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Editorial

We are happy to present these Proceedings of the Eighth International Computational Accelerator Physics
Conference (ICAP, 2004), which was held in June 29–July 2, 2004 at Saint-Petersburg State University in St.
Petersburg, Russia.
The main aim of the conference was to bring together researchers working on different theoretical and

practical problems of accelerating devices, including their design, construction, maintenance, and use. It is our
pleasure to say that the Conference was successful in achieving this goal. Forty-six institutions from all around
the world—from Germany, Russia, the United States, and many other countries—had their work presented at
ICAP 2004. One hundred and thirty-nine talks and poster reports were given by 127 participants. The 4-day
program of the Conference consisted of 21 oral sessions divided into subfields, and one common poster session,
which provided enough room and time for discussions and communication.
The best works in each of the ten conference topics were selected to form this volume of proceedings. We

hope this book will be useful for many researchers in computational accelerator physics.

Dmitri Ovsyannikov, Martin Berz, Kyoko Makino
(Guest Editors)
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Abstract

The tools used to compute high-order transfer maps based on differential algebraic (DA) methods have recently been augmented by

methods that also allow a rigorous computation of an interval bound for the remainder. In this paper we will show how such methods

can also be used to determine rigorous bounds for the global extrema of functions in an efficient way. The method is used for the

bounding of normal form defect functions, which allows rigorous stability estimates for repetitive particle accelerator. However, the

method is also applicable to general lattice design problems and can enhance the commonly used local optimization with heuristic

successive starting point modification. The global optimization approach studied rests on the ability of the method to suppress the so-

called dependency problem common to validated computations, as well as effective polynomial bounding techniques. We review the

linear dominated bounder (LDB) and the quadratic fast bounder (QFB) and study their performance for various example problems in

global optimization. We observe that the method is superior to other global optimization approaches and can prove stability times

similar to what is desired, without any need for expensive long-term tracking and in a fully rigorous way.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we describe a practical method to rigorously
assess the long-term stability of storage rings and other
repetitive systems. The approach is based on methods of
rigorous global optimization and will be applied to
the study of the dynamics of the Tevatron at Fermilab.
The theoretical foundation of the stability estimate is the
method of normal forms [1,2] that allows to determine a
family of three approximate invariants I of the motion. The
defect of these invariants I, i.e. the quantity

d ¼ maxðIðMÞ � IÞ

where M is the transfer map describing one revolution, can
be used to provide bounds for minimum stability. In fact, if
the distance of the outermost approximate invariant to the
disallowed region is a, then the number of iterations
necessary to reach this region is apparently at least a=d.
Thus, bounding d from above allows to assert stability, and
the sharpness of the bound directly determines the quality
of the stability estimate.
High-order map methods relating final and initial

conditions of phase space variables for one revolution of
the accelerator by the transfer map M have grown into a
very widely used tool since their inception [3]; many details
can be found in [2]. Recently, methods have been
developed that allow not only the computation of the
maps themselves, but also rigorous bounds for their
remainders [4–6]. As we shall illustrate, these methods
can also be used very beneficially for the problem of
rigorously finding the global maximum or minimum of a
function, and thus for the rigorous estimate of stability
time of the Tevatron.
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In the following sections we will briefly outline general
ideas about rigorous global optimization and how they can
be enhanced using the tools to compute remainder bounds
for maps. We will illustrate the performance of these
methods with various examples, and then apply them to the
study of the Tevatron normal form defect problem. We will
arrive at a rigorous stability estimate for the Tevatron that
is practically relevant.

2. Rigorous global optimizers

Rigorous, validated, or verified global optimization
characterizes the attempt of finding bounds of the global
maximum or minimum of a sufficiently smooth function
over a given domain. This task is distinct from the widely
known and applied method of local optimization in that
not only a nearby local extremum is sought. Furthermore,
enclosures for the extrema and the points where they are
assumed are obtained in a fully mathematically rigorous
way, including the accounting of all effects of numerical
inaccuracy.

2.1. Interval-based methods

The simplest method for validated global minimization is
the interval branch-and-bound approach that successively
studies sub-boxes of the original domain and attempts to
prove that they cannot contain the minimum, upon which
they are discarded. Usually these algorithms are based on a
stack of boxes to be studied, which is initialized with the
original full domain, as well as a rigorous upper bound for
the minimum, the so-called cutoff, which is initialized with
the result of a function evaluation in interval arithmetic at
a suitably chosen point.

There are many variations used in practice, but the most
elementary approach is based on picking the oldest box
from the stack, evaluating the function on the center of the
box to possibly obtain an update for the cutoff, and
determining a lower bound of the function over the box
by interval evaluation. If this lower bound exceeds
the current cutoff, the box can be discarded; if it
does not, then the box will be split along its longest
direction and the two resulting boxes will be added to
the stack for further study. By executing all operations
in outward rounded interval arithmetic, full rigor of
the argument is retained. This is not the place to do justice
to the wide field of interval global optimization, but we
rather refer to some of the common references on the topic
[7–10].

Different from local optimization, the complexity of
which often scales polynomially in dimension, that of
global optimization can frequently grow exponentially with
dimension. This is exemplified by the function f n on
½�1; 1�n in n variables xi given by f ðx1; . . . ;xnÞ ¼

Pn
i¼1

cosðxi=2pÞ; apparently, each term in the sum assumes a
minimum for xi ¼ �

1
2
, so that there are 2n local minima.

While local optimizers will settle into one of these

depending on the starting point chosen, global optimizers
at the very least have to probe all of them.
Performing global optimization using interval tools can

introduce further complications. The two most important
ones are that

(1) Interval methods are known for the fact that the
resulting range bounds contain potentially significant
overestimation, depending on the complexity of the
function; this is frequently referred to as the dependency

problem.
(2) It is usually observed that as the global optimization

algorithm progresses, the number of boxes in the stack
that lie in the vicinity of a local minimum remains
nearly constant for a long time and thus all these
neighboring boxes have to be split in each step, slowing
down the process of elimination [11]; this is frequently
referred to as the cluster effect.

2.2. Control of the dependency problem

It was recognized in Ref. [12] that the computation of a
map with remainder bound of a functional dependency can
significantly reduce the dependency problem. The reason
for this simple yet very powerful observation is that the
dominating part of the description of the function is caught
by the Taylor coefficients. Thus, any operations on
representations of functions merely require floating point
arithmetic for the treatment of coefficients, and thus no
overestimation occurs (with the exception of small effects
due to the limited mantissa length and the resulting floating
point errors, which are rigorously accounted for [13]).
Overestimation does occur, as with all interval arithmetic,
within the arithmetic of the remainder bound; but the
influence of this remainder bound is many orders of
magnitude smaller than that of the coefficients and thus its
harm is reduced accordingly.
To illustrate this phenomenon, let us consider the

following simple one-dimensional function:

f ðxÞ ¼
X30
i¼0

ð�1Þi
x2i

ð2iÞ!

which is recognized to be the power series representation of
cosðxÞ up to order 60; over the domain ½0; 4p�, it represents
cosðxÞ to an accuracy of better than 10�15. In Fig. 1 we
show the overestimation of the true range of the function
(which is assumed to be that of cosðxÞÞ for the naive
interval method, as well as the more advanced approaches
of mean value form and centered form (see for example
Ref. [9]) for domains of width 2�j for the values j ¼ 1; . . . ; 8
around x ¼ p=4. The results are compared with what is
obtained by first determining the map representation of the
function, and then evaluating the polynomial part of this
map representation in interval arithmetic. Apparently all
methods become sharper for larger j, but the sharpness of

ARTICLE IN PRESS
M. Berz et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 1–102



the map approach is superior because the map representa-
tion has less dependency than the original problem.

Performing the same comparison again for
x ¼ 2pþ p=4, where the function has the same form except
that the dependency problem is more significant, we see
that the map approach provides a significant improvement,
as seen in Fig. 2. Indeed, the higher order map methods
achieve the same amount of overestimation as in the
previous case, while the interval-, centered form- and mean
value form methods suffer from overestimation due to the
dependency problem.

A substantially more detailed study of the behavior of
the method for many other cases can be found in Ref. [14].

2.3. The linear dominated bounder, LDB

As we saw, the map representation with remainder
bound can significantly reduce the dependency problem.
However, it is even possible to obtain sharper bounds yet
by replacing the interval evaluation of the polynomial part
with more sophisticated methods. In particular, we will in
the following study the so-called linear dominated bounder
(LDB) first introduced in Ref. [15]. It is based on using the
map representation to determine a linear function that is a
lower bound to the original function, and use this
linearization and simple linear constraint methods to
successively reduce the domain that can contain the
extremum.
Within the framework of validated global optimization,

after reducing the dependency problem with map methods
as shown above, this will now lead to a tool to effectively
reduce or eliminate boxes. While there is nothing that can
help the inherent exponential complexity of high-dimen-
sional problems, it will help improve practical performance
significantly. Given a domain D, we consider the repre-
sentation of the function f by a Taylor polynomial P and a
rigorous bound for the remainder I, which can be obtained
by the above-mentioned methods [4–6] such that

f ðxÞ 2 PðxÞ þ I for all x 2 D.

In case we are away from a stationary point, the linear part
of P will dominate the behavior of the representation. The
linear dominated bounder utilizes the linear part as a
guideline for iterative domain reduction to bound P.
Specifically, the algorithm is as follows.
LDB Algorithm

(1) Re-expand P at the mid-point c of D, call the resulting
polynomial Pm and the centered domain D1.

(2) Make the linear coefficients Li of Pm all positive by
flipping coordinate directions as necessary; call the
resulting polynomial Pþ.

(3) In step n, compute interval bounds of the linear ðI1Þ
and nonlinear ðIhÞ parts of Pþ in Dn. The minimum is
then bounded by ½M ;M in�:¼I1 þ Ih. If applicable,
lower M in by the current cutoff, the actual function
value at the lower endpoints, and that at the midpoint.

(4) Let d ¼ widthð½M ;M in�Þ. If d lies below a termination
value, stop. Otherwise, if Lia0; the domain containing
the minimum can be restricted to Dnþ1;i:¼
minðDn;i þ d=Li; D̄n;iÞ. Re-expand Pþ at the mid-point
c of Dnþ1. Prepare the new coefficients Li, and continue
with step 3.

Any errors associated with re-expansion and estimating
point values are included in the remainder error bound
interval. If f is monotonic, the exact bound is often
enclosed with high accuracy. If only a threshold cutoff test
is needed, the resulting domain reduction or elimination is
often very effective.
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We now consider the performance of the LDB approach
for the problem discussed in the previous sections. Figs. 3
and 4 contain the behavior of Figs. 1 and 2 on the left, as
well as the results of using the LDB bounder on the right.
Observe that even in a high-dependency case, the LDB
bounder significantly outperforms the other methods,
achieving accuracies that exceed those of conventional
interval-based tools by 10 orders of magnitude.

2.4. The quadratic fast bounder, QFB

The natural next idea of the bounding of the polynomial
is to explicitly bound the quadratic part of P. This will help
in cases where the linear part alone is not dominating, for
example, in the proximity of a local minimizer. Exact range
bounding of a general quadratic polynomial has a
complexity that scales exponentially with dimension and

can thus be expensive. A preliminary scheme of a quadratic
dominated bounder (QDB) is discussed in Ref. [15], and a
more advanced method as well as the bounder QFB that
will be discussed in the following is introduced in Ref. [16].
However, obtaining a lower bound of the quadratic

polynomial near a local minimizer, which is the most
important problem in global optimization, turns out to be
much simpler. Indeed, in sufficient proximity of an isolated
interior minimizer of the function f, the Hessian of f is
positive definite, and so the purely quadratic part of a
representation Pþ I that locally encloses f also has a
positive definite Hessian matrix H. The actual definiteness
can be tested in a validated way using the common LDL or
extended Cholesky decomposition [16]. The quadratic fast
bounder (QFB) provides a lower bound of Pþ I cheaply
when the purely quadratic part is positive definite. It is
based on the following observation.
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Given the quadratic form

QðxÞ ¼ 1
2

xt �H � xþ a � xþ b

where H is symmetric, we determine the so-called Ordered
LDL (OLDL) Decomposition (L: lower diagonal with unit
diagonal, D: diagonal) of H as follows:

(1) Pre-sort rows and columns by the size of their diagonal
elements.

(2) Successively execute conventional LtDL decomposition
step in interval arithmetic, beginning by representing
every element of H by a thin interval; in step i:
(a) If lðDði; iÞÞ40 proceed to the next row and column.
(b) If uðDði; iÞÞo0, exchange row and column i with

row and column i þ 1, i þ 2; . . . If a positive
element is found, proceed as in step (a). If none is
found, stop.

Similar to what is done in conventional Cholesky or LDL
decomposition, it is useful to give careful consideration to
the case in which 0 2 Dði; iÞ, or Dði; iÞ is too small. In this
case, it is useful to apply a small correction C to H, i.e. to
study H þ C instead of H, such that all elements of D are
clearly positive or negative. As is typical also in non-
validated LDL decomposition, C is usually chosen to be
diagonal, and jCj is lumped into the remainder bound of
the original problem. The resulting LDL decomposition
has the important property that sufficiently near a local
minimizer, D will contain only positive elements that are
sufficiently away from zero.

In the wider vicinity of a local minimum, the method
may still possibly determine that all diagonal terms of D

can be proven positive, in which case positive definiteness is
asserted. If this is not the case, at least the upper part where
Dði; iÞ40 will describe a large positive semi-definite sub-
space.

In the following we study the case in the near proximity
of a minimizer where the OLDL decomposition succeeds to
assert that H is positive definite. We will now use that
knowledge to determine a sharp lower bound for f . Let
f 2 Pþ I over D. We decompose the polynomial P into
two parts and write

Pþ I ¼ ðP�QÞ þ I þQ.

Then a lower bound for Pþ I is obtained as

lðPþ IÞ ¼ lðP�QÞ þ lðQÞ þ lðIÞ. (1)

For the purpose of the QFB algorithm, we choose

Q ¼ Qx0
¼ 1

2
ðx� x0Þ

tHðx� x0Þ (2)

with some suitable x0 2 D.
Since H is positive definite, lðQx0

Þ ¼ 0, and the value 0 is
attained (at x ¼ x0). The remaining P�Qx0

does not
contain pure quadratic terms anymore, but consists of
linear as well as third and higher order terms P42. If x0 is
chosen to be the minimizer of the quadratic part P2 of P in
D, then x0 is also a minimizer of the remaining linear part

(a consequence of the Kuhn–Tucker conditions), and so
the lower bound estimate (1) is optimally sharp. Thus, by
choosing x0 sufficiently close to the minimizer in D of P2,
the contribution of P2 �Qx0

to the lower bound can
become arbitrarily small.
A simple and efficient way to determine a sequence x

ðnÞ
0

of candidates for x0 is based on determining the ‘‘feasible
descent direction’’

g
ðnÞ
i ¼

�
qQ

qxi

if x
ðnÞ
i inside

min �
qQ

qxi

; 0

� �
if x

ðnÞ
i on right

max �
qQ

qxi

; 0

� �
if x

ðnÞ
i on left

8>>>>>>><
>>>>>>>:

and to move in the direction of gðnÞ until we hit the
bounding box or a one-dimensional quadratic minimum
along the line. The method is very fast, can cover large
ground per step, and in the terminology of constrained
optimization, can change the set of active constraints very
quickly. As a result, we obtain an inexpensive third order
cutoff test that requires very few, if any, iterations to
determine a useful x0.

2.5. The validated global optimizer, COSY-GO

For the example problems of validated global optimiza-
tion in the next sections, we apply three branch-and-bound
methods available in the code COSY-GO [17]. The first one
is the optimizer utilizing the LDB and QFB algorithms. We
compare the performance with two other optimizers; one
based on mere interval bounding (IN) and one based on
bounding with centered form (CF). The subdomain box list
management is performed in the same way for all three
optimizers. At each step in which a subdomain is being
studied for possible elimination, the following tasks are
performed:

(1) A lower bound l of the function is obtained using
various bounding schemes in a hierarchical manner. If
the lower bound is above the cutoff value, the box is
eliminated; if not, the box is bisected.
(a) Interval bounding of the polynomial P is utilized

for all optimizers; if it fails to eliminate the box,
then additional tests are performed.

(b) For the CF optimizer, centered form bounding is
performed. For the COSY-GO optimizer, as a first
test the polynomial part is evaluated in interval
arithmetic. When it fails to eliminate the box, the
LDB bounding and possible domain reduction is
executed. If it also fails to eliminate the box, and if
the quadratic part of the polynomial P is positive
definite, QFB bounding is performed.

(2) The cutoff value is updated using various schemes.
(a) The conventional midpoint test is performed for all

optimizers.
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(b) For the COSY-GO optimizer, the linear and
quadratic parts of P are utilized to obtain a
potential cutoff update. In particular, if the
quadratic part of the polynomial is positive definite,
the minimizer of the quadratic polynomial is tested.
If the quadratic part is not positive definite, the
minimizer of the quadratic part in the direction of
the negative gradient is tested.

3. Validated global optimization—illustrative examples

In the following, we study the performance of the
various versions of validated optimizers discussed above
for some illustrative examples. We also compare with the
performance of non-validated local optimization.

3.1. The Rosenbrock function

As a first example, we consider a relatively benign-
looking function of two variables that contains a single
local minimum; but the minimum occurs along a long and
very shallow parabolic valley. This function originally
proposed by Rosenbrock has the form

f Rðx; yÞ ¼ 100ðy� x2Þ
2
þ ð1� xÞ2

and it apparently assumes its minimum of 0 at
ðx; yÞ ¼ ð1; 1Þ.

We study the function over the domain ½�1:5; 1:5�2,
where its values range from the minimum 0 to more than
1400 near the point ð�1:5;�1:5Þ. Fig. 5 shows a three-
dimensional rendering of the function and the seemingly
innocent parabolic valley generated by the first term, as
well as a set of logarithmic contour lines for function values
0:1� 10i=2 for i ¼ 1; . . . ; 13, revealing the substructure of
the parabolic valley generated by the second term.

