
0 −0.4

)

. (130)

The results are displayed in Figure 6. Comparing the various symplec-
tic trackings with the order 19 Taylor map, we see that apparently the
generator based on Sb is the best one, followed closely by the type as-
sociated to S = 0. Notice that the separatrix is very well reproduced.
Also, the tunes are predicted accurately over a large phase space region.
Therefore, at least for this example, order 7 it seems to be enough to
estimate the dynamic aperture, if we use the best type of generating
function symplectification.

6.2. A Neutrino Factory Lattice

Previous work exposed a variety of nonlinear effects in the lattice de-
scribed in [26], of the proposed Neutrino Factory. Nonlinearities are due
to the so-called kinematic effect, fringe fields, small circumference and
large aperture [12, 46, 11]. The muons lifetime is less than 1000 turns.
In spite of such a short tracking time, it is still interesting to see how the
generating function symplectification method works in a case of practi-
cal interest, where nonlinearities play an important role. We computed
order 8 maps of several realizations of the Neutrino Factory. Here we
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Figure 2: 1000 turn tracking of the anharmonic oscillator with
the 7-th order Taylor map

Figure 3: 1000 turn symplectic tracking of the anharmonic os-
cillator with the conventional generating functions (F1 through
F4)
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Figure 4: Typical 1000 turn symplectic tracking of the anhar-
monic oscillator with a generator type obtained from random
symmetric matrices with entries in [−1, 1]

Figure 5: Typical 1000 turn symplectic tracking of the anhar-
monic oscillator with a generator type obtained from random
symmetric matrices with entries in [−10, 10]
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Figure 6: 1000 turn symplectic tracking of the anharmonic oscil-
lator with the two best generator types: S = 0 on the left, and
Sb on the right

use a weakly nonlinear one for which the 8-th order Taylor map looks
quite accurate, and has a clearly defined 7-th order resonance structure.
In the following we present the tracking pictures obtained from order 8
Taylor map tracking and symplectic tracking using different generator
types. The Taylor map tracking is presented in Figure 7 and the sym-
plectic trackings with conventional types in Figure 8. Contrary to the
previous example, now F4 gives a result that more closely resembles the
truncated Taylor map. The other types give poor results. On the other
hand, the type associated to S = 0 gives excellent results again, as seen
in Figure 9. We can see that the resonance structure is preserved by the
symplectified map, and we get a somewhat bigger dynamic aperture.
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Figure 7: 1000 turn tracking of a lattice of the proposed Neutrino
Factory with the 8-th order Taylor map

7. Conclusions

We developed the general theory of generating functions of canonical
transformations. Using a modified definition of the generating func-
tion, we showed that there are many more generating functions than
commonly known. The set of generating functions turned out to be
very degenerate from the symplectification point of view. However, it
was possible to reduce the pool of generating functions to equivalence
classes associated with linear conformal symplectic maps. The remain-
ing independent types were characterized by symmetric matrices. Also,
we proved that by choosing appropriate types of generators, there is no
advantage in factoring out linear parts and symplectifying only nonlin-
ear parts, or first subjecting the map to be symplectified to a linear
symplectic coordinate change. We illustrated the performance of this
symplectification method by two examples. We showed that different
generator types often give significantly different long term behavior of
the symplectified maps. This fact points out the necessity for optimal
generating function symplectification studies, which was solved in a very
general setting based on Hofer metric [19].

Acknowledgments

This work was supported in part by the US Department of Energy Grant
No. DE-FG02-95ER40931 and an Alfred P. Sloan Foundation Fellow-
ship.



LOCAL THEORY AND APPLICATIONS OF... 271

Figure 8: 1000 turn symplectic tracking of a lattice of the pro-
posed Neutrino Factory with the conventional generating func-
tions (F1 through F4)

Figure 9: 1000 turn symplectic tracking of a lattice of the pro-
posed Neutrino Factory with the generator type associated to
S = 0
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A. Application to the Conventional Generating

Function Types

In this appendix we present briefly how the conventional generating
function types fit into the general theory framework. Because of (121),
without loss of generality we can assume that the symplectic maps have
identity as linear part. In canonical coordinates (~q, ~p) an origin preserv-
ing symplectic map acts as

M

(

~q

~p

)

=

(

~Q
~P

)

. (131)

The conventional type 1 (F1) is determined by

(∇F1)
T

(

~q
~Q

)

=

(

~p

−~P

)

. (132)
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It is straightforward to show that this type is associated with a linear
α, namely (split into n × n blocks)

Jac (α) =









0 0 0 I

0 −I 0 0
0 0 I 0
I 0 0 0









. (133)

However, it does not satisfy condition (15) for the local existence of the
generating function, because det (C · I + D) = 0. Therefore, it does not
belong to any equivalence class for symplectic maps having identity as
linear part.