This function causes difficulties even for powerful
conventional local minimizers because as soon as the
optimizer is probing not exactly inside the valley, the
direction of steepest descent is nearly perpendicular to the
valley and hence in the almost completely wrong direction.
Table 1 shows the performance of various tried-and-true
optimizers in COSY [18,19], the LMDIF algorithm based
on steepest descent with various enhancements, the

Simplex algorithm which is particularly powerful for non-
smooth problems, as well as the Anneal approach based on
stochastic search of the global minimum by simulated
annealing. The starting point was chosen at ð�1:2; 1:0Þ,
which is near the valley but on the opposite side of the true
minimum. For LMDIF and Simplex, an accuracy tolerance
of 10�12 and a maximum number of steps of 100; 000 was
specified, and Anneal was given a total number of 100; 000
annealing steps. Table 1 shows the performance of the
three non-validated optimizers. It can be seen that the
usually quite powerful LMDIF algorithm performs rather
poorly and is in this example significantly outperformed by
the Simplex algorithm.
Now we utilize various validated global optimization

tools to study the problem. In particular, we use the
common Moore–Skelboe algorithm and determine ranges
of the function by the mere interval evaluation method,
and also the usually more accurate centered form method.
From the perspective of interval methods, the function has
a rather benign form with little dependency, and the
squares that appear in the two terms can even be handled
exactly. We compare these methods with the COSY-GO
optimizer. Table 2 shows the performance of these three
methods. It is apparent that for COSY-GO, the number of
processing steps, i.e. the number of boxes considered,
compares very favorably even with the performance of the
best non-validated optimizer, aside from the fact that it of
course determines a rigorous global optimum. On the other
hand, the Interval and CF methods each require approxi-
mately one order of magnitude more steps, but still
compare rather favorably to LMDIF and Anneal. It is
also interesting to note that in a significant number of
cases, LDB could reduce the size of a box under
consideration without actually fully eliminating it.
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Table 1

Performance of various local optimizers for finding the minimum of the

Rosenbrock function in ½�1:5; 1:5�2 from the starting point ð�1:2; 1:0Þ

LMDIF Simplex Anneal

Number of steps 100; 000 225 100; 000
Error in f ðx; yÞ 1� 10�10 2� 10�13 3� 10�4

Error in ðx; yÞ 2� 10�5 4� 10�7 6� 10�3
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We now study in more detail the performance of the
validated global optimizers. To this end we show all boxes
that were studied in the process within the original domain
box. Fig. 6 shows these for both the interval- and COSY-GO
methods. Apparently, both methods successfully eliminate
relatively large boxes away from the minimizer, while the
boxes tend to get smaller and smaller as the minimizer is
approached; however, the size of the boxes rejected by
COSY-GO is significantly larger.
On the right of Fig. 6 we show the number of currently

active boxes, as well as the value of the current upper
bound of the minimum, the so-called cutoff value. For a
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Table 2

Performance of various validated global optimizers for finding the

minimum of the Rosenbrock function in ½�1:5; 1:5�2

IN CF COSY-GO

Total box

processing steps

1325 1325 143

Max number of

active boxes

47 47 9

Retained small

boxes ðo10�6Þ

15 15 1

LDB domain

reduction steps

– – 43
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long time, the interval method maintains a nearly constant
number of around 35 active boxes, while COSY-GO never
require more than 10 active boxes, and soon keeps only one
or two.

3.2. The Beale function

The next example is the Beale function [20]

f Bðx1;x2Þ ¼ ð1:5� x1ð1� x2ÞÞ
2
þ ð2:25� x1ð1� x2

2ÞÞ
2

þ ð2:625� x1ð1� x3
2ÞÞ

2.

The problem is to find the minimum in the initial domain
½�4:5; 4:5� � ½�4:5; 4:5�; one easily verifies that the function
assumes the minimum 0 at ð3; 0:5Þ. Fig. 7 shows the
behavior of the function, exhibiting a nearly flat extended
valley containing the minimum. However, logarithmic
contour lines of levels 0:1� 10i=2 for i ¼ 1; . . . 13 show a
subtle substructure of the valley, having a trench-like shape
near the minimizer ð3; 0:5Þ, but another trench of small
function values in the upper left quadrant.

In particular this additional ‘‘trench’’ of small function
values makes optimization difficult. We begin the study by
using the three default optimizers in COSY, with an
accuracy tolerance of 10�12 and a maximum of 100; 000
iterations. Starting at ðx; yÞ ¼ ð4;�4Þ yields reasonable
convergence in under 1000 steps for both LMDIF and
Simplex, as shown in Table 3. On the other hand, the
situation changes drastically when using as a starting value
the point ðx; yÞ ¼ ð�4; 4Þ. In this case, the local optimizers
get caught by the wrong trench of the objective function,
and fail to get near the global minimum. The simulated
annealing tool still succeeds in finding a reasonable
approximation of the global minimum; the details of the
performance are summarized in Table 4.

On the other hand, all validated global optimizers have
no difficulty finding the global minimum accurately.

Significant differences exist, however, in the speed with
which this is achieved; the results are summarized in Fig. 8
and Table 5. Square expressions in f B are executed as
multiplications.
We observe no significant advantage in the CF optimizer

compared to the interval optimizer, both of which maintain
a list of about 60 active boxes for an extended time. On the
other hand, the COSY-GO optimizer significantly out-
performed both others because of more efficient box
rejection and LDB domain size reduction, and requires a
number of boxes comparable to the number of steps
needed for the local optimizers in the case of a favorable
initial condition.

4. Long-term stability of the Tevatron

We now return to the study of long-term stability of the
Tevatron storage ring at collision. We utilize the four-
dimensional map of lattice with parameters as described
and optimized by Snopok et al. [21]. To illustrate the
behavior of the normal form defect function, Fig. 9 shows
a two-dimensional projection in which the two normal
form radii are frozen at 5� 10�4, and the two normal form
angles moving from 0 to 2p. Already in these low-
dimensional projections it becomes apparent that the
functions have a large number of local minima and
maxima, which makes finding their global extrema difficult.
In order to assess the performance of the COSY-GO

global optimizer, we attempt a comparison with the
validated global optimizer GLOBSOL [7]. As it turned
out, the very high demands on the sharpness of the upper
bound of the maximum of the normal form defect function
did not allow the use of GLOBSOL for the specific
problem at hand. So for the purpose of comparison, we
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Table 3

Performance of various local optimizers for finding the minimum of the

Rosenbrock function from the starting point ð4;�4Þ in ½�4:5; 4:5�2

LMDIF Simplex Anneal

Number of steps 825 123 100; 000
Error in f ðx; yÞ 7� 10�13 3� 10�13 3� 10�2

Error in ðx; yÞ 2� 10�6 4� 10�7 8� 10�2

Table 4

Performance of various local optimizers for finding the minimum of the

Beale function from the starting point ð�4; 4Þ in ½�4:5; 4:5�2

LMDIF Simplex Anneal

Number of

steps

100; 000 100; 000 100; 000

Error in f ðx; yÞ 6� 10�1 4� 100 1� 10�4

Error in ðx; yÞ 2� 101 5� 100 3� 10�2

Table 5

Performance of various validated global optimizers for finding the

minimum of the Beale function in ½�4:5; 4:5�2

IN CF COSY-GO

Total steps 3407 3285 353

Max boxes 236 234 52

Retained boxes 25 25 3

LDB reductions – – 108

Table 6

Performance of the validated global optimizer COSY-GO for a generic

normal form defect function

Dimension CPU time (s) Max list Total boxes

2 5.747 11 31

3 38.49 44 172

4 346.9 357 989

5 3970 2248 6641

6 57,842 17,241 49,821
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chose a different, less demanding normal form defect
bounding problem based on the polynomials available at
bt.pa.msu.edu. In Tables 6 and 7 we show some parameters

describing the performance of COSY-GO and GLOBSOL
for subspaces of different dimensionality. GLOBSOL
succeeds to complete only the two-dimensional case in a
reasonable time, while COSY-GO succeeds to complete
even the six-dimensional case in similar time. For the two-
dimensional case, COSY requires much less than 1% of the
CPU time of GLOBSOL. The maximum list length and
total number of boxes studied are rather manageable
(Table 8).
We next apply COSY-GO to the realistic Tevatron

problem. The one sigma emittance of the beam translates
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Fig. 8. Minimum search for the Beale function in ½�4:5; 4:5�2 by the interval, the centered form, and the LDB/QFB optimizers. Left: subdomain boxes

studied. Right: number of active boxes and cutoff value as a function of step number.

Table 7

Performance of the validated global optimizer GLOBSOL for a generic

normal form defect function

Dimension CPU time (s) Max list Total Boxes

2 18,810 4723

3 4562; 896 –

M. Berz et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 1–10 9



into a normal form radius of approximately 0:12� 10�4.
We study the magnitude of the normal form defect bound
for various different radius bands, and determine the ratio
of width of band to normal form defect bound, which gives
the minimum transversal iterations for the band. Fig. 9
shows the result of the calculations; it becomes apparent
that it requires more than 2:7� 108 revolutions for a
particle starting with a normal form radius below 0:2�
10�4 to be lost.
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Table 8

Global bounds obtained for six regions in normal form space for the Tevatron. Also computed are the guaranteed minimum transversal iterations

Region Boxes studied CPU time (s) Bound Transversal iterations

½0:2; 0:4� � 10�4 82; 930 30; 603 0:859� 10�13 2:3283� 108

½0:4; 0:6� � 10�4 82; 626 30; 603 0:587� 10�12 3:4072� 107

½0:6; 0:9� � 10�4 64; 131 14; 441 0:616� 10�11 4:8701� 106

½0:9; 1:2� � 10�4 73; 701 13; 501 0:372� 10�10 8:0645� 105

½1:2; 1:5� � 10�4 106; 929 24; 304 0:144� 10�9 2:0833� 105

½1:5; 1:8� � 10�4 111; 391 26; 103 0:314� 10�9 0:95541� 105
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Abstract

A special class of problems attracting attention of numerous researchers is represented by the tasks associated with the beam dynamics

optimization in accelerators of charged particles. In this paper the problem of beam dynamics optimization is considered as a control

theory problem. Problem statement is considered on the pattern of RFQ channel.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Experts in different accelerator laboratories accumulated
wide experience in RFQ designing [1–7]. Nevertheless new
tasks on high-power, high-energy CW linac designing
(for example, for ADT applications) appeared recently.
Such accelerators must be practically free of beam losses.
This main condition placed more stringent requirements
upon beam quality at the input of each linac part. Because
RFQ is used as beginning part in the above accelerators,
beam high-quality requirements is related to RFQ
primarily. It means that existing experience in RFQ
designing must be enriched by new approaches and new
methodology.

This paper suggests new mathematical models, which
allow joint optimization of program motion and an
ensemble of perturbed motions.

The suggested approach allows to construct optimiza-
tion methods for selecting program motion with
simultaneous optimization of various dynamical char-
acteristics of ensemble of trajectories, which satisfy

corresponding equations in deviations from program
motion [8–12].
Considering the problems of beam physics we can

understand program motion as the given motion. In
particular, we can consider the motion of synchronous
particle as the program motion. The variation of amplitude
of accelerating wave and the variation of synchronous
phase along the accelerator can be considered as control
functions.
New approach to solving optimization problem for

charged particles dynamics in accelerators includes:
construction of mathematical model of controlled
dynamical process; choice of control functions or para-
meters of optimization; construction of quality functionals,
which allow efficient evaluation of various characteristics
of examined controlled motions; analytical representation
of the functionals variations, which allow to construct
various methods of optimization for quality functionals;
construction of methods and algorithms of optimization.
The suggested approach is applied to the optimization of

charged particles dynamics in RFQ channel. Correspond-
ing codes are developed.
Application of developed methods shows their

effectiveness.

ARTICLE IN PRESS

www.elsevier.com/locate/nima

0168-9002/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.nima.2005.11.002

�Corresponding author. Tel.: +7812 4287179; fax: +7 812 4287189.

E-mail address: dovs@compmath.spbu.ru (D.A. Ovsyannikov).



2. Problem statement

Let us consider following mathematical model of control
described by a system of integro-differential equations

dx

dt
¼ f ðt;x; uÞ, (1)

dy

dt
¼ F 1ðt;x; y; uÞ

þ

Z
Mt;u

F2ðt; x; y; ztÞrðt; ztÞ dzt ¼ F ðt;x; y; uÞ, ð2Þ

dr
dt
¼ �rðt; yÞ divy F ðt;x; y; uÞ (3)

with initial conditions

xð0Þ ¼ x0, (4)

yð0Þ ¼ y0 2M0, (5)

rð0; yð0ÞÞ ¼ r0ðy0Þ; y0 2M0. (6)

Here t 2 T0 ¼ ½0;T � is independent variable, x 2 Rn and
y 2 Rm are vectors of phase variables, u ¼ uðtÞ is an
r-dimensional function, T is fixed number, r ¼ rðt; yÞ is
scalar function, r0ðy0Þ is some non-negative continuous
function. Set

Mt;u ¼ fyt j yt ¼ yðt;xðtÞ; y0; uÞ; y0 2M0;xð0Þ ¼ x0g

is a cross-section at moment t of beam of trajectories
yðt; xðtÞ; y0; uÞ, y0 2M0, under fixed control u ¼ uðtÞ and
according to the program motion x(t). In other words Mt;u

is a shift of set M0 along trajectories of system (2).
The set M0 � Rm is compact, non-zero measure. Vector
function f ðt;x; uÞ of dimension n is supposed to be
continuous with its partial derivatives of the first order.
Vector functions F1ðt;x; y; uÞ and F2ðt;x; y; zÞ of dimension
m are supposed to be continuous together with partial
derivatives up to second order. We assume that allowed
controls u ¼ uðtÞ, t 2 T0, form some class D of piecewise
continuous function accepting values from a compact set
U 2 Rr. Rn, Rm, Rr are n, m and r-dimensional Euclidean
spaces.

Let us agree that subsystem (1) describes dynamics of
program (marked) motion, and subsystem (2) describes
dynamics of motions disturbed along initial condition that
is trajectories’ beam. In particular, subsystem (2) can be
considered as equations of deviations of program motions.
Eq. (3) is equation of change of density distribution of
particles r ¼ rðtÞ ¼ rðt; yðtÞÞ along trajectories (2) with
given initial function r0ðy0Þ of density distribution of
particles in the set M0.

Solution of system (1)–(3) under initial equations (4)–(6)
and fixed control function u ¼ uðtÞ will be a trajectory
xðtÞ ¼ xðt;x0; uÞ and beam of trajectories yðt; y0Þ ¼

yðt; xðtÞ; y0; uÞ, y0 2M0, together with density distributions
of particles rðt; yðt; y0ÞÞ on according trajectories yðt; y0Þ,
turning Eqs. (1)–(3) into identity. Let us note that solution

of subsystem (1) can be considered independent of
subsystem (2) and Eq. (3).
Introduced mathematical model of control accounts

interaction of particles in beam. Here vector function F1

determines the influence of external fields on particles, and
vector function F2, interaction of particles. Let us note that
only function F1 depends on control u.
It is important to note that mathematical model of

charged particles dynamics described above represents a
system of Vlasov equations. But function F2, describing
particles interaction here, is smooth enough and describes
some smoothed interaction between a particle and an
ensemble of all other particles. Thus we get smoothed
models under various numerical solutions of Vlasov
equation, for example by a way of macro particles. It is
possible to show that solution of system (1)–(3) under given
assumptions exists and it is unique. Moreover, vector
function yðt; y0Þ is continuous and continuously differenti-
able along y0 [13].
Let us introduce following functionals:

I1ðuÞ ¼

Z T

0

j1ðt;xðtÞ; uðtÞÞ dtþ g1ðxðTÞÞ. (7)

I2ðuÞ ¼

Z T

0

Fðw1ðtÞÞ dtþ Gðw2Þ, (8)

where

w1ðtÞ ¼

Z
Mt;u

j2ðt;xðtÞ; yt;rðt; ytÞ; uðtÞÞ dyt, (9)

w2 ¼

Z
MT ;u

g2ðyT ;rðT ; yT ÞÞ dyT . (10)

Here F, G, j1, j2, g1, g2 are non-negative, continuously
differentiable functions.
Functional (7) characterizes program motion dynamics,

and functional (8) estimates behavior of beam trajectories.
Let us introduce following functional:

IðuÞ ¼ I1ðuÞ þ I2ðuÞ, (11)

simultaneously assessing dynamics of program motion and
particle beam dynamics in account with their density
distribution and their interactions.

3. Optimality conditions

Let us consider admissible controls u(t) and ~uðtÞ. Define
DuðtÞ ¼ ~uðtÞ � uðtÞ. Then variation of functional (11) can be
represented in following way:

dIðu;DuÞ

¼ �

Z T

0

ðw�Duf � Duj1Þ dt

�

Z T

0

Z
Mt;u

m�DuF 1 þ n � Du divy F 1

�F0ðw1ÞDuj2

 !
dyt dt. ð12Þ
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Here symbol Du means increment of function under change
of only the variable u, for example, Duf ¼ f ðt; x; uþ DuÞ�

f ðt;x; uÞÞ. Auxiliary functions w(t), mðt; ytÞ, nðt; ytÞ satisfy
along trajectories (1)–(3) the following linear integro-
differential equations:

dw
dt
¼ �

qf �

qx
wþ

qj�1
qx

�

Z
Mt;u

qF�

qx
mþ n

q divy F

qx

� ��
dyt

þ F0ðw1Þ

Z
Mt;u

@j2

@x
dyt, ð13Þ

dm
dt
¼ �

qF

qy
þ E � divy F

� ��
m

� n
q divy F�

qy
þ F0ðw1Þ

qj�2
qy

� rðt; ytÞ

Z
Mt;u

qF 2ðt;x; zt; ytÞ
�

qz
mðt; ztÞ

þnðt; ztÞ
q divy F2ðt;x; zt; ytÞ

�

qz

0
BBB@

1
CCCA dzt,

ð14Þ

dn
dt
¼ �n � divy F þ F0ðw1Þ � j2 � r

@j2

@r

� �
, (15)

and terminal conditions

wðTÞ ¼ �
qg1ðxðTÞÞ

�

qx
, (16)

mðTÞ ¼ �G0ðw2Þ �
qg2ðyT ;rT Þ

�

qy
, (17)

nðTÞ ¼ �G0ðw2Þ �

g2ðyT ; rT Þ

�rT

qg2ðyT ; rT Þ

qr

0
B@

1
CA. (18)

Let us note that while getting variation (12) auxiliary
functions w, m, n also known in control theory as conjugate
functions has been used. They play a role analogous of
Lagrangian multipliers in calculus of variations.

Let us introduce functions

H1ðt;x; w; uÞ ¼ w�f ðt; x; uÞ � j1ðt;x; uÞ, (19)

and

H2ðt;x; y;r;w1;m; n; uÞ

¼ m�F 1ðt; x; y; uÞ þ n � divy F1ðt;x; y; uÞ

� F0ðw1Þ � j2ðt;x; y;r; uÞ. ð20Þ

Then variation of functional (12) can be rewritten in the
following way:

dIðu;DuÞ ¼ �

Z T

0

DuH1 dt�

Z T

0

Z
Mt;u

DuH2 dyt dt, (21)

where x, y, r are solutions of system (1)–(3) according to
control u ¼ uðtÞ; w1ðtÞ is determined by formula (9);
auxiliary functions w, m, n satisfy Eqs. (13)–(15) accordingly
with terminal conditions (16)–(18).
Variations (12), (21) are non-classical variations of

functional (11) because in general case they are non-linear
on Du. Such variations are used in mathematical control
theory when getting optimality conditions in a form in
Pontryagin maximum principle. In the given case optim-
ality conditions can be represented as

Theorem 1. Let uo ¼ uoðtÞ is optimal control, i.e. it delivers

a minimum to functional (11). Then under t 2 T0 ¼ ½0;T � we

have

max
u2U

Hoðt; uÞ ¼ Hoðt; uoðtÞÞ. (22)

Here

Hoðt; uÞ ¼ H1ðt;x
o
t ; w

o
t ; uÞ

þ

Z
Mt;uo

H2ðt;x
o
t ; y

o
t ; r

o
t ;w

o
1 ;m

o
t ; n

o
t ; uÞ dyo

t ,

where functions wot ¼ woðtÞ, mot ¼ moðt; yo
t Þ, not ¼ noðt; yo

t Þ,
wo
1 ¼ wo

1ðtÞ, xo
1 ¼ xoðtÞ, yo

1 ¼ yoðtÞ, rot ¼ roðt; yo
t Þ corre-

spond optimal control uo ¼ uoðtÞ.

From Eq. (21) comes representation of classical varia-
tion of functional (11)

dclIðu;DuÞ ¼ �

Z T

0

qH1

qu
þ

Z
Mt;u

qH2

qu
dyt

( )
DuðtÞ dt. (23)

Definition. We will call function q(t), t 2 T0, admissible

direction at point u 2 D along set D, if there exists such
e040, that ðuðtÞ þ e � qðtÞÞ 2 D, when e 2 ½0; e0�.

Let us consider any admissible direction q(t) at point
uo ¼ uoðtÞ. Let Due ¼ e � qðtÞ, where e 2 ½0; e0�. Then for
optimal control uo ¼ uoðtÞ we have

Iðuo þ DueÞ � IðuoÞ ¼ DIðuo;DueÞX0.

With the use of classical variation (23) of functional (11) it
is possible to formulate following optimality condition.

Theorem 2. Let uoðtÞ is optimal control. Then we have

dclIðuo; qÞX0. (24)

under all admissible directions q(t) at point uo 2 D.

Further we present optimality conditions that are
based on the representation of the minimized func-
tional via the solution of special partial differential
equations.
Let us consider system (1)–(3) and suppose that F2 ¼ 0,

i.e. we do not take into account interaction between
charged particles in this case.
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Consider functional (11), where I1ðuÞ is defined by (7),
and

I2ðuÞ ¼

Z T

0

Z
Mt;u

j2ðt; xðtÞ; yt;rðt; ytÞ; uðtÞÞ dyt dt

þ

Z
MT ;u

g2ðxðTÞ; yT ; rðT ; yT ÞÞ dyT .

Consider n1 ¼ n1ðt;xÞ, n2 ¼ n2ðt;x; y; rÞ, which satisfy spe-
cial partial differential equations

qn1
qt
þ

qn1
qx

f ðt;x; uðtÞÞ þ j1ðt; x; uðtÞÞ ¼ 0, (25)

qn2
qt
þ

qn2
qx

f ðt;x; uðtÞÞ þ
qn2
qy

F ðt;x; y; uðtÞÞ

þ n2 � r
qn2
qr

� �
divy F ðt;x; y; uðtÞÞ

þ j2ðt; x; y; rðt; yÞ; uðtÞÞ ¼ 0 ð26Þ

with terminal conditions

n1ðT ;xÞ ¼ g1ðxÞ, (27)

n2ðT ;x; y; rÞ ¼ g2ðx; y;rÞ. (28)

Introduce the following functions:

w1ðt;x; uÞ ¼
qn1ðt;xÞ

qt

þ
qn1ðt; xÞ

qx
f ðt;x; uÞ þ j1ðt;x; uÞ, ð29Þ

w2ðt;x; y;r; uÞ

¼
qn2ðt;x; y;rÞ

qt

þ
qn2ðt;x; y;rÞ

qx
f ðt; x; uÞ þ

qn2ðt; x; y;rÞ
qy

F ðt; x; y; uÞ

þ n2ðt; x; y;rÞ � r
qn2ðt; x; y;rÞ

qr

� �
divy F ðt;x; y; uÞ

þ j2ðt;x; y;r; uÞ ¼ 0. ð30Þ

Evidently

w1ðt;x; uðtÞÞ � 0; w2ðt;x; y;r; uðtÞÞ � 0. (31)

Hence we obtain new representation for functionals

I1ðuÞ ¼ n1ð0; x0Þ, (32)

I2ðuÞ ¼

Z
M0

n2ð0;x0; y0;r0ðy0ÞÞ dy0: (33)

Let

~u ¼ uþ Du; ~xðtÞ ¼ xðt; x0; ~uÞ,

~yðtÞ ¼ yðt; y0; ~uÞ.

Then we obtain

DIðD; uÞ ¼ Ið ~uÞ � IðuÞ

¼

Z T

0

w1ðt; ~xðtÞ; ~uðtÞÞ dt

þ

Z T

0

Z
Mt; ~u

w2ðt; ~xðtÞ; ~yðtÞ; ~rðt; ~yðtÞÞ; ~uðtÞÞ d ~yt dt:

ð34Þ

Using the results of the works [13–16] the variation of
functional (11) in this case can be presented as

DI ¼ dI þ oðmÞ; dI ¼ dI1 þ dI2. (35)

where

dI1 ¼

Z T

0

w1ðt; xðtÞ; ~uðtÞÞ dt, (36)

dI2 ¼

Z T

0

Z
Mt;u

w2ðt; xðtÞ; yt;rðt; ytÞ; ~uðtÞÞ dyt dt. (37)

From expressions (36), (37), using needle-shaped
variation, we obtain necessary conditions for optimality
as follows.

Theorem 3. Suppose that uo ¼ uoðtÞ is an optimal

control, and the functions no1ðt;xÞ; n
o
2ðt;x; y;rðt; yÞÞ are

solutions of the Eqs. (25), (26) with terminal conditions

(27), (28) under optimal control uo. Then there exists the

relationship

min
u2U

wo
1ðt; x

oðtÞ; uÞ

(

þ

Z
Mt;uo

wo
2ðt; x

oðtÞ; yt;r
oðt; ytÞ; uÞ dyt

)

¼ wo
1ðt;x

oðtÞ; uoðtÞÞ

þ

Z
Mt;uo

wo
2ðt;x

oðtÞ; yt;r
oðt; ytÞ; u

oðtÞÞ dyt ¼ 0. ð38Þ

Classical variation of functional (11) based on the above
approach we can get from formula (35).

4. Modeling of longitudinal motion

Let us consider beam longitudinal motion in RFQ
channel. It declares by following Eq. [3]

d2z

dt2
¼

eUks
2W 0

I0ðkrÞ cosðkzÞ cosðotþ jsÞ, (39)

where t ¼ ct, U is intervane voltage, k ¼ 2p=L, L is
modulation period, e and W0 are particle charge and
rest energy, respectively o ¼ 2pc=l, l is RF wave length, r

is distance between particle and channel axis, s ¼
m2 � 1=ðm2I0ðkaÞ þ I0ðmkaÞÞ. The non-relativistic approx-
imation gffi 1 is used.
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Let us resolve RF field into two traveling harmonics and
average over harmonics otþ kz. Then we obtain

d2z

dt2
¼

eUks
4W 0

cosðot� kzþ jsÞ.

For synchronous particle otþ kz. Let us introduce
variable c ¼ ot� kz ¼ kðz� zsÞ. Taking L ¼ bsl and
using equations for bs and z� zs, we obtain

c00t þ
2L0t
L

c0t þ
L00t
L

c� O2ðcosjs � cosðjs þ cÞÞ

�
ek2

W 0

qU c

qc
¼ 0.

where O2 ¼ 4peUT=W 0L2, T ¼ ðp=4Þs, U c is Coulomb
field potential. Using relations

_L

L
¼

O2

o
cosjs,

L00t
L
¼

O2

o
ðUT Þ0t
ðUTÞ

cosjs

þ
O2

o
ðcosjsÞ

0
t �

O2

o
cosjs

� �2

and taking O2 ¼ O2
0ZðW n=W Þ, where Wn and W are input

and current energies of particles, O2
0 ¼ 2peðUT Þmax=W nl

2,
Z ¼ UT=ðUT Þmax. If we convert to independent variable
z ¼ O0t, we finally obtain

c00 þ 2
O0

o
Z

W n

W
cosjsc

0

þ

O0

o
W n

W
cosjsZ

0 þ
O0

o
Z

W n

W
ðcosjsÞ

0

�
O0

o
Z

W n

W
cosjs

� �2

0
BBB@

1
CCCAc

� Z
W n

W
ðcosjs � cosðcþ jsÞÞ �

ek2

W 0O2
0

@U c

@c
¼ 0. ð40Þ

Eq. (40) together with synchronous particle equation

W

W n

� �0
¼ 2

O0

o
Z cosjs (41)

determines longitudinal motion in RFQ channel in
equivalent traveling wave approximation.

In traveling wave approximation we see that longitudinal
motion is determined only by one given parameter k ¼
O0=o and by laws of Z and js variations.

We propose to calculate longitudinal component of
Coulomb field as ones for cylinder with constant radius
and with uniform distribution in each transverse cross-
section. In longitudinal direction periodical modulation
take place along axis Z. In this case each macroparticle can
be presented as uniform charge disc. One hundred discs are
enough for reliable estimates.

If ~U is Coulomb field potential with charge unit in beam,
then Coulomb term in Eq. (40) has a form

a
W n

W

� �3=2 q ~U
qc

,

where

a ¼
I

e0cbnðUTÞmax

5. Optimization criteria

Further we will consider Eqs. (40), (41).
Let

0pzpT̄ ; x ¼W=W n; y ¼ ðy1; y2Þ
�
¼ ðc;c0Þ�,

M0 ¼ fy j � ppy1pp; y1py2py2g.

As the aim of RFQ structure optimization we consider
following: insurance of maximal capture of particles under
the acceleration conditions; obtaining required or maximal
possible output energy.
If optimization is made only for these criteria,

then final results can be obtained with high defocusing
parameters and very small transverse acceptance. It
means that restriction on defocusing parameter must be
added

Adef ¼
2k2Zj sinjsj

ðL=L0Þ
2
¼

2k2u1j sin u2j

x
pA, (42)

Parameter A usually lies in the range (A ¼ )0.01�0.015.
If high-current beam is accelerated, then this beam must

not be pinched in longitudinal direction in optimal mode.
In this case new limitation demands monotonic variation
of rms beam widthhDji2. In ideal this limitation looks as

dhDji2

dz
p0. (43)

For the beam dynamics analyzing we introduce func-
tionals

I1ðuÞ ¼ c1

Z T̄

0

j1ðAdef Þ dzþ c2ðxðT̄Þ � x̄Þ2, (44)

I2ðuÞ ¼ c3

Z T̄

0

Fðw1ðzÞÞ dz, (45)

w1ðzÞ ¼
d

dz

Z
Mz;u

ðc2
� rÞ dyz

¼

Z
Mz;u

2cc0rðz;c;c0Þ dyz ¼

Z
Mz;u

2y1y2r dyz,

IðuÞ ¼ I1ðuÞ þ I2ðuÞ. (46)

Here c1, c2, c3—non-negative weight constants; j1

and F are penal functions, which can be introduced in
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following way:

j1ðAdef Þ ¼
0 AdefpĀ;

ðAdef � ĀÞ2p Adef4Ā;

(

Fðw1Þ ¼
0 w1p0;

w
2q
1 w140;

(

where p, q are certain positive integer constants.
Adef is defocusing factor; x̄ is fixed value, which

determines energy of synchronous particle at the output
of accelerator; r ¼ rðz;c;c0Þ is density distribution of
particles.

Functional (44) integrally estimates the deviation of
defocusing factor from given value and accounts the
deviation of synchronous particle velocity from given one
at the output of accelerator. Functional (45) characterizes
velocity of variation of mean square phase distribution. In
this connection, condition w1p0 ensures the monotonicity
of grouping and simultaneously ensures the capture of
particles into acceleration mode.

In order to finish definition of optimization task for
longitudinal motion it is needed to parameterize functions
ZðzÞ and jsðzÞ. As far as there are no oscillations with
frequency o in external force it is enough to define several
plot points and intermediate point values determined by
interpolation (linear in the simplest cases). In practice, 20
points is enough.

So longitudinal motion optimization can be reduced to
search values of functions ZðzÞ and jsðzÞ in number of
extraction points.

On the basis of variation (12) for the functional (46)
numerical methods of optimization can be constructed,
which allow joint minimization of functionals (44),
(45). The realization of these methods shows their
effectiveness.

6. Modeling and optimization of transverse motion

Let us consider transverse motion optimization. Further
we may use different approaches for solving the problems
of transverse motion.

Let us suppose that longitudinal motion optimization by
above scheme was successful. As a result we obtain
functions ZðzÞ and jsðzÞ. Using relations between variable
z and cell number n ¼ 2z=k, we obtain for each cell value
UðnÞTðnÞ, jsðnÞ, Adef ðnÞ and factor of density increasing by
beam bunching yðnÞ connected with rms values of beam
width. Now we are needed to find optimal values of
intervane voltage U(n) and aperture a(n) or mean radius
R0ðnÞ.
It is known that focusing period in RFQ is defined by

three parameters: focusing parameter B (proportional to
U=R2

0), defocusing parameter Adef and Coulomb parameter
proportional to yI=e. Here R0 is value near the mean
radius, I is beam current, e is beam emittance. For ideal
form of vane shape—R2

0 ¼ a2=ð1� sI0ðkaÞÞ. Each para-

meter triplet (if it is placed inside stability zone) corre-
sponds to matched radius r maximal over period. Relation
E ¼ ðR2

0=r2Þe defines transverse channel acceptance. We
know values for defocusing and Coulomb factors obtained
by longitudinal motion calculation. Because RF field
intensity is limited by some value then value U=R0 is also
limited by Eb. Using maximal value we obtain that
focusing factor is proportional to Eb=R0. Both values r

and R0 are decreased with focusing parameter growth.
Value ~R0ðnÞ corresponds to maximal acceptance and is the
required optimal value.
By next step we find UðnÞ ¼ Eb

~R0ðnÞ, ~TðnÞ ¼ ðUTÞðnÞ=
UðnÞ, and find m(n) and a(n) on the basic of T and R0.
Transverse motion calculations were not needed if we

use proposed method. Instead, it is enough to find
periodical solution for channel envelope in each cell.
Another approach is to use different equations

describing transverse motion and developed corresponding
optimization methods for finding optimal parameters.
These methods are given an account, for example,
in the works [2,10–18]. The case is considered
when particles were uniformly distributed along the
beam cross-section , this allow us to use self-consistent
distributions of Kapchinsky–Vladimirov and to design
according mathematical models of optimization. Minimal
radius a and intervane voltage UL are used as controls
while already found longitudinal motion controls are
preserved.
Conducted calculations have shown the effectiveness of

step-by-step optimization on various stages of the process
of the optimization. Thus the minimization of the
defocusing factor on the stage of the optimization of
longitudinal motion allows focusing of the beam with
the conservation of chosen dynamics of longitudinal
motion. Gradual consideration of following tasks seemed
reasonable:

(1) maximization of the acceptance of the transverse
motion under fixed motion of synchronous particle,

(2) maximization of the acceptance of the channel under
various phases of particles,

(3) optimization of beams matching or its other char-
acteristics by the introduction of special functionals.

7. Numerical simulation

The code tools described above were used for RFQ
designing. Main results are presented below to demonstrate
power new code BDO-RFQ.
The following parameters were preset:

Accelerating particles Protons
Input energy 0.095MeV
Output energy 5MeV
Beam current 100mA
Beam emittance 0.15p cmmrad
Operating frequency 352MHz
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There were some restrictions and requirements:

Length no more than 8m
Beam transmission no less then 98%
Defocusing factor no more than 0.01

At Figs. 1–6 plots of main parameters for four RFQ
structures [4,5,9] are shown. The set of structures includes
I—LEDA-RFQ (USA), II—IPHI-RFQ (France), III—
BDO-RFQ-1 and IV—BDO-RFQ-2 (versions of structures
found with Russian BDO-RFQ code).

The aim of optimization in variants III and IV was to get
accelerator structure with output energy 5MeV with
minimal length. With this in variant III more strict limits
on change of defocusing factor had been taken into
account.

Further, both variants III and IV had been calculated to
output energy 6.7MeV. During analyzing and optimiza-
tion of transverse motion it was supposed that intervane
voltage is equal to 100 kV.

8. Conclusions

The mathematical methods of many-parametric optimi-
zation (as applied to charge particle beam dynamics) were
developed [2,13–15,17–19]. In principle, they enable one to
solve the problem of RFQ optimization.