On the other hand, the second conventional type (F2), determined
by

(∇F2)
T

(

~q
~P

)

=

(

~p
~Q

)

, (134)

is associated with

Jac (α) =









0 0 0 I

I 0 0 0
0 0 I 0
0 I 0 0









. (135)

The transversality condition is satisfied, and can be easily checked from
(121) that it belongs to the class represented by

S2 = −

(

0 I

I 0

)

. (136)

Similarly, the conventional type three (F3), determined by

(∇F3)
T

(

~p
~Q

)

=

(

−~q

−~P

)

, (137)

is associated with

Jac (α) =









0 0 −I 0
0 −I 0 0
0 0 0 I

I 0 0 0









, (138)
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and belongs to the class

S3 =

(

0 I

I 0

)

, (139)

differing only by a sign from the type F2

S3 = −S2. (140)

Finally, the conventional type four (F4) is determined by

(∇F4)
T

(

~p
~P

)

=

(

−~q
~Q

)

, (141)

and is associated with

Jac (α) =









0 0 −I 0
I 0 0 0
0 0 0 I

0 I 0 0









, (142)

The transversality condition being violated, it does not belong to any
class.

Thus, we recovered from the general theory the well-known facts
that F1 and F4 cannot, while F2 and F3 can be used to represent at
least locally symplectic maps having identity as linear part. Also, we
identified the equivalence classes which F2 and F3 belong to. The only
difference if the symplectic maps do not have identity as linear part is
that we obtain different symmetric matrices, and hence classes, which
also can be computed using (121).

B. Equivalence of Symplectification Procedures with and

without Linear Part

We write the symplectic map to be symplectified as

M = M + H, (143)

where M is the linear part, and H the higher order terms. We can
distinguish three symplectification procedures: symplectify Mn directly,
symplectify ML,n obtained from

ML = I + M−1 ◦ H, (144)
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or symplectify MR,n obtained from

MR = I + H ◦ M−1. (145)

In the latter two cases we first factored out the linear part from the left
and right respectively. The relations among the maps are the following:

M = M ◦ML, (146)

M = MR ◦ M. (147)

The question is whether these relations continue to hold for the sym-
plectified versions of Mn, ML,n, and MR,n. Suppose we symplectify
the maps using a generator of type α with

Jac (α) =

(

A B

C D

)

. (148)

The local existence conditions are

det (CM + D) 6= 0 (149)

in the first case, and

det (C + D) 6= 0 (150)

in the second and third case. Being linear, we use M for the Jacobian of
M too. Equations (149) and (150) are not compatible in general. Thus
in general not every type of generating function exists in all three cases.
The right question to ask is the following. Suppose one uses some type
of generator to symplectify a given map, using the approach of one of
the three cases. Then are there other types of generators which produce
the same symplectification for the other two cases? In other words, we
would like to find the appropriate type of generators such that relations
(146) and (147) hold for the symplectified maps.

To this end, any generator for the first case is associated to one of
the following:

Jac (α) =

(

−JM−1 J
1
2 (I + JS) M−1 1

2 (I − JS)

)

. (151)

Its inverse is given by

(Jac (α))−1 =

(

1
2MJ (I − SJ) M

−1
2J (I + SJ) I

)

. (152)
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Denoting the generator by F[S], Jac
(

∇F[S]

)T
=n N[S], and the symplec-

tification of Mn by M[S] we obtain

Jac
(

M[S]

)

=

[

(

1
2MJ (I − SJ) M

)

(

N[S]

I

)]

·

[

(

−1
2J (I + SJ) I

)

(

N[S]

I

)]−1

= M ·

(

1

2
J (I − SJ) · N[S] + I

)

·

(

−
1

2
J (I + SJ) · N[S] + I

)−1

.

(153)

Now we turn our attention to the second case. Here the possible
generators belong to one of the following classes:

Jac (β) =

(

−J J
1
2

(

I + JS̄
)

1
2

(

I − JS̄
)

)

. (154)

Clearly its inverse is

(Jac (β))−1 =

(

1
2J
(

I − S̄J
)

I

−1
2J
(

I + S̄J
)

I

)

. (155)

Again, denoting the symplectified version of ML,n by ML[S̄] we obtain

Jac
(

M
L[S̄]

)

=

[

(

1
2J
(

I − S̄J
)

I
)

(

N[S̄]
I

)]

·

[

(

−1
2J
(

I + S̄J
)

I
)

(

N[S̄]
I

)]−1

=

(

1

2
J
(

I − S̄J
)

· N[S̄] + I

)

·

(

−
1

2
J
(

I + S̄J
)

· N[S̄] + I

)−1

, (156)

where we used the notation Jac
(

∇F[S̄]

)T

=n N[S̄]. Next, we use the

transformation property (62) with K = M−1. It follows that

Fβ,ML
= Fβ◦TK,M. (157)

Also notice that β ◦ TK = α if and only if S̄ = S. In this case

N[S̄] = N[S]. (158)
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Comparing equations (153) and (156), and using (158) we can conclude
that

M[S] = M ◦ML[S̄], (159)

if and only if

S̄ = S. (160)

This proves that the symplectified version of (146) is equation (159),
and holds only if (160) is satisfied.