The possible criteria of optimization for RFQ channel
designing can be: minimal length of RFQ channels and
beam transmission no less than the given one. Vane
modulation, intervane voltage, synchronous phase and
bore aperture in each cell can be used as control
parameters. But many difficulties arise if we make an
attempt to realize optimization procedure in the form
described above. Time needed to solve the procedure will

be large because control parameter number are more than
thousand. It must be added that time for one RFQ version
simulation is measured by minutes, and often modern
computer techniques have no power to make such
optimization.
It means that new mathematical methods of optimiza-

tion and simplified models for RFQ beam acceleration and
focusing are needed. These models must, from one side,
hardly reduce control parameter number and, from
another side, give equivalent description of beam motion.
Above we propose a model that allows to separate
longitudinal motion optimization from transverse motion
one. Moreover, we suggest new mathematical model of
optimization for this case.
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While designing such complicated structures as accel-
erators, a standard approach is usually applied when at the
first stage a programmed motion is investigated, and at
the second one perturbed motions are calculated. Unfortu-
nately, it is not always possible to obtain desirable
results using this approach. In this connection there is a
requirement to consider new mathematical models and
develop optimization methods, which allows us to realize a
simultaneous optimization of the programmed motion and
ensemble of perturbed motion [8–12,16].

So proposed method gives a possibility to use mathe-
matical methods of multi-parametric optimization. Opti-
mization of RFQ channel was based on simple model but

main components of external forces and linear component
of Coulomb forces are taken into account. Of course it
cannot be advocated that optimal solution will be kept
when other factors will be taken into account. Nevertheless
it can be assumed that it will be near to optimal. Then
obtained optimal solution can be used as initial approx-
imation for procedure of further optimization or optimiza-
tion in interactive mode.
The above considered optimization problem can be used

in optimization of charged particle dynamics in other types
of accelerators, for example in waveguide or with drift
tubes linear accelerators.
Representations (21), (23) and (36), (37) of variation

of functional (11) and optimality conditions allow to
construct various directed methods of minimization of
considered functional.
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Abstract

Muon accelerators contain beam lines and components which are unlike any found in existing accelerators. Production of the muons

requires targets for beams with powers which are at or beyond what has currently been achieved. Many subsystems use solenoid focusing

systems where at any given point, several magnets have a significant influence. The beams that are transported can have energy spreads of

�30% or more. The required emittances necessitate accurate tracking of particles with angles of tenth of a radian and which are

positioned almost at the edge of the beam pipe. Tracking must be done not only in vacuum, but also in materials; therefore, statistical

fluctuations must also be included.

Design and simulation of muon accelerators requires software which can: accurately simulate the dynamics of solid and liquid targets

under proton bombardment; predict the production of particles from these targets; accurately compute magnetic fields based on either a

real magnet design or a model which includes end fields; and accurately design and simulate a beam line where the transported beam

satisfies the above specifications and the beam line contains non-standard, overlapping elements. The requirements for computational

tools will be discussed, the capabilities of existing tools will be described and compared to what is required.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.27.Bd; 29.25.�t

Keywords: Muon accelerators; Beam dynamics; Simulation; Target

1. Introduction

In recent years, there has been an increased interest in
machines which transport and accelerate muons instead of
the more traditional electrons or protons [1], especially in
light of the recent experimental results in neutrino physics
[2–8].

Unlike the more commonly used electrons and protons,
muons decay in a relatively short amount of time, and this
places strong requirements on any system that is transport-
ing or accelerating them. Furthermore, the method of
muon production, bombarding a target with protons and
capturing the muons that result from the decay of the
produced pions, leads to the muons being produced in a
very large phase space volume. As a result, the muon
beams will almost completely fill the beam pipe, while at

the same time particles in the beam will make angles with
respect to the reference orbit of as much as 0.3 rad
(especially in the ionization cooling section). There may
be an energy range of a factor of two within a given beam.
Furthermore, for acceleration, there has recently been
interest in using FFAGs [9]. These are circular machines
with a beamline that accepts a factor of two or more in
energy. These are conditions which are not often encoun-
tered in traditional particle accelerators, and therefore
must be handled very carefully.
The large number of muons that must be produced

requires that a large number of protons hit the target. For
several reasons, this generally should be done in a small
number of high-energy pulses, rather than a large number
of low-energy pulses or even continuously. The RF power
systems for acceleration and cooling require too much
power and/or cooling to be run continuously, so they are
generally run in a pulsed mode; the average power used in
these systems will be proportional to their repetition rate.
For collider applications, fewer pulses will lead to a higher
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luminosity. For neutrino applications where the detector is
not buried deep underground, background elimination will
be more effective with a lower pulse rate. The high average
power and pulse energy on the target will often damage
or destroy the target; modeling and predicting this is
important to muon accelerator design.

Finally, the requirements of rapid acceleration and
cooling as well as large longitudinal phase space acceptance
require high RF gradients. The gradient which can be
achieved in cavities is limited by RF breakdown. To
complicate matters, these cavities are in a high magnetic
field, which has a strong effect on the breakdown [10]. This
phenomenon is not well-understood at this point, making
predictive computations difficult. Hence, this topic will not
be addressed here in detail. Understanding and predicting
that process is important for the design of cavities for
muon cooling and for the prediction of achievable RF
gradients.

2. Beam dynamics

A muon beam transport line must deal with beams
having an especially large phase space area. In addition,
many beamlines must accommodate a beam whose central
energy and position will vary over time as the beam is
accelerated (specifically, FFAGs). Many accelerator design
and tracking codes, often without stating so, implicitly
assume that at least some dimensions of the beam’s phase
space are small. Any code which is used in analyzing muon
accelerators must be cautious to include all dynamical
effects.

2.1. Magnetic fields

To transport a large-emittance beam, it is necessary to
have a highly compact lattice. Fig. 1 shows an example of
the lattice for a cooling cell. There are solenoids around the
cavities and at the ends of the cavities. The longitudinal
field as a function of position in the cell is shown in Fig. 2.

It can be seen from this field that the solenoids are not well-
approximated by constant-field separated magnets. In fact,
the variation of the field with position leads to significant
nonlinearities, the correct modeling of which is critical for
understanding the performance of the lattice.
For another example, consider the RFOFO cooling ring

shown in Fig. 3. This ring consists exclusively of solenoids,
but the solenoids are tilted so as to produce a bending field.
The horizontal and vertical fields on the circle shown in
Fig. 3 are shown in Fig. 4. As discussed before, this field
cannot be computed by looking at one magnet at a time,
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and the longitudinal variation of the field will produce
significant nonlinearities which must be accurately com-
puted. But this further illustrates a problem of coordinate
system representation. The optimal way to represent the
particle positions for this ring is most likely by deviations
from the circle shown in Fig. 3. However, many codes
would instead use a coordinate system based on a path that
curves as a particle at a ‘‘reference energy’’ moving in the
magnetic would. As can be seen from Fig. 4, this would
lead to a trajectory that has non-uniform curvature, and
bends in the vertical plane as well. Ensuring that the
resulting reference curve bends by the appropriate amount
per cell and does not have a vertical displacement from
beginning to end would be very challenging, and would in
fact require one to start out working in some coordinate
system that is independent of the magnetic field in the first
place. Thus, a code for complex systems such as this must
be capable of working in a coordinate system that is not
determined by the magnetic fields. Since in this case, no
particle actually follows the reference curve (but should
stay near it), one must be sure to handle RF synchroniza-
tion properly, presumably by making a preliminary pass to
find a closed orbit.

Many nonlinear effects result not from intentionally
introduced nonlinearities, but from nonlinearities that are
the result (due to Maxwell’s equations) of the longitudinal
variation of linear fields (Figs. 2 and 4). Any tracking or
analysis code must be able to describe the fields
that a particle sees in a way that is consistent (at least to
some level of accuracy) with Maxwell’s equations.
While this can often be done with a field map, a field
map for a complex lattice can be extremely large,
and will often require an external magnet design
code to compute. Thus, the capability of finding a
field from more compact information (such as the long-
itudinal variation of multipole components) is an extremely
useful capability of any tracking or analysis code for muon
accelerators.

2.2. Truncated power series

Many accelerator design codes use a truncated power
series representation as part of their analysis. When a beam
has a large phase space area, there is a concern with the
rate of convergence for the power series at large
amplitudes.
In most cases, a truncated power series will give an

adequate description of the transfer map through a
short section of the lattice. However, the transfer
map for a longer section of lattice may not give an
accurate representation of the dynamics. Fig. 5 shows
the trace of the transfer matrix (which should be
between �2 and 2 for stability) for 10 cells (each
cells contains a single triplet) of an FFAG lattice. Note
that for even a 10th order power series, the trace of the
transfer matrix is so inaccurate as to give the incorrect
results for the range of stability. It is in fact possible to
construct a sufficient anomalous triplet lattice where the
power series fails to converge within the operating range of
the lattice.
The basic difficulty is that in composing two truncated

power series and then re-truncating, information is lost in
the final truncation.
This should not lead to ruling out truncated power

series as a useful technique for analyzing these lattices,
but they should be used with extreme caution. Maps
made for a long section of lattice are more likely to
have problems than those made from shorter sections.
Many algorithms based on truncated power series
require a map for the entire ring [12]. Some analysis can
be performed by making a power series at a fixed
energy for several different energies. In fact, most FFAG
analysis occurs by finding a closed orbits at different
energies and computing the linear maps about those closed
orbits [13].
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2.3. Analysis techniques

In the design of muon accelerators, many of the
questions asked are different than those that are asked in
traditional accelerators. This is true especially for cooling:
one may want to compute the equilibrium emittance, the
rate of cooling, and various related merit factors.

Muon cooling systems have generally been designed
using tracking. However, using tracking has many difficul-
ties. Often one is trying to compare some merit factor for
two different designs, and the statistical fluctuations due to
using a finite number of particles make differences in the
merit factor difficult to ascertain. Using more particles
would be helpful, but due to the complexity of the
computation of the fields as described above, it becomes
prohibitive to run large numbers of particles. Thus,
improving the efficiency of field computations would allow
more effective machine design. Making codes such as
ICOOL [14] run on parallel computers would also be
useful, and will probably be necessary for any final
machine design.

Ideally, we would like to have techniques available for
cooling lattice design that do not involve simply tracking
particles. Such an analysis code should be able to compute
the usual quantities (linear maps, closed orbits), but should
also include effects such as cooling and multiple scattering
(in some averaged way). Some theoretical work on this
subject has been done, but under restricted conditions [15].
This theory has yet to be implemented in any analysis
codes.

One may prefer a library which implements accelerator
computations instead of a single code; this would allow one
to use a higher-level language to compute complex
computations on the results of simpler lattice computa-
tions.

3. Target

To achieve acceptable physics results, muon accelerators
require the production of large quantities of muons. The
weak interactions of neutrinos with matter means that to
produce a reasonable number of events, one must start
with large quantities of muons. For a muon collider, the
diffuse phase space in which the muons are produced
requires that luminosity be achieved with large numbers of
muons instead of very small beams.

In designing the muon production system, the first thing
one must know is the number of pions and muons
produced. For the design of the subsequent capture
systems, one must also know their energy and angular
spectrum. One must be able to compute particle production
to compute energy deposition in the target area materials
so as to design the cooling system. And one must
understand how materials will behave under this irradia-
tion, both for the purposes of radiation protection as well
as material lifetime and degradation of material properties.

There are several codes which compute particle interac-
tions with matter [16–20]. However, there are uncertainties
in the results of those codes by as much as 30% in some
regimes [21,22]. These uncertainties may arise both from
the algorithms in the codes as well as the unknown nature
of the physical processes. If we want to improve prediction
accuracy for target design, these uncertainties must be
reduced.
Target damage and destruction is a significant problem

to be avoided for any high-power target. It is believed that
if the energy deposition in and properties of the material
are known, existing codes can predict the point at which
the target will be damaged [23]. However, the material
properties, such as the coefficient of thermal expansion and
the yield strength, will change under irradiation [24]. One
must be able to predict this change computationally, which
at this point requires experimental results to give para-
meters to the computation.
To avoid the problem of breaking a solid target, a liquid

mercury jet has been proposed [25]. The evolution of this
jet under proton bombardment and in a magnetic field
must be simulated to ascertain whether the jet will be
sufficiently stable to be hit by a proton beam, whether
earlier portions of the jet will interfere with later portions
of the jet or with pion production, and other kinds of
effects (see Fig. 6). Parts of the liquid mercury will become
vapor as a result of the proton energy deposition and the
subsequent pressure waves in the mercury. This ‘‘cavita-
tion’’ process is essential to correctly model the mercury jet.
Code has been written which models the fluid using a two-
phase equation of state [27]. This has been only done in two
dimensions; it can in principle be done in three dimensions,
but is computationally expensive. Another approach is to
treat the fluid as a homogeneous ‘‘bubbly fluid’’ using an
equation of state [28]; this has been done in three
dimensions (Fig. 7). While simulations without cavitation
(either model) have been performed without magnetic
fields, simulations with cavitation or the bubbly fluid
model and magnetic fields have not. Furthermore, as can
be deduced from Fig. 6, the evolution of the jet in the
nozzle (including magnetic fields) is important for produ-
cing a good target, but has not been studied as yet.
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Fig. 6. Experimental results showing the mercury jet before (left) and after

(right) being hit with a proton beam [26].
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4. Conclusion

To design and predict the performance of muon
accelerators, one must carefully simulate all aspects of
the machine. Single-particle dynamics are well understood,
but must be handled with particular care due to the
characteristics of the muon beam and the beamline guiding
it. Targets must be carefully studied to ensure that they will
perform as needed and survive. Understanding of RF
breakdown, especially in a magnetic field, must be obtained
to attempt to maximize the gradients in room-temperature
RF cavities.
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Abstract

This paper discusses the computational needs for the full design and simulation of the RIA accelerator systems. Beam dynamics

simulations are essential to first define and optimize the architectural design for both the driver linac and the post-accelerator. They are

also important to study different design options and various off-normal modes in order to decide on the most-performing and cost-

effective design. Due to the high-intensity primary beams, the beam-stripper interaction is a source of both radioactivation and beam

contamination and should be carefully investigated and simulated for proper beam collimation and shielding. The targets and fragment

separators area needs also very special attention in order to reduce any radiological hazards by careful shielding design. For all these

simulations parallel computing is an absolute necessity.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Rare Isotope Accelerator (RIA) is a next generation
facility for basic research with intense beams of radioactive
and rare isotopes [1]. To produce such beams RIA will use
primary beams of any ion from protons (up to 1GeV) to
uranium (up to 400MeV=u) with beam power up to
400 kW. RIA is based on two CW superconducting (SC)
linacs, a 1.4-GV driver designed to simultaneously accel-
erate multiple-charge-state heavy-ion beams and a �140-
MV post-accelerator designed for the efficient acceleration
starting from singly charged secondary beams with masses
up to A ¼ 240 from ion source energies. To meet the
facility requirements RIA will also include state-of-the-art
electron cyclotron resonance (ECR) ion sources for the
production of high-intensity heavy-ion beams, two strip-
ping stations for beams of heaviest ions, high-power ISOL
and fragmentation targets, high-resolution fragment and
isobar separators and transport systems for beams with

large momentum and charge spread. RIA will also have a
new production scheme combining both the fragmentation
and the ISOL methods by thermalizing fast radio-
active ions in a gas catcher [2] to produce low-energy
good-quality secondary beams. Fig. 1 shows a schematic
layout of the RIA facility including four experimental
areas with different secondary beam energies serving
different experimental programs from Ion Traps to
Astrophysics to Nuclear Structure to high-energy Nuclear
Reactions.
RIA has recently been ranked as the third highest

priority for future Scientific Facilities in the 20 year plan of
the US Department of Energy (DOE) [3]. Following this
high ranking, the RIA project received a preliminary
approval (CD-0: critical decision 0) from the DOE. The
research and development (R&D) for RIA involves many
national laboratories and universities. An impressive
progress has been made over the last few years in the
different areas of RIA R&D from the ion source [4] to the
driver linac [5] to the different targets [6] and fragment
separators [7] to the post-accelerator [8]. In this paper, we
discuss the computational needs for the full design and
simulation of the RIA accelerator systems. In the next
section, we review both the existing and newly developed
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tools for both accelerator design and beam dynamic
simulations emphasizing the need to fully describe the
new features of the RIA driver linac. In Section 3, we
consider the beam-stripper interaction including elastic and
inelastic interactions and the subsequent need for beam
collimation and shielding. In Section 4, we discuss the
production and separation of radioactive isotopes empha-
sizing the aspect of radioactive ion release from ISOL
targets and the radiological and shielding aspects for both
the ISOL and fragmentation targets.

2. Beam dynamics

2.1. Goal and scope

The ultimate goal of the beam dynamics simulations is to
define the overall architectural designs for both the driver
linac and the post-accelerator that satisfy the facility
requirements. End-to-end simulations are necessary to
study the performance and limitations of different design
options in order to decide on the most-performing and
cost-effective design. In order to fulfill these goals the end-
to-end simulations should include:

� Up-to-date heavy-ion beam physics.
� Multiple charge state acceleration necessary to reach the

high intensity goal.
� Stripper effects on the dynamics of heaviest ion beams.
� Automatic corrective steering required for simulations

with errors.
� Capability of determining both the fractions and

locations of any beam loss in order to optimize the
design and define the tolerance to different errors.
� Capability of studying possible failure modes and ways

to restore the beam by automatic retuning of the
accelerator excluding the failing elements.

2.2. Tools for element and section design and optimization

For accelerator element design including RF cavities and
the calculation of the corresponding 3D electromagnetic
fields, codes such as Microwave Studio, Electromagnetic
Studio and MAFIA from CST [9], ANSYS [10], Poisson/
Superfish [11] and HFSS (High-Frequency Structure
Simulator) [12] may be used. Recently, we have used the
advanced electromagnetic code Omega-3P developed by
the SLAC group [13] for more precise resonator design.
For the design of the different sections of the SC Linac

including optimization and beam matching, matrix-based
codes such as TRANSPORT [14], TRACE3D [15], COSY
[16] and GIOS [17] are often used. For the RT front-end
structure, codes like DYNAMION [18] and PARMTEQ
[19] may be used.

2.3. Codes for full design and end-to-end simulations

A few years ago, none of the existing beam dynamics
codes was able to fully describe the beam dynamics in all
the elements of the RIA accelerator systems and more
importantly the new features of the driver linac like
multiple-charge-state acceleration and stripper simulation.
A great effort has been made during the last few years
toward developing new codes that allow detailed studies
and end-to-end simulations of the RIA driver linac. Two
new ray-tracing codes have been specially developed: the
LANA code originally developed at the Institute for
Nuclear Physics INR-Moscow [20] and currently sup-
ported at Michigan State University and the TRACK code
[21] developed at Argonne National Laboratory. Both
codes have been used to perform detailed simulations of
the SC linac sections and produced similar overall results
except in some of the details. For an independent
validation of the two codes, an effort is currently under
way to modify the existing codes PARMTEQ and
IMPACT [22] for the simulation of heavy-ion beams in
RIA-type accelerators. Initial comparisons of energy gain
and beam second moments in the high-energy section of
the RIA driver linac show very good agreement [23] with
the code TRACK.

2.4. Simulations of two linac options using TRACK

Since the first simulations [24] the code TRACK has
undergone many updates and further development [25] to
either include new features or refine some of the existing
ones. Among these updates we cite:

� Realistic space charge effects of multi-component ion
beams.
� Realistic stripper effects including thickness fluctuations

on the beam properties.
� End-to-end simulation of the driver linac starting from

the ion source.
� Randomly generated misalignment and RF errors.
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Fig. 1. Schematic layout of the RIA facility showing the three sections of

the driver linac starting from the ion source, the three radioactive isotope

production schemes and the four experimental areas.
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� Automatic and realistic beam steering based on beam
position monitors.
� Capability of determining the fractions and locations of

eventual beam losses.
� Parallel computing on multi-processor machines.

Fig. 2 shows the evolution of the beam envelopes along
the driver linac starting from the ECR ion source to the
target (bottom) as well as the particle coordinates of the 5
charge state uranium beam at the target location (top).
Using this powerful simulation tool we have performed
extensive simulations of two linac design options including
different sources of errors on the parallel computer
cluster Jazz [26] at Argonne. The goal of these simulations
was first to identify the most critical errors, second to
establish an error budget based on beam loss analysis
and finally to compare the performances and limitations
of the two linac options. The first linac option is the
original Baseline design described in [5] and the second is
the Triple-spoke design where the elliptical-cell cavities
in the high-energy section of the linac are replaced
by the triple-spoke cavities under development now at
ANL [27].

Table 1 lists the errors used in these simulations and their
typical amplitudes. Simulating 50 random sets (10 million
particles) for each individual error and comparing to the
case with no errors, we were able to identify the RF field
and phase errors and the fluctuations in the strippers
thicknesses as the most critical errors. For further
investigation and beam loss analysis of both designs we

simulated different combinations of these errors keeping
other errors at their values of Table 1. Table 2 lists the
different combinations of RF errors and stripper thickness
fluctuations. For each combination, 200 random sets of
errors were simulated with 2� 105 particles each (a total of
40 million particles). Increasing the error amplitudes from
combination 1 to 6, we noticed an increase in the
longitudinal emittances for both the Baseline and the
Triple-spoke designs. The Baseline design showed more
sensitivity with an increase in the transverse beam
emittances not observed for the Triple-spoke design. This
increase in the transverse emittances reflects a possible
coupling between the transverse and longitudinal motion
which resulted into an increasing beam loss in the Baseline
design [25]. Whereas no beam losses were observed for the
Triple-spoke design even in the case of the highest errors
(combination 6). Fig. 3 shows beam losses in W/m along
the driver linac for both the Baseline and the Triple-spoke
designs. The first two peaks on each plot correspond to the
losses at the two strippers which are controlled losses to be
stopped at the collimators following the strippers. For the
Baseline design, uncontrolled losses are observed in the
high-energy section. They are negligible for combinations
1&2, approaching the 1 W/m limit for hands-on main-
tenance for combinations 3&4 and about 10 W/m for
combinations 5&6. Whereas no uncontrolled losses were
observed for the Triple-spoke design. From these studies
we conclude that the Baseline design has more limitations
concerning beam losses and that the Triple-spoke design is
more tolerant of errors.
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Fig. 2. End-to-end simulation of the baseline driver linac showing beam envelopes throughout the linac (bottom) and the phase–space plots of the multi-

charge states beam at the linac exit (top).
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2.5. Future code development

The goal of future code development is to develop a
complete accelerator set-up tool based on an accurate and
realistic computer model. Experience at many operating
machines showed that such models are essential and save
both machine time and manpower. The main future
development is to develop a longitudinal phase setting
procedure for multi-charge state beams in order to:

� Account for cavity-dependent field levels which is
inherent to a linac comprising a large number of SC
resonators.
� Minimize the effective beam emittance at the stripper

location.
� Produce tunes for ions with different q=A ratios to

maximize the output energy.
� Develop off-normal tunes to compensate for missing

resonators after an eventual failure.

Along with the longitudinal tuning procedure, a
procedure for the optimization of the beam transverse
envelopes is also necessary in order to:

� Determine optimum focusing fields to minimize the
beam envelopes.
� Produce transverse tunes for ions with different q=A

ratios.

� Retune the accelerator after a failure excluding the
failing resonators and or focusing elements.

3. Strippers

Stripping is necessary to reach intermediate and high
energies in heavy-ion accelerators. By increasing the ions
q=A ratio, the acceleration to higher energies is more
efficient and more importantly more cost-effective. How-
ever, stripping will affect both the beam intensity and
quality. In the beam-stripper interactions we distinguish
between elastic and inelastic processes. Elastic interactions
include atomic and elastic nuclear interactions which could
change the charge, the energy and the angle of the incident
ion but not the ion specie. Inelastic interactions are nuclear
reactions which could produce radioactive products.
Charge exchange or electron stripping is the process

responsible of producing the charge state distribution of
the beam after a stripper. Semi-empirical formulas and
Monte-Carlo codes are available to estimate the required
stripper thickness and calculate the charge state distribu-
tion. From these we cite the set of formulas originally
developed by Baron et al. [28] and later updated by Leon et
al. [29], the code ETACHA [30] and the code GLOBAL
[31] which is more valid for energies above 100MeV=u. In
the case of RIA, a comparative study [32] of these formulas
and codes for uranium beams led to the necessity of
experimental measurements at the exact stripping energies.
These measurements have already been performed with
11MeV=u uranium at Texas A&M University, 85MeV=u

uranium at GSI-Darmstat and 80MeV=u bismuth at
Michigan State University. Analysis of the data is under
way.
Multiple Coulomb scattering with both the electrons and

atoms of the stripping medium is the process responsible
for the energy (energy loss and straggling) and angle
(angular straggling) distributions of the beam after a
stripper. For particle tracking codes like TRACK, it is
important to have the correlated energy and angle
distributions including the respective tails. A Monte-Carlo
code such SRIM [33] may be used, however, when
compared with data the calculated energy-loss straggling
is 5–7 times smaller. We believe that this is due to the fact
that SRIM does not include any fluctuations in the stripper
thickness or the ion charge state which could be responsible
for the extra-broadening of the energy peak. In order to
include these effects and for fast generation of the
correlated energy and angle distributions ion by ion we
opt for the parameterization of SRIM results for a uranium
beam and both strippers [25]. An event generator based on
these parameterization is now used by the code TRACK.
We are currently developing a more general stripper model
for any beam-stripper combination.
The simultaneous acceleration of multiple charge states

in the RIA driver linac will not only reduce the losses at the
strippers but also reduce the need for shielding. However,
due to the high intensity, radioactivation and possible
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Table 2

Combinations of RF errors and stripper thickness fluctuations used to

study beam dynamics and beam losses

Combination RF errors Thickness

fluctuation

1 Field: 0.3%, Phase: 0:3� 5% FWHM

2 Field: 0.3%, Phase: 0:3� 10% FWHM

3 Field: 0.5%, Phase: 0:5� 5% FWHM

4 Field: 0.5%, Phase: 0:5� 10% FWHM

5 Field: 0.7%, Phase: 0:7� 5% FWHM

6 Field: 0.7%, Phase: 0:7� 10% FWHM

Table 1

Different sources of error and their typical values

Error Description Value Distribution

1 Cavity end displacements 0.05 cm (max.) Uniform

2 Solenoid end

displacements

0.015–0.05 cm (max.) Uniform

3 Quadrupole end

displacements

0.01 cm (max.) Uniform

4 Quadrupole rotation 2mrad (max.) Uniform

5 Cavity field error 0.5% (r.m.s.) Gaussian

6 Cavity phase error 0:5� (r.m.s.) Gaussian

7 Stripper thickness

fluctuation

5–10% (FWHM) Gaussian
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beam contamination by nuclear reactions products become
an issue. Knowing the fractions and distributions of these
radioactive products is very important for the appropriate
design of beam collimation and shielding. Depending on

the stripper material and the beam energy and mass, diff-
erent mechanisms of inelastic interactions may take place.
They become more important at energies 450MeV=u. The
dominant processes are the fragmentation for most heavy
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for combination 1 (top) to combination 6 (bottom), respectively. The horizontal line shows the 1 W/m limit to not exceed for hands-on maintenance. The

first two peaks on each figure correspond to the losses at the two strippers which are controlled losses.
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ions and fission for the heaviest ones. In order to determine
the interacting beam fraction and the nuclei produced by
fragmentation, we may use the semi-empirical formula
EPAX [34] for production yields. EPAX is energy-
independent and most valid at higher energies. Monte-
Carlo codes based on the two-step model consisting of an
Intra-Nuclear Cascade step (ISABEL [35], INCL [36],. . .)
followed by a Fission-Evaporation step (ABLA [37], PACE
[38],. . .) are available and may be used. A Recently
developed heavy-ion-reactions event generator LAQGSM
[39] seems to be promising. In addition to the production
yields these codes could also produce full energy and
momentum distributions of the fragments. This informa-
tion could be used for further tracking using a beam
dynamics code in order to study related beam losses and
possible beam contamination. We are currently investigat-
ing these issues. For the design of beam dumps and
shielding, codes such MCNPX [40] and MARS [41] may be
used. For both codes, development is under way to include
heavy-ion capabilities, by incorporating the LAQGSM
event generator. A newly developed particle and heavy-ion
transport code PHITS [42] is also used. Monte-Carlo
tracking of heavy-ion reactions products with such general
purpose codes will be very computer-intensive and require
parallel processing.

4. Targets and fragment separators

Targets have a lot in common with strippers except that
they will receive a much higher beam power due to the
higher energy and more importantly that most of the beam
will be stopped. Only a fraction of the secondary beam (the
selected isotope) is to be transmitted for immediate use or
re-acceleration.

In the case of ISOL targets where a light-ion beam is
incident on a thick target of a heavy element, the beam will
be stopped in the target. To handle such high beam powers
(up to 400 kW) two target design options are been
developed: the two-step target [43] and the tilted-foil target
[44]. In both cases, the reaction products have to first
diffuse through the target material then effuse through the
target enclosure to be ionized in an ion source and
extracted. This process known as the release process is
chemical dependent and require the use of an isobar
separator to select a given isotope. We have recently
developed a Monte-Carlo code package to simulate the
release process [45] where the diffusion is based on a
theoretical model [46]. The effusion is simulated by
tracking the produced ions inside the target-ion source
system [47] using the geometry and tracking capabilities of
Geant-4 [48]. These targets will be very hot and radioactive,
appropriate cooling and shielding are absolutely required.
Prototyping as well as code development for full simula-
tions of these two aspects are under-way.

In the case of fragmentation targets where a heavy-ion
beam is incident on a thin target of a light element, up to
a third of the beam power will be deposited in the target.

A windowless flowing liquid-lithium target has already
been built and tested for this purpose [49]. In this case, the
non-interacting primary beam and the secondary beam
(of all reaction products) will leave the target into a small
angle cone with energies close to the primary beam energy.
A fragment separator will be used to first deflect the non-
interacting beam into a beam dump and second to separate
and select the isotope of interest from the rest of the beam
which should also be stopped in specially designed beam
stops. Although the demonstration of the liquid-lithium
target solved the problem of power dissipation in the
target, the problems of power dissipation and induced
radioactivity in the fragment separator and its beam dumps
are yet to be investigated. For beam dumps and shielding,
the same codes as for the stripper areas (MNCPX and
MARS after developing heavy-ion capabilities as well as
the code PHITS) could be used.

5. Summary

The basic design and simulation tools for the RIA
accelerator systems exist. Parallel computing is vital for
extensive simulations of the full system. Further code
development is under way in all areas: accelerators,
strippers, targets and fragment separators.
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Abstract

The space charge beam spreading calculations of the laser ion source group of CERN [K. Hanke, et al., Rev. Sci. Instrum. 73 (2002)

783] has been recomputed with IGUN. Instead of only looking to the total value of beam spreading, we also investigated the behaviour

of the rms-emittance and found the following unexpected results:

1) Even zero emittance beams show considerable emittance growth.

2) The emittance growth of the central part depends on both the number of meshes used and the number of trajectories used.

3) The most prominent emittance growth occurs at the beam boundary, which is independent of the number of trajectories used and only

depends on the number of meshes inside the beam. The more meshes used, the less this emittance growth will be.

Generally, emittance growth is associated with the non-linear electric field components, integrated up along the particles trajectories.

By using a fractional emittance analysis, we found two different contributions to emittance growth, which might explain the observed

results:

(a) the deposition of space charge and the interpolation of fields inside the meshes produces errors and provides ‘‘noise’’ to the particle

ray tracing algorithm.

(b) at the beam boundary, the filling of the space charge map depends very much on the relative location of the beam boundary to the

discrete mesh structure.

This mesh artefact is inherent to all programs that need meshes for the evaluation of the influence of space charge on the potential

distribution. When calculating a ‘‘real’’ beam with given emittance, it is good advice to compare this calculation with the emittance

growth, obtained for a beam of zero emittance. Furthermore, a variation of the number of trajectories and the number of meshes will

allow to extrapolate to the unaccessible use of an infinite number of trajectories and meshes.

r 2005 Elsevier B.V. All rights reserved.

PACS: 02.70.Bf; 07.05.Tp; 07.77.Ka; 29.25.�t; 29.27.Ac

Keywords: Emittance growth; Mesh artefact; Particle beams; Space charge

1. Introduction

Beam spreading by space charge is well understood and
solved for non-thermal ‘‘laminar’’ beams of charged

particles by numerical integration of the beam boundary
equation. This requires that the density inside the beam is
uniform. Therefore, the numerical simulation of this ideal
case with space charge optics programs, like CPO3 [2],
KOBRA [3], or IGUN [4–6], by the CERN laser ion source
group [1] served as a test for the comparison of these
different programs. CPO3 is a 3D boundary element
program, KOBRA uses finite differences on a cartesian
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mesh, while IGUN is based on finite differences on a
rotational symmetric 2D square mesh. For the beam
spreading of 60 and 120mA Ta20+ ions at 60 kV extraction
voltage, all programs agreed reasonably well with results
from the numerically integrated beam boundary equation.
Only for the emittance, small differences have been seen
between the programs as well as between simulations and
experiments [1].

When recomputing the IGUN results, we started with a
laminar beam, having zero emittance, in order to correctly
compare with the numerical integration of the beam
boundary equation. All trajectories should be self-similar
to the beam boundary and no emittance should be seen
after beam spreading. However, a considerable emittance
has been observed, depending on the parameters used for
the simulation. Similar effects have been reported earlier
[7,8], but no explanation has been given. Emittance growth
with zero initial emittance is a very unpleasant situation,
because it makes all predictions on emittance growth
questionable, which are obtained for ‘‘real’’ beams with
such programs. We have used the tool of fractional
emittance analysis, provided by IGUN, to acquire more
insight about the origin of emittance growth of laminar
beams.

2. Fractional emittance analysis

IGUN, as a simulation program with axisymmetric
option, can use radial evenly distributed starting points for
ray tracing. This ‘‘saves’’ on the number of rays and speeds
up the computation accordingly. By this, trajectories are
started with currents, which increase with radius. There-
fore, the calculation of the rms-emittance needs weighting
of the averages of radii ri and angles ai by the currents Ii,
which are attributed to trajectory i :

ErmsðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj
i¼1r

2
i I i �

Pj
i¼1a

2
i I i �

Pj
i¼1ðriaiÞ

2I iPj
i¼1I i

s
. (1)

Furthermore, the emittance calculation is done after
finding the virtual crossover of the final beam radii and
angles and sorting all trajectories according to their radius.
Then, the rms-emittance can be calculated for all inner
beam parts, stopping summation at the according index j.
This gives fractional rms-emittances, which will be
considered in the following.

3. Simulations with IGUN
r

The example of the CERN beam spreading comparison
is shown in Fig. 1. Here, 20 trajectories started equidistant
from the axis up to a radius of 15mm ( ¼ meshes) entering
a tube of twice the diameter from the left to simulate a
beam of 60mA Ta20+ ions at 60 keV total energy.

The representative trajectories spread out by about 17%,
which is in good agreement with the numerical integration
of the beam boundary equation. The equipotential lines

show the potential increase towards the axis of about
1.5 kV, which is higher at the left, where the beam is
narrower. The unexpected results are seen in Fig. 2, which
shows the numerically determined radial current density
profiles as well as the rms-emittances in selected positions
of the second half of the above example: the initially
laminar beam with zero emittance exhibits a considerable
rms-emittance, although the profiles look quite reasonable.
Theoretically, emittance growth is associated with

radially non-linear fields, through which the representative
particles are passed. A uniform beam with constant and
radius-independent current density should not experience
non-linear fields. However, the space charge allocation
method to mesh nodes is not uniform, as seen in the
profiles of Fig. 2. In order to understand more about the
emittance growth, we have undertaken a systematic
variation of the parameters, which can be chosen to
calculate the above example: these are the number of
representative particles and the number of meshes used
inside the beam. The results are shown in diagrams of
fractional emittances versus trajectories used, in Fig. 3 for
100 trajectories, in Fig. 4 for 1000 trajectories. In both
diagrams, three curves are plotted for the cases, where 7.5,
15, and 30 meshes lie inside the starting beam, e.g. a mesh
resolution of 2, 1, and 0.5mm. In each diagram and for all
curves, we see 2 characteristic features. The inside beam
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has a lower and almost constant emittance, which is lower,
if the meshes are more. For the trajectories in the last mesh
at the beam boundary, the emittance suddenly rises by one
to two orders of magnitude; the more, the lower the
number of meshes are used, almost independent of the
number of trajectories. Obviously, the emittance growth in
the beam centre has a different origin than the one at its
edge. In the centre, the growth is less if more trajectories
are taken and also when more meshes are provided inside
the beam; at the edge, the number of trajectories is almost
unimportant, and the growth is less if more meshes are
used. The emittance growth at the edge always seems to be
much larger than in the beam centre and the fractional
emmitances increase in radial direction within one mesh.