We can proceed to the third case and follow the same route. To
symplectify MR,n we choose a generator type from the pool

Jac (γ) =

(

−J J
1
2

(

I + JS̃
)

1
2

(

I − JS̃
)

)

, (161)

with inverse

(Jac (γ))−1 =





1
2J
(

I − S̃J
)

I

−1
2J
(

I + S̃J
)

I



 . (162)

If we denote the symplectification of MR,n by M
R[S̃] we get

Jac
(

M
R[S̃]

)

=

[

(

1
2J
(

I − S̃J
)

I
)

(

N[S̃]
I

)]

·

[

(

−1
2J
(

I + S̃J
)

I
)

(

N[S̃]
I

)]−1

=

(

1

2
J
(

I − S̃J
)

· N[S̃] + I

)

·

(

−
1

2
J
(

I + S̃J
)

· N[S̃] + I

)−1

, (163)

using the notation Jac
(

∇F[S̃]

)T

=n N[S̃]. Now using the transforma-

tion rule (60) with A = M−1 we obtain

Fγ,MR
= Fγ◦TA ,M. (164)

A straightforward calculation gives that

Jac (γ ◦ TA) =

(

−J JM
1
2

(

I + JS̃
)

1
2

(

I − JS̃
)

M

)

, (165)
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with inverse

(Jac (γ ◦ TA))−1 =





1
2J
(

I − S̃J
)

I

−1
2M−1J

(

I + S̃J
)

M−1



 . (166)

Then, equation (163) can be expressed as

Jac
(

M
R[S̃]

)

= X · M−1, (167)

where we introduced the notation

X =

(

1

2
J
(

I − S̃J
)

· ∇Fγ◦TA,M + I

)

·

(

−
1

2
M−1J

(

I + S̃J
)

· ∇Fγ◦TA,M + M−1

)−1

. (168)

But as one can see from (166) this is nothing else than the Jacobian of
the symplectified map obtained from Mn and generator of type (165).
As shown in Section 4 this generator type for Mn belongs to the equiva-
lence class represented by the symmetric matrix calculated using formula
(121). A short calculation gives the result,

S = MT S̃M. (169)

Combining this result with equations (167) and (168) we can con-
clude that

M[S] = ML[S̃] ◦ M. (170)

This proves that the symplectified version of (147) is equation (170),
and holds only if (169) is satisfied. Therefore, the main result of this
appendix can be formulated as the following theorem.

Theorem 7. The symplectified version of (146), i.e. equation (159),
holds if and only if (160) is satisfied, and the symplectified version of
(147), i.e. equation (170), holds if and only if (169) is satisfied.

The main point we learned from this appendix is that from the
optimal symplectification point of view there is no difference which way
one proceeds. Once we obtained the best type of generator for one case,
the best generators for the other cases automatically follow from (160)
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and (169). Therefore, there is nothing to be gained by factoring out
linear parts and symplectifying the nonlinear parts only. Moreover, the
first case (without factorization) is the most efficient when implemented
numerically on a computer.

C. Equivalence in the Case of Symplectic Maps Conjugated

by Linear Symplectic Maps

Combining the left and right factorizations in linear and nonlinear parts
just discussed, we can address the special case of the linear symplectic
change of variables. From equations (146) and (147) we can infer that

MR = M ◦ML ◦ M−1, (171)

and from (159) and (170) that

M
R[S̃] = M ◦M

L[S̄] ◦ M−1, (172)

if

S̄ = MT S̃M. (173)

The two maps are conjugated by a linear symplectic transformation.
However, this case is very special, since both MR and ML are obtained
from the same map M. We could relax the conditions, and ask if any
two symplectic maps are conjugated by an arbitrary linear symplectic
map, then the same holds true for their symplecified counterparts. That
is, suppose that M and N are symplectic maps such that

N = K ◦M ◦ K−1, (174)

for some linear symplectic K. The possible types of generating functions
are associated with

Jac (α) =

(

−JKM−1K−1 J
1
2 (I + JS)KM−1K−1 1

2 (I − JS)

)

, (175)

for Nn, and

Jac (β) =

(

−JM−1 J
1
2

(

I + JS̄
)

M−1 1
2

(

I − JS̄
)

)

, (176)
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for Mn. As before, we denoted M = M + H and Jac (K) = K. The
transformation rule to be used here is

Fα,N = Fα◦TK,M, (177)

where

Jac (TK) =

(

K 0
0 K

)

. (178)

Following the now well established procedures of Appendix B we
proved that also

N[S]= K ◦M[S̄]◦K
−1 (179)

holds for the symplectified maps if

S̄ = KT SK. (180)

The details are left to the reader. Therefore, we gain no additional
freedom in the symplectification process if we first subject the symplectic
map to a linear symplectic variable change.