The observed behaviour of emittance growth for a beam,
starting with zero emittance, is well explained by looking at

the origin of non-linear fields: in the centre, the non-
uniform space charge distribution, coming from the
allocation algorithm, causes spikes and grooves in the
profiles, as seen in Fig. 2. These become smoother with
increasing number of trajectories as well as with an
increasing number of meshes. At the beam boundary, the
non-linear field is caused by the non-uniform filling of the
space charge on the mesh nodes just inside and just outside
the beam and this does not depend on the number of
trajectories.

4. How to recognize the emittance growth artefact

Finally, the question may arise, how to distinguish
between ‘‘real’’ and artificial emittance growth in a
simulation, which starts with a beam of non-zero
emittance. According to the experiences and explanations
found for the above test case, a clear discrimination of the
central emittance growth requires the comparison of a
fractional emittance analysis for different numbers of
trajectories as well as for different numbers of meshes,
used inside the beam. Then the latter also will show much
larger emittance growth at the beam boundary. Excellent
experience with an increase of accuracy by applying
extrapolation of numerical solutions with different kind
of discretisation [9,10] suggests to use this procedure also
here. The radial function of the increase of the fractional
emittance should be extrapolated to arbitrary fine dis-
cretisation, using results obtained with different sets of
discretisation parameters. An alternative approach is the
use of a distorted radial mesh with highest mesh density at
the beam boundary [11], which reduces the emittance
growth artefact, but does not allow to discriminate it.

5. Conclusions

Emittance growth in beam spreading calculations of
high-intensity ion beams, starting with zero emittance, has
detected two kinds of mesh artefacts for finite difference
simulation programs, like IGUNr: the numerical proce-
dure to allocate space charge to mesh nodes causes small
but distinct differences of the space charge of neighbouring
nodes. The solution of the Poisson solver will then produce
non-linear radial electric fields, even in the case of a
homogeneous beam. This will create emittance growth for
the inner part of the beam; the smaller it becomes, the more
trajectories and meshes will be used. The most prominent
mesh artefact occurs at the beam edge: the filling of the
space charge map here causes very non-uniform space
charges and hence electrical fields. This effect is indepen-
dent of the number of trajectories used, but only depends
on the number of meshes.
In case of real simulations, these mesh artefacts can be

discriminated even for simulated ion beams with non-zero
emittance, by varying the mesh resolution and the number
of trajectories. Results obtained for the radial fractional
emittance dependence then may be extrapolated to
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infinitely fine discretisation, to reveal the correct emittance
growth by non-linear electric fields, without the hiding
effect of mesh artefacts.
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Abstract

Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on

numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian

perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle

motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The

major features of harmonic tracking are presented and examples of its application are discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Harmonic tracking (HT) is a method for research into
the non-linear motion of a particle in a circular accelerator
[1]. The method is based on numerical calculation of the
Hamiltonian function of the perturbation potential ex-
panded in a harmonic series. Integration is carried out over
the independent azimuthal coordinate. In HT all non-linear
excitation is replaced with the excitation potential, includ-
ing all non-linear elements and represented by an infinite
harmonic series.

In the present work we used expansion of the sextupole
potential, since the sextupole lens is the basic non-linear
element intended to compensate for natural chromaticity.

It is interesting that HT allows easy (in fact, manual)
operation of the perturbation harmonics describing the
non-linear potential, and therefore optimization of the
parameters of the non-linear system. Thus, in a circular
accelerator, it is possible to ‘‘plausibly’’ describe non-linear
motion of a particle using a finite number of harmonics of
sextupole perturbation.

The harmonics depend on the values of forces and the
arrangement of sextupole magnets, thus, it is possible to
choose sextupole magnets in such a way that their non-
linear influence does not lead to reduction of the area of
stability.
HT is realized with using the method of canonical

integration of any order [2]. This method of integration of
the Hamilton equations of motion is based on replacement
of a continuous Hamilton system with an implicit
canonical mapping. The implicit mapping is realized by
the ‘‘predictor–corrector’’ scheme, in which explicit Lee
mapping is used as the predictor.

2. Theory

The sextupole perturbation Hamiltonian in the ‘‘action-
phase’’ variables takes the following form:

H ¼ nxJx þ nzJz þ ð2JxÞ
3=2
X

n

½3A1n cosðfx � nyÞ

þ A3n cosð3fx � nyÞ� � 3ð2JxÞ
1=2
ð2JzÞ

�
X

n

½2B1n cosðfx � nyÞ þ Bþn cosð. . .Þ þ � � �� ð1Þ
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where the amplitudes of the corresponding harmonics are
determined as follows:

Ajn ¼
1

48p

X
i

b3=2xi ðyiÞksðyiÞ cosðjcxi � nyi þ nyiÞ; j ¼ 1; 3

B�n ¼
1

48p

X
i

b1=2xi ðyiÞbziðyiÞksðyiÞ

� cosðc�i � n�yi þ nyiÞ; c� ¼ cx � 2cz

where bðyiÞ and cðyiÞ are the amplitude and phase betatron
functions and ksðyiÞ ¼ ð1=BrÞðq2Bz=qx2Þ is the strength of
the sextupole lens. The integrals can be replaced with the
sum in approximation of ‘‘thin’’ lenses, when the lens
length is much less than that of betatron oscillations
[ksðyiÞ ¼ ksl is the integrated strength of the sextupole
magnets].

To solve Hamiltonian Eq. (1), it would be better to
rewrite it in the variables (x; z;Px;Pz) using the following
transformation of coordinates:

u ¼
ffiffiffiffiffiffiffiffi
2Ju

p
cosju; Pu ¼ �

ffiffiffiffiffiffiffiffi
2Ju

p
sinju; u ¼ x; z.

Substitution of the new variable in the initial Hamiltonian
Eq. (1) yields a new Hamiltonian, which now depends
only on the coordinates, harmonic values and azimuthal
coordinate. Therefore, it is possible to write the Hamilto-
nian in a more convenient form to mark out the factors
dependent on the harmonics and azimuth for the coordi-
nates x; z;Px;Pz. In the new form, the Hamiltonian is

H ¼
nx

2
ðP2

x þ x2Þ þ
nz

2
ðP2

z þ z2Þ þ V ðx; z;Px;Pz; yÞ

where

V ðx; z;Px;Pz; yÞ ¼ aðyÞx3 þ bðyÞP3
x þ cðyÞx2Px þ dðyÞxP2

x

þ eðyÞxz2 þ f ðyÞxP2
z þ gðyÞz2Px

þ hðyÞPxP2
z þ iðyÞzPxPz þ kðyÞxzPz. ð2Þ

The 10 factors in the Hamiltonian are written in the
following form:

aðyÞ ¼
X

m

ð3A1m þ A3mÞ cosmy

bðyÞ ¼
X

m

ðA3m � 3A1mÞ sinmy

cðyÞ ¼ � 3
X

m

ðA1m þ A3mÞ sinmy

dðyÞ ¼ 3
X

m

ðA1m � A3mÞ cosmy

eðyÞ ¼ � 3
X

m

ð2B1m þ Bþm þ B�mÞ cosmy; etc: ð3Þ

Such a form of the Hamiltonian is rather convenient,
since it depends on a finite number of factors (10). The
factors can be calculated subject to a large number of
harmonics of the sextupole perturbation, or subject only to
the basic resonant harmonics.

The equations of motion derived from Hamiltonian
Eq. (2) are as follows:

dx

dy
¼ nxPx þ 3bðyÞP2

x þ 2cðyÞPxxþ dðyÞx2 þ � � �

dPx

dy
¼ �nxx� 3aðyÞx2 � cðyÞP2

x � 2dðyÞxPx þ � � �

dz

dy
¼ nzPz þ 2f ðyÞxPz þ 2hðyÞPxPz þ � � �

dPz

dy
¼ �nzz� 2eðyÞxz� 2gðyÞPxzþ � � � . ð4Þ

3. Method of canonical integration of any order

The equations of motion [Eq. (4)] were solved numeri-
cally by the method of canonical integration of any order
[3]. For realization of this method it is necessary to deal
with implicit equations, solution of which requires one
of the methods for minimization of a finite number of
elements. Newton’s method can be used here. However,
such an approach leads to difficulties related to the fast
convergence of consecutive approximations.
Application of the Lee transformation creates no

problems related to unambiguity and convergence. More-
over, it is known that within one step of integration the
values ð ~x; ~uÞ obtained can coincide well with the actual
values ðx̄; ūÞ.
For this reason, the following scheme was used for

effective integration of the equations of motion: the Lee
prediction was taken as the initial approach (predictor) and
further refinement was carried out with the help of the
simple iteration ūðkÞ ¼ F ðx; u; ūðk�1ÞÞ, k ¼ 1; 2 . . . (correc-
tor). It is evident from practice that more than two
refinements are seldom required.
We can use the Lee prediction of a lower order (1,2) for

the initial approach and move in small steps, or use the Lee
prediction of a higher order and move in larger steps.
In our program we used the Lee prediction of the first

order as the initial approach, and the required accuracy
was achieved via control of the current error.

4. Method application for an increase in dynamic aperture

Modeling using HT allows the easy determination of
which of the (five) basic resonant harmonics plays a basic
role, thereby optimizing the non-linear system.
An increase in the stable motion area via setting the

‘‘required’’ basic resonant harmonics to zero works well for
structures of the double bend achromatic (DBA) type.
Fig. 1a and b shows the horizontal phase planes ðX2PxÞ

designed for the model under research, with application of
the matrix formalism in approximation of thin lenses and
HT subject to 100 harmonics.
From Fig. 1, it is obvious that the results of tracking for

both methods coincide with very good accuracy. The next
step is to understand which of the five basic harmonics
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represents the main contribution to the perturbation and
how plausible the description of the non-linear system
under research will be if only these harmonics are used.

Fig. 2 shows how the dynamic aperture varies according
to the theory if only two basic resonant harmonics of
perturbation are set to zero.

From consideration of the dynamic aperture presented
in Fig. 2, it becomes obvious that setting the basic resonant
harmonics to zero leads to an increase in the dynamic
aperture size.

In addition, this example shows the utility of the HT
method. The technique of setting the basic resonant
harmonics to zero is applicable for circular accelerators
with strong symmetry in which the DBA magnetic
structure is represented by several identical cells (super-
periods). In modern circular accelerators, the installations
that satisfy such a structure are specialized sources of
synchrotron radiation, in which the area of steady move-
ment can be increased essentially by setting the basic
resonant harmonics to zero.

5. Comparison with experiment

Fig. 3 shows experimental results for two-dimensional
coupled sextupole resonances of nx þ 2nz ¼ 24 and
nx � 2nz ¼ �7. The experiment was carried out on the
VEPP-4M collider [3,4].

The measurements were based on fast pulse (one
turn) excitation of coherent oscillations of the electron
beam [5]. The measurements were carried out at energy
E ¼ 1.85GeV.
The typical beam current in the measurements was

1–3mA. In this case, the rms coordinate resolution of the
BPM is approximately 70 mm. Phase trajectories were
restored by the position of the center of the beam from
one pickup [5].
Figs. 3 and 4 show comparative results obtained

experimentally and via modeling for the case of movement
close to the difference resonance.
The results of measurements on the VEPP-4M collider

(Fig. 3) are presented using the coordinates beam
position–revolution number. Fig. 3 shows the results of
the measurements (dependence of indications of the beam
position pick-up on the revolution number) close to the
difference resonance. In addition, Fig. 4 shows results of
the modeling (including the phase trajectories), which
allows estimation of the value of the basic harmonic as
B–,–7E0.04mm�1/2, which coincides well with estimations
made by other methods.
In Fig. 3 the fast decay of coherent betatron oscillations

is evident, which for the VEPP-4M storage ring has a large
rate for the vertical coordinate. However, this is not
important here, since we are interested in the first 200
turns, giving us the frequency and amplitude of the beat.
Thus, omitting the decay of coherent betatron oscillations,
the effect of which was not taken into account in the
modeling, the concurrence of the experimental (Fig. 3) and
modeling (Fig. 4) results becomes obvious.

6. Conclusions

A new method for research of non-linear motion in a
circular accelerator was developed and realized. The
method allows easy operation (‘‘manual’’) of the harmo-
nics of perturbation, and thus optimization of the
parameters of the non-linear system. The utility of this
method has been checked using the example of increasing
the area of steady motion for some modern circular
accelerators. Results of modeling by the HT method agree
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with the results obtained by traditional methods of
tracking, as well as with experimental results.
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Abstract

A method to derive identities in static corpuscular optics is described. The essence of the method involves consideration of the particle

start time as a parameter. As an example, 12 identities have been derived for a single electrostatic lens in the asymptotic case.
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1. Introduction

One of the central problems of modern corpuscular
optics involves estimation of the accuracy of numerical
calculations. One common procedure consists of calculating
the electromagnetic field distribution, the charged particle
trajectory, the cardinal elements and the aberration.

Unfortunately, there are not enough cases for which
particle trajectories may be obtained in analytical form for
an electromagnetic field with a known electrode profile. As
a consequence, there is no unified test to determine the
accuracy for all existing tracking methods for numerical
calculations in corpuscular optics.

It is likely that for imaging systems such a test may be
evolved from identities including the cardinal elements and
aberrations. A group of identities exists as a consequence
of the simplectic condition [1]. Such identities exist for any
Hamiltonian system, including time-dependent Hamilto-
nian systems.

This paper describes a simple method for deriving
identities for imaging corpuscular–optics systems. The
method under consideration yields identities as a conse-
quence of the static field character. Such identities exist for

any static system, for which it must be noted that the
system may be non-Hamiltonian.
The main point of the method proposed for deriving new

identities in a wide range of cases is to regard the particle
start time as a parameter. As in any static field, the particle
trajectory is independent of such a parameter, and usually
this parameter is not considered.

2. Particle start time as a parameter in static corpuscular

optics

If we take into account the particle start time as a
parameter and calculate any quantity in two ways, then it is
possible to determine some identities.
This method is illustrated for the case of a single

electrostatic lens with a plane of symmetry when an object
and its image are outside the lens (i.e. an asymptotic case
for both relativistic and non-relativistic particles).
In Fig. 1, a single two-dimensional or axisymmetrical

lens is represented with a more general quasi-stationary
electric field. A field potential in the symmetry x–z plane
may be written as Uðx; z; tÞ ¼ f ðtÞuðx; zÞ, where uðx; zÞ is an
even function of x. In the quasi-stationary lens, particle
trajectories actually depend on the start time. If the lens is
static [i.e.f ðtÞ ¼ const], then trajectories are independent of
the start time.
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If we choose a coordinate x of the point of intersection
of the particle trajectory and the image plane and calculate
it twice for two different particle start times, then this
allows the determination of a countable set of identities.
This is the essence of the proposed method. In the example
under consideration, this is equivalent to calculation of the
STA.

3. Calculation of the STA up to second-order pulse duration

Let us calculate the STA Dx in a Gaussian plane for a
more general quasi-stationary lens and equate it to zero for
static lenses.

We briefly mention detailed studies of STA in Refs.
[2–4]. Particles starting from an object point ðz0;x0Þ not at
moment t ¼ 0 but later at a moment t ¼ Dt40 may be
absolutely correctly considered as particles that start at the
moment t ¼ 0 from a moved point ð~z0; ~x0Þ. Thus, these
coordinates may be written in the form:

~z0 ¼ z0 � Dd (1)

~x0 ¼ x0 � Dd x00; z (2)

where the quantity Dd ¼ v cos aDt has the dimension of
length, v is the initial particle velocity, x00 ¼ tan a, and a is
the angle between the initial velocity vector and the z-axis.

Now it is only necessary to carry out some technical
calculations. In fact, the object plane z ¼ z0 has a
conjugated plane z ¼ zi in the image space. Then the
object plane z ¼ ~z0 should have a conjugated plane z ¼ ~zi

in the image space, as shown in Fig. 1. The point of
intersection of the particle trajectory and the image plane
up to the third order may be written in the form:

x ¼Mx0 þ Ax00
3
þ Bx0x

0
0
2
þ Cx2

0x
0
0 þDx3

0 (3)

where the coefficients correspond to lens lateral magnifica-
tion (M), spherical aberration (A), coma (B), distortion
(D), astigmatism and field curvature (C).
All the coefficients in the last formula are functions of z0

and, in the general case, of particle start time t0 (and also
particle energy and lens parameters) so as for delayed
particles, starting from the point ð~z0; ~x0Þ, an analogous
expression must be written in the same form:

~x ¼ ~M ~x0 þ ~Ax00
3
þ ~B ~x0x

0
0
2
þ ~C ~x2

0x
0
0 þ

~D ~x3
0. (4)

Each coefficient taken separately from Eq. (4) may be
expanded into a Taylor series correct up to the second
order. For example, after taking into account Eq. (1), the
lateral magnification becomes

~Mðz0 � DdÞ ¼M �Mz Dd þ 0:5MzzðDdÞ2 þO½ðDdÞ3� (5)

where the index z denotes the derivative with respect to z0:
Mz ¼ qM=qz0, Mzz ¼ q2M=qz20, and so on. The values of
all functions on the right-hand side of Eq. (5) should be
calculated for the definite point ðz0; 0Þ.
In addition, the spherical aberration coefficient becomes

~Aðz0 � DdÞ ¼ A� Az Dd þ 0:5AzzðDdÞ2 þO½ðDdÞ3�. (6)

Exactly the same equation is valid for the remaining
aberration coefficients.
As the image planes are in the field-free region, the

particle trajectories in the image space are straight lines
X ðZÞ. Consequently, the expression for trajectory of the
delayed particle crossing the corresponding image plane at
point ð~zi; ~xÞ, is as follows:

X ðZÞ ¼ ~xþ ~x0ðZ � ~ziÞ. (7)

This straight line crosses the plane z ¼ zi at the point X ðziÞ,
so STA may be written in the form:

Dx ¼ X ðziÞ � x ¼ ~xþ ~x0ðzi � ~ziÞ � x. (8)

To complete the STA calculation, it is necessary to
determine the displacement of the image plane when the
object plane moves. As the zi coordinate of the image plane
is a function of the z0 coordinate of the object plane, it is
possible to expand the quantity ~zi into a Taylor series
correct up to the second order, analogous to the Taylor
series in Eqs. (5) and (6):

~ziðz0 � DdÞ ¼ zi �
qzi

qz0
Dd þ 0:5

q2zi

qz20
ðDdÞ2

þO½ðDdÞ3�. ð9Þ

If we take into account the definition of longitudinal lens
magnification M l,

M l ¼
qzi

qz0
(10)
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Dx is blurring of the image in a Gaussian plane due to the pulse duration

Dt.
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then Eq. (9) is easily transformed to the form:

zi � ~zi ¼M l Dd � 0:5
qM l

qz0
ðDdÞ2 þO½ðDdÞ3�

¼M l Dd � 0:5M lz ðDdÞ2 þO½ðDdÞ3� ð11Þ

where M lz ¼ qM l=qz0.
Substitution of the last equation into Eq. (8) yields the

following expression for STA up to the second order in Dd:

Dx ¼ X ðziÞ � x ¼ ~x� xþ ~x0ðzi � ~ziÞ

¼ ~x� xþ ~x0½M lDd � 0:5M lzðDdÞ2�. ð12Þ

The STA coefficients for an axial point were calculated
in Ref. [3], but approximation of the trajectory slope ~x0 was
only up to the first order. To take into account this
quantity in an approximation up to the third order, then it
must be written in the form:

x0 ¼ gx0 þ Gx00 þ Ex00
3
þ Fx0x

0
0
2
þ Gx2

0x
0
0 þHx3

0 (13)

where G is the angular magnification, g ¼ g0ðziÞ and gðzÞ is
one of the independent linear solutions of the paraxial lens
equation for which gðz0Þ ¼ 1, g0ðz0Þ ¼ 0.

It should be noted that the second independent linear
solution of the paraxial lens equation is usually determined
by the initial data hðz0Þ ¼ 0, h0ðz0Þ ¼ 1. It is well known
that in a conjugated plane hðziÞ ¼ 0, gðziÞ ¼M and
h0ðziÞ ¼ G. However, the value of the quantity g0ðziÞ,
marked in this paper by the special symbol g, is almost
unknown as a function of the other lens parameters and is
usually not examined in textbooks on particle optics.
Furthermore, it is clear how it is possible to obtain this
quantity as a function of the other lens parameters.

The coefficients E;F ;G;H are also not considered in
textbooks; although knowledge of image blurring is of
interest, aberrations of the trajectory slope are usually not
of interest. For the coefficients E;F ;G and H in the static
case, aberration integrals analogous to the standard
aberration integrals for the coefficients A;B;C and D

may be derived by any known method.
Now it is possible to write an equation for the quantity

~x0, as has been done for the quantity ~x:

~x0 ¼ ~g ~x0 þ ~Gx00 þ
~Ex00

3
þ ~F ~x0x

0
0
2
þ ~G ~x2

0x
0
0 þ

~H ~x3
0

þO½ðDdÞ3�. ð14Þ

All the coefficients with tilde in the last formula may be
expanded in turn correct up to the second order into
Taylor series that are absolutely analogous to the Taylor
series in Eqs. (5) and (6). For example, for coefficient ~g we
have

~gðz0 � DdÞ ¼ g� gz Dd þ 0:5 gzzðDdÞ2 þO½ðDdÞ3�. (15)

Finally, inserting into Eq. (12) for STA all the necessary
items and expanding it into a series up to the second order

in Dd, we obtain

Dx ¼ Dd½x00ð�M þ GM lÞ þ x0ð�Mz þ gM lÞ

þ x00
3
ð�Az � Bþ E M lÞ

þ x0x00
2
ð�Bz � 2C þ FM lÞ

þ x2
0x00ð�Cz � 3Dþ GM lÞ

þ x3
0ð�Dz þHM lÞ�

þ ðDdÞ2 x00 Mz �
M lz

2
G�M lg�M lGz

� ��

þ x0
Mzz

2
�

M lz

2
g�M lgz

� �

þ x00
3 Azz

2
þ Bz þ C �

M lz

2
E

�

�3M lE
2Ez �M lF

�

þ x0x00
2 Bzz

2
þ 2Cz þ 3D�

M lz

2
F

�

�2M lFF z � 2M lG

�

þ x2
0x00

Czz

2
þ 3Dz �

M lz

2
G �M lGz � 3M lH

� �

þ x3
0

Dzz

2
�

M lz

2
H �M lHz

� ��
. ð16Þ

It is obvious that in the general case the series for the
STA should contain an infinite sequence of terms. This
series is a power series in powers of Dd, and the coefficients
of the series are in their turn a series of all odd
combinations of xm

0 ðx
0
0Þ

n, which is typical for geometrical
aberrations in the static case.
For static lenses, the STA is identically equal to zero

because each of the terms of the series in Eq. (16) is
identically equal to zero as well. For expansion up to the
second order in Dd and up to the third order in x0; x00, this
gives 12 identities.

4. Analysis of the identities

Let us consider the first two identities. First we have

M ¼ GM l. (17)

Recall that the Helmholtz–Lagrange invariant MG ¼
p0=pi exists, where p0 and pi are the initial particle
momentum in the object plane and final particle momen-
tum in the image plane, respectively. Then the angular
magnification may be excluded from identity (17). Such a
procedure yields a connection between the lateral and
longitudinal lens magnifications:

M l ¼
M

G
¼

pi

p0

M2. (18)

The last has long been well known in both classical light
optics, where it is called the Maxwell formula [5], and
particle optics [6].
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In contrast to the first identity, the second identity is
much less well known. It allows expression of the quantity
g through angular magnification of a lens. In fact, we have

g ¼ gðziÞ ¼
Mz

M l
¼

p0

pi

Mz

M2
¼ �

qG
qz0
¼ �Gz. (19)

It must be emphasised that both identities connect the first-
order lens parameters and may be useful for checking
existing numerical results in the paraxial approximation.

When the asymptotic case is considered (i.e. an object
and its image are in drift space) it is obvious that the value
of gðziÞ is independent of object position z0, so that
g ¼ constðz0Þ. This gives the possibility of treating identity
(19) as a differential equation for the quantity Gðz0Þ with
the trivially obtained solution

G ¼ �g z0 þ const ¼ a z0 þ b (20)

where the coefficients a and b are any real numbers.
Furthermore, according to the Helmholtz–Lagrange

invariant the lateral magnification can be written in the
form

M ¼
p0

pi

1

ða z0 þ bÞ
. (21)

If we recall now that the asymptotic aberration
coefficients are polynomials with respect to inverse lateral
magnification [7], then it is possible to state that the
asymptotic aberration coefficients are polynomials of the
same degree with respect to object position z0.

Further analysis shows that among the remaining 10
identities, two link the magnifications of a lens as follows:

Mz �
M lz

2
G�M lg�M lGz ¼ 0 (22)

and

Mzz

2
�

M lz

2
g�M lgz ¼ 0. (23)

It is easy to show that identity (22) is a consequence of
identity (19) and identity (23) yields the equation Gzz ¼ 0,
which has function (20) as the solution, i.e. yields G as a
linear function of z0 without additional argument.

Finally, the remaining eight identities link the third-
order aberration coefficients. Apparently, it was not
previously known that these identities are a consequence
of the static character of fields. These identities consist of
lens magnifications, position and slope aberration coeffi-
cients. They are

�Az � Bþ E M l ¼ 0 (24)

�Bz � 2C þ F M l ¼ 0 (25)

�Cz � 3Dþ G M l ¼ 0 (26)

�Dz þH M l ¼ 0 (27)

Azz

2
þ Bz þ C �

M lz

2
E � 3M lE

2Ez �M lF ¼ 0 (28)

Bzz

2
þ 2Cz þ 3D�

M lz

2
F � 2M lFFz � 2M lG ¼ 0 (29)

Czz

2
þ 3Dz �

M lz

2
G �M lGz � 3M lH ¼ 0 (30)

Dzz

2
�

M lz

2
H �M lHz ¼ 0. (31)

It may be shown that some slope aberration coefficients
may be expressed via position aberration coefficients, but
this is outside the scope of the present paper. For example,
it may be shown [8] that identity (24) in real cases allows
expression of the third-order lens coma via the third-order
spherical aberration, its first derivative with respect to z0
and a linear lens magnification.

5. Summary

A new method for deriving identities in static corpus-
cular optics was proposed and illustrated.
A total of 12 identities were derived for imaging systems,

some of which have seemingly been derived for the first
time by the method proposed. Apart from clarifying a
difficult problem on links between different aberration
coefficients, the identities may form the basis for the
creation of universal tests for checking numerical calcula-
tions in corpuscular optics, which have been lacking until
now.
Analogous identities may be obtained for real aberration

coefficients for static magnetic or combined lenses. If we
take into consideration the fifth-order aberration coeffi-
cients, then new identities should be obtained.
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Abstract

Monte-Carlo algorithms developed in PNPI RAS for calculation and optimization of particle beam are presented. We discuss the

MEZON code for simulation of the particle behavior in the beam line and the OPTIMUM code for optimization of the beam

parameters. Combination of Monte-Carlo GEANT3 calculations with MEZON code provides the very effective tool for designing the

beam lines with absorbers.

r 2005 Published by Elsevier B.V.
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1. Introduction

Many computer codes were developed for particle beam
design. However, several problems appeared during the
stage of R&D of beam lines for 1GeV synchrocyclotron
and required further development of existing methods
of calculations and introduction of new approaches. This
article is concerned with application of Monte-Carlo
methods for the design and optimization of the beam
lines.

2. Simulation of the primary and secondary beams

In most of existing codes, the envelopes of the primary
beam are calculated with the use of transfer matrix and
phase ellipse in ‘‘hard edge’’ approximation. For many
applications, this approach is inadequate. Calculation of
secondary beams is performed with the use of beam line
acceptance under the assumption of uniform distribution
of particles in phase space and it is not physically justified.
The deficiency of existing codes is especially evident in

calculation of beams of the third generation, for example,
muon beams produced as a result of decay on the flight of
p-mesons. In this case, local source of muons does not exist
and they can be produced at any point along the beam line.
To reduce the number of simplifying assumptions and to
get more detailed information on beam behavior, it was
decided to use Monte-Carlo method widely used for
simulation of passage of neutrons through the matter,
simulation of particle detectors at modern colliers, etc. In
beam optics, Monte-Carlo method consists of tracing and
accumulation of large number of particle trajectories
passing through the channel. Initial conditions of the
particles in the target or in the source are random variables.
On every step of trajectory integration, deviation of
particle from the channel axis is compared to limiting
transverse apertures. If particle falls out of the aperture,
then it is considered to be lost. MESON code is based on
such an approach [1]. Simulation method enables to get
any characteristics of the beam such as absolute intensity,
beam losses in particular elements of the transport line,
spatial distribution and timing structure of the beam,
momentum spectrum, etc. It also takes into account 3D
geometry of the target, dependence of differential cross-
section on energy and angle, and variation of density of
primary beam. If the length of p-meson trajectory is equal
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to decay length, i.e. a random variable, then p-meson
disappears giving rise to muon. Transformation of p-
meson to muon changes momentum vector of particle,
which is defined by decay angles (y and j) according to
well-known formulas of kinematics. Decay angles were
treated as random variables also.

To increase the number of simulated muon trajectories,
parameters of one p-meson generated in the target are
assigned to pion cluster. All particles from the same cluster
decay in the same point, but parameters of the decays are
simulated for every p-meson independently. Thus, the
cluster makes up a set of muons with different momenta
and decay angles.

Such an approach let us to simulate so-called ‘‘meson
cloud’’ effect. It was shown that 30–50% of separated
muons originate not from the beam of p-mesons captured
in channel but from p-mesons decayed in the vicinity of
target or on the input of the channel where pion flow is
higher by factor of 1000. This effect, earlier observed in
experiment, has been quantitatively described.

3. Optimization of beam lines

Besides simulation of beam parameters in the given
beam line, there is a problem of optimization of beam
parameters. This problem consists of selection of lay-out
and fields of magnetic elements with the purpose of
optimization of some beam parameters such as intensity,
intensity density, momentum resolution, etc. The problem
of optimization consists of two parts: (a) calculation of the
beam parameters and (b) development of algorithm for
search of optimum. Both these tasks can be solved with
Monte-Carlo method. Algorithm of MESON code can be
used for determination of beam parameters and, as a
consequence, for calculation of any function of these
parameters called quality function. Mathematically, the
task of optimization can be reduced to search global
maximum of the quality function depending on many
arguments. Random search method with statistical
prediction algorithm (so-called method of statistical
gradient) was used for search of global maximum.
On the basis of this method, the OPTIMUM code was
developed [2].

Optimization algorithm is as follows [3]. Parameters of
the beam line under optimization (xi, where i ¼ 1yn) are
random variables which are normally distributed with
mean x0

i and dispersion si. Full set of the parameters
constitute a random vector:

~X ¼ ðx1;x2; :::; xi; :::; xnÞ,

where i ¼ 1,2,yn; n—number of parameters.
Series of such vectors ~X

k
where k ¼ 1; 2; . . . ;N (Npn) is

generated and corresponding quality functions Fð~X
k
Þ are

calculated. Maximum value of the function Fm ¼

max Fð~X
k
Þ achieved at ~X

m
gives the first approximation

of the global maximum. To improve the approximation,

weight of every variable is calculated as

gi ¼
1

N

XN

K¼1

ðDFK DX K
i Þ=s

2
i ,

where DFK ¼ FK � F0 and DX K
i ¼ X K

i � X 0
i .

More convenient to use are the normalized weights:
yi ¼ gi=

Pn
i¼1g2

i , where n is the number of parameters. New
approximation of the maximum is defined by
X r

i ¼ Xm
i þ eyi, where e is the scale factor being one of

input parameters.
Then, new quality function Fr ¼ Fð~X

r
Þ is calculated and

compared to Fm. If FmoFr, then one more step is
performed in the same direction. Otherwise, previous value
is used as starting one in the next cycle of calculations. The
variation range for random vectors, sigma and epsilon is
narrowed in the process of optimization. The optimization
is finished when variations of quality function and random
vector become smaller than some given value.
The main features of this method are follows:

1. The random search provides a possibility to reach global
maximum and the prediction algorithm improves the
convergence process.

2. The number of calculations of quality function is smaller
than in the regular optimization methods that may be
important when number of variables is great.

3. Constrains on the search region can be easily included in
the search algorithm.

Both programs MESON and OPTIMUM were success-
fully used for design of p- and muon beam lines at 1GeV
synchrocyclotron. Experimental measurements of beams of
p-mesons and muons showed very good agreement with
results of simulations.

4. Design of the variable energy proton beam obtained by the

moderation of the primary beam in the degrader

Monte-Carlo method was also used to design the proton
beam of variable energy (200–900MeV) at 1GeV synchro-
cyclotron. The energy variation of the beam is provided by
the copper degrader. It is common practice to decrease
energy of the proton beam by using a degrader. Applica-
tion of Monte-Carlo method to this problem makes
possible to find all parameters of the beam in detail.
Simulation algorithm consists of two major stages. On the
first stage, parameters of the beam after degrader are
simulated with well-known GEANT3 code. On the second
stage, the coordinates and momentum vector for every
proton after degrader are used as input data for MESON
and OPTIMUM codes. To get 300–500 particles on the
output of the beam channel, one has to simulate 106

particles after degrader that looks quite acceptable.
Experimental studies showed good agreement with results
of calculations of intensity, beam size, momentum spread
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and magnetic field in the dipoles and quadruples of the
beam line [5].

5. High-energy beam scattering on collimator walls

In beam optics, the collimators are used to restrict the
beam size and its divergence. However, the collimator in
high-energy optics is not identical to diaphragm in the light
optics. Due to multiple scattering, significant part of the
beam hitting the collimator walls can re-enter the
collimator opening. This is a well-known effect quantita-
tively analyzed in Ref. [4]. Proposed approach let to study
effect of multiple scattering on the collimator walls and its
influence on the beam quality numerically in detail. In this
approach, passage of protons through the system consist-
ing of degrader and collimator with an opening of
4� 6 cm2 is simulated with GEANT3 code. Calculations
showed that beam intensity after real collimator is 25%
higher than that in the case of ideal collimator which
absorbs all the particles falling out of aperture. Effective
opening of the collimator can be considered to be larger
than its real value by 0.5 cm. Due to multiple scattering in
the collimator walls, the beam after collimator is enriched
by particles with wide angular and energy distribution.
Two major conclusions can be derived from these
observations: collimator should not be used in front of
registering apparatus; collimators of width less than
0.5–1 cm should not be used because of large contribution
of particles scattered in the walls. Density of particles with
large divergence angle is inversely proportional to the
distance from collimator. So it is reasonable to collimate
high-energy beam on the long distance from detector.
Moreover, deflecting magnets installed in the beam line
reduce density of particles with lower energies due to
particle separation by momentum. Therefore, it is desirable
to provide the magnetic analysis after collimator. In our
case of the beam line having a length of �30m and
containing a deflecting magnet, the contribution of

particles scattered in collimator does not exceed a few
percent. Thus, the combination of GEANT3 code and
beam line simulation codes MESON and OPTIMUM
provides reliable tool for the designing beam lines with
degrader.

6. Conclusions

Methods developed in PNPI to design various beam
lines are presented in this article. Codes developed for
tracing of particles through the magnet channels (MESON)
and for optimization of beam parameters (OPTIMUM) are
described. It is shown that GEANT3 code in combination
with Monte-Carlo simulation of beam behavior in the
beam line represents reliable tool for detailed calculation of
beam lines with degraders. The developed methods have
been tested at 1GeV synchrocyclotron and the experi-
mental studies showed a good agreement with results of
calculation. The developed codes are multi-purpose ones
and can be used for beam line design in different
accelerators.
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Abstract

MAD-X is the successor at CERN to MAD8, a program for accelerator design and simulation with a long history. We had to give up

on MAD8 since the code had evolved in such a way that the maintenance and upgrades had become increasingly difficult. In particular,

the memory management with the Zebra banks seemed outdated. MAD-X was first released in June, 2002. It offers most of the MAD8

functionality, with some additions, corrections, and extensions. The most important of these extensions is the interface to PTC, the

Polymorphic Tracking Code by E. Forest. The most relevant new features of MAD-X are: languages: C, Fortran77, and Fortran90;

dynamic memory allocation: in the core program written in C; strictly modular organization, modified and extended input language;

symplectic and arbitrary exact description of all elements via PTC; Taylor Maps and Normal Form techniques using PTC. It is also

important to note that we have adopted a new style for program development and maintenance that relies heavily on active maintenance

of modules by the users themselves. Proposals for collaboration as with KEK, Japan and GSI, Germany are therefore very welcome.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Originally it was planned to replace the MAD8 [1] code
by a C++ version called MAD9 [2]. A project like this
made sense at the time since MAD8 had become
unmaintainable due to its complexity and its old fashioned
structure all written in Fortran77. This grand new start was
intended to make use of the powerful C++ object oriented
tools for a transparent code structure, very general and
flexible element and lattice description and making use of
modern Normal Form techniques. In practice, it turned out
that the MAD9 structure was so complex that bug fixes
became very time consuming. Moreover there were serious
timing issues that could not be resolved leading to very slow
performance of the code compared to MAD8.

After many months of futile attempts to make use of
MAD9 to do the much needed LHC design and simulation
studies the LHC optics design team decided to look for an
alternative. A crash program was started to rewrite MAD8
with a core program written in C with interfaces to

independent modules written in either C or Fortran. In the
summer of 2002 a first version of MAD-X [5] was released.
In the meantime the code has matured to fully cover all
issues concerning the LHC. The first section describes the
present status of MAD-X proper.
Structurally and concerning the physics MAD-X offers

nothing new with respect to MAD8. In particular Normal
Form tools cannot be easily added. Moreover, we have
suppressed all problematic modules like the thick lens
tracking and modules needed for small machines, which
had to be omitted due to lack of symplecticity. To
overcome this deficiency we have linked MAD-X with
the PTC [6] code described in the second section.
Lastly, the future plans for MAD-X are outlined.

2. Mad-X proper

The main new features of MAD-X can be summarized as
follows:

� Core part in C with dynamic memory allocation.
� Truly independent modules with interfaces to the core
for data access.
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� Making use of existing and debugged modules of
MAD8 in Fortran77.
� Retaining only those features of MAD8 that are sound
and concentrate on those modules that are needed for
the LHC design.
� Use PTC for small machines and Normal Form
calculations.
� Adding constructs to the input language like: WHILE
and IF .. ELSE .. ENDIF .
� Powerful ‘‘macro’’ structures.
� Improved table handling.
� CVS version management.
� Linux, MAC and Windows versions available.

In the past CERN has assigned considerable manpower
for writing accelerator design codes. For MAD-X it was
decided to replace this dedicated person by a team
of module keepers which still represents a substantial
amount of manpower, but less work for the individual
module keeper. In addition, there is one MAD-X
custodian who is responsible for the overall functioning
of the code. We expect that this team approach of module
keepers, who are mostly themselves active users of their
module, will lead to faster bug fixes and better, more usable
modules.

In Table 1 a list is given of all relevant modules with
name, purpose and module keeper (people in ‘‘bold’’ are
collaborators external to CERN).

On the MAD-X website [7] one can find a ‘‘News’’ link
which shows the changes between versions, the documen-
tation based on ‘‘html’’ files and derived from them a ‘‘ps’’
and a ‘‘pdf’’ version, a ‘‘Keyword and Subject Index’’, a
link to ‘‘Source and binaries’’ and one link to ‘‘Examples’’
for all modules and a facility to report bugs found in

MAD-X by its users. Lastly, one can subscribe to a MAD-
X newsgroup and a mailing list.

3. PTC

Forest’s Polymorphic Tracking Code PTC [6] is a kick
code or symplectic integrator and therefore ideally suited
to describe all elements symplecticly and to arbitrary
exactness. The degree of exactness is determined by the
user and the speed of his computer. The code is written in
an object oriented fashion using Fortran90. Therefore, it
becomes much easier to describe arbitrarily complex
accelerator structures. The other main advantage is that
the code is inherently based on the map formalism [8] and
provides MAD-X with all the associated tools.

ARTICLE IN PRESS

Table 1

Module keepers, people in bold are collaborators from outside CERN

Module Description Keeper Status

C6T SixTrack [3] converter F. Schmidt OK

CORORBIT Orbit correction W. Herr OK

DYNAP Tracking postprocessing F. Zimmermann OK

EMIT Emittance, radiation R. Assmann OK

ERROR Error assignment W. Herr OK

IBS Intra-beam scattering D. Brandt OK

MAKETHIN Thinlens converter H. Burkhardt OK

MATCH Matching procedures O. Brüning OK

PLOT Plotting T. d’Amico OK

PTC_NORMAL Normal Form coefficients A. Bolshakov Prepared

PTC_TRACK Thicklens lattice tracking A. Bolshakov Prepared

SURVEY Machine survey A. Verdier OK

SPACE-CHARGE Space charge effect O. Boine Frankenheim Planned

SXF Standard eXchange Format [4] F. Pilat OK

TOUSCHECK Touscheck effect C. Milardi Prepared

THREADER Beam threading T. Risselada OK

TWISS Optics parameters F. Schmidt OK

THINTRACK Thinlens lattice tracking A. Verdier OK

Fig. 1. Patching 2 beam lines (taken from Ref. [6]).
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One particular advantage is the fact that PTC allows to
treat more complex beam line arrangements that can no
longer be described by a simple sequence of elements.
Fig. 1 shows an example in which the beam comes back to
the same element but with a different energy. PTC handles
all the coordinate system transformations by a built-in
‘‘patch’’ing mechanism.

PTC allows to treat elements correctly even for very
large momentum deviations. This becomes apparent in the
simple cyclotron example that can be described analyti-
cally. The authors of Ref. [9] have demonstrated that
MAD8 disagrees at large momentum deviation. In Fig. 2

one finds the same problem with MAD-X. However, using
the very same MAD-X input file as an input for PTC, one
can perfectly reproduce the analytical result.

4. Outlook

The latest MAD-X version V2.11 is quite mature for the
LHC design work. There is, however, still a significant
effort needed to guarantee full integrity of the code, in
particular concerning memory management issues. The
main upgrade path is to make full use of PTC which is now
solidly linked to MAD-X. In particular, it is planned to use
nonlinear coefficients calculated with PTC in the MAD-X
matching.
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Abstract

This paper introduces CST PARTICLE STUDIOTM, a specialist tool for the fast and accurate design and analysis of 3D electron

guns. The new software is based on the multi-purpose electromagnetic solvers of the CST STUDIO family and incorporates their

powerful modelling capabilities as well as successful algorithms of the MAFIA-TS simulators. The underlying theory of the PBAs based

field solvers and the used tracking technique is presented and some examples of application demonstrate the current status of the

software.

r 2005 Published by Elsevier B.V.
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1. Introduction

The present paper introduces CST PARTICLE
STUDIOTM as an easy to use three-dimensional simulation
tool for the fast and accurate design of electron guns. The
paper is structured as follows: In Section 2, the theoretical
background of the Finite Integration Technique (FIT) and
a short description of the CST PARTICLE STUDIOTM

(PS) program are presented. Section 3 describes the PS
simulation procedure. Finally some typical simulation
results are presented.

2. The CST PARTICLE STUDIOTM program

CST PARTICLE STUDIOTM (PS) is designed for gun-
simulations and incorporates powerful electromagnetic
field solvers for calculating the external fields, an efficient
particle tracking algorithm and sophisticated emission
models describing the extraction of particles from active
surfaces into free space.

The finite integration technique: The build-in general-
purpose electromagnetic solvers are based on the FIT, first

proposed by T. Weiland in 1977 [1]. The FIT provides a
general spatial discretization scheme usable for different
electromagnetic applications of arbitrary geometry, e.g. static
problems or calculations in frequency- and time-domain and
is successfully applied in the well-known MAFIA simulation
software [4]. Unlike most numerical methods, the FIT
discretises the integral form of Maxwell’s equations, rather
than the differential one, on a pair of dual interlaced grids. Its
formulation results in the so called Maxwell Grid Equations

C e
_
¼ �

d

dt
b
_
_

; eC h
_
¼

d

dt
d
_
_

þ j
_
_

þ j
_
_

ext, (1a)

eS d
_
_

¼ q; S b
_
_

¼ 0 (1b)

and the constitutive material relations d
_
_

¼Me e
_
, b
_
_

¼Mm h
_

and j
_
_

¼Mk e
_
. Since particle guns are usually driven by static

electric and magnetic fields, fast and efficient numerical
solvers for the solution of the governing electrostatic and
magnetostatic equations

E-static: eSMe
eST

F ¼ q; M-static: SMmS
TFm ¼ qm (2)

with qm ¼ SMmh
_

i, h
_

e ¼ �S
Tqm,

eCh
_

i ¼ j
_
_

and h
_
¼ h

_

e þ h
_

i

are implemented in CST PARTICLE STUDIOTM.
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The emission model: The emission model describes the
particle generation process at the emitting surface. Up to
now two types of emission models are implemented: Fixed
emission and space-charge limited emission. The space-
charge limited emission depends on the strength of the
external field at the emitting surface: Particles are emitted
as long as their reaction to the external fields decreases the
extracting force to a level, where further particle extraction
is suppressed. The amount of emitted particles can be
determined in two ways: either by applying the Child–
Lingmuir diode equation [2] or by emitting the whole
surface-charge [3] of the electrode (see Fig. 1). Both
schemes can optionally be applied. The Child–Lingmuir
based model, depicted in Fig. 1a, evaluates the current at a
certain distance d of the emitting cathode with

Js ¼
4

9
�

ffiffiffiffiffiffiffiffiffi
2

qe

me

r
ðFðdÞ � Fð0ÞÞ3=2

d2
. (3)

In contrast the divergence based model (see Fig. 1b) measures
the divergence of each emitting cell and assigns the cell-

charge Q ¼ d
_
_

1 þ d
_
_

2 þ d
_
_

3 þ d
_
_

4 to the emitted particles.
The particle tracking process: The particles are pushed

through the computational domain by interpolating the field-
values to their location and calculating the EM-forces. The
deposited space-charge in each cell and the particles’ current
is monitored and mapped to the grid. Hereby the timestep is

adapted to the highest particle velocity ensuring a minimal
number of pushing steps. Thus this adaptive timestepping
ensures a fast and efficient tracking algorithm. Having
finished the tracking of all particles through the computa-
tional domain, the resulting space-charge vector is used to
modify the right-hand side of the electrostatic potential
equation (Eq. (2)). Calculating the updated electric field yields
the starting point for the next iteration step. The relative
difference of the space-charge vector from one iteration step
to the next serves as accuracy control mechanism.

3. Simulation procedure

Once a physical model of the device under study has
been established, it can be modelled in the 3D simulator in
three steps: preprocessing, solving and postprocessing.

Preprocessing: The preprocessing of a structure (geo-
metric description, material properties, boundary condi-
tions, mesh generation) is made in an intuitive
environment. The geometric modelling is based on the
powerful ACIS kernel and allows definition of numerous
basic shapes, Boolean operations (addition, subtraction,
intersection, etc.) transformations (rotation, translation,
mirroring) etc. However, the strength of PS’s user interface
goes beyond the basic ACIS functionality: it is the intuitive
way of working and modelling, such as parameterization of
geometrical details at any point of the construction process
or the availability of comfortable pick features. The field
sources can be either potentials, charges, magnetizations or
currents through free-definable coils. The particle sources
are defined by selecting one or more faces of a solid.

Solving: Two different field solvers are at hand for
solving electrostatic and magnetostatic problems. At first,
boundary conditions have to be defined whereby Neu-
mann, Dirichlet and open boundary operators are sup-
ported. After the computation of the electric and magnetic
fields, the tracking process can be started: either a simple
tracking of particles through the pre-computed EM-fields
is performable or an iterative solving process can be
triggered—the gun-iteration.

Postprocessing: The solution of the gun-iteration are the
emitted current, perveance and trajectory data as well as
the electric and magnetic field distribution inside the gun. A
large number of additional postprocessing facilities are
available: visualization of electric and magnetic field in
different representations (scalar, vector, component-wise),
potential-distribution and current density. One- and two-
dimensional integrals along free definable paths and over
faces as well as electric and magnetic forces and torques
can be evaluated and an animation of the flight path is
possible showing the dynamic of the particles. Phase space
diagrams of the particle data are in preparation.

Special PS features: A part of the PS features make it
especially suited for the simulation of large configurations:

� Geometry import: Available import formats comprise
classical 2D formats such as DXF and 3D generic
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Fig. 1. Theoretical model of the Child–Lingmuir based emission model (a)

and the divergence based model (b).
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formats like SAT, STEP or STL. Also models of
commercially available CAD packages as Pro/E, Catia
4&5, Autodesk’s Inventor & AutoCAD and many more
are importable.
� Model export: Available export formats are SAT, STL,

IGES, STEP and MAFIA-DRC.
� Full parameterization: All dimensions can fully be

parametrized.
� Optimization capability: PS includes a versatile tool for

multi-dimensional-constrained optimization of the EM-
simulation.
� Result export feature: Various results such as Energy or

trajectory data can be exported in ASCII format.
� Macro programming language: A Visual Basic for

Application (VBA) oriented macro language gives
access to all PS features.
� Integration into workflow: PS can be both: OLE client or

OLE server.

4. Results

The models exemplified here are the DC-part of a
magnetron, a pierce-type gun and a simple multi-beam
gun. For details of the pierce-gun please see Ref. [3]. The

modelled geometries of the magnetron and the pierce-gun
together with their particle trajectories are shown in Fig. 2.
Both configurations were simulated with more than 10 000
particles and a relative accuracy of 10�3. The pierce-gun
was calculated with 1:2� 106 cells and the calculation was
performed in less than an hour on a standard 2.4GHz PC
with 2GB RAM.
PS is capable of defining several sources with different

properties as well as one source consisting of several
disjunct emitting surfaces. Thus multi-beams guns can
easily be modelled. The triangularisation of the emitting
surfaces and the trajectories of such a simple multi-beam
gun are shown in Fig. 3.

5. Conclusions

PS offers a user-friendly environment for the design and
optimization of particle guns. Due to the memory- and
CPU-efficient FIT and PBAs method in conjunction with
an adaptive timestepping of the tracking algorithm, fast
and accurate 3D gun-simulations can be performed with-
out the disadvantage of staircase approximations. This is
especially important for such large simulations as multi-
beam guns or complicated structures. The next develop-
ment steps aim towards a more flexible and user-oriented
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Fig. 2. The configuration of the DC part of the magnetron (a) and the pierce-type gun (b). The trajectories of the particles are displayed.

Fig. 3. (a) The discretization of the emitting surface of a simple multi-beam gun and (b) the trajectory of the particle-beam.
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result handling and the implementation of tracking
methods for time-dependent fields (Particle in Cell techni-
ques).
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Abstract

A method is proposed to simulate open boundary conditions for charged particle beams with voc in time domain or frequency

domain within the Finite Integration Technique (FIT).

Inside the calculation domain the moving charged particles are represented by a line current. Further, the simulated field components

at the boundary of the calculation domain have to be modified for an undisturbed transmission of the space-charge field. This can be

realised by a ‘‘scattered field’’ formulation.

The method is verified by several calculations.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the Finite Integration Technique (FIT [1]) as well as in
FDTD the state variables are located on a primary and a
dual grid. For example the electric grid voltage

_
e is located

on edges and the magnetic grid flux
__

b on facets of the
primary grid. In an analog manner, the magnetic voltage

_

h

and the electric flux
__

d are located on the dual grid. In
contrast to FDTD,

_
e,

__

b,
_

h and
__

d are integrated quantities—
for instance

_
e ¼

R
~E d~s is integrated over normal edges and

__

b ¼
R
~Bd~A over normal facets of the grid. With these

variables Maxwell’s equations can be discretised in integral
form. This yields the following set of algebraic equations,
where the analytical operators curl and div have been
transformed to topological matrix operators C;S on the
primary and eC; eS on the dual grid. Vectors

_
e;

_

h;
__

b and
__

d

consist of all corresponding state variables.

C
_
e ¼ �

d
__

b

dt
ð1Þ

eC_

h ¼
d
__

d

dt
þ

__

j ð2Þ

S
__

b ¼ 0 ð3Þ

eS__

d ¼ q ð4Þ
__

d ¼Me
_
e ð5Þ

__

b ¼Mm
_

h ð6Þ
__

j ¼Mk
_
e. ð7Þ

Further on, Maxwell’s equations are coupled by the
material relations (5)–(7). Throughout the paper we use
only Cartesian grids in combination with a conformal
modelling technique [5]. For further information see [1].

2. Line current

For the simulation of particle beams an appropriate
representation for moving charged particles is needed. In
our case, where the particles move in one of the coordinate
directions (z) and do not considerably change their
electromagnetic characteristics while passing the structure
to be simulated, a line current

__

jL along a grid line is a
sufficient approach.
A simple idea of implementing such a line current

would be imposing the grid currents by ~J ¼ r~v or in
discretised form

__

ji ¼ ðqi= ~DziÞv, where v is the particle
velocity. However, the discrete form of the continuity
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equation

eS__

jL ¼ �
dq

dt
(8)

has to be satisfied to prevent the accumulation of
unphysical charges in the grid. The simplest way to fulfill

Eq. (8) in combination with
__

ji ¼ ðqi=
~DziÞv is to match the

timestep Dt such that mvDt ¼ eDzi with m 2 N, where eDzi is
the dual grid step in the direction of the beam propagation.
As soon as the grid is non-equidistant, the continuity (8) is

violated by
__

ji ¼ ðqi=
~DziÞv. Thus, a more general approach

[2,3] is the direct implementation of Eq. (8)

__

j
ðnÞ

z;i �
__

j
ðnÞ

z;i�1 ¼ �
q
ðnþ1=2Þ
i � q

ðn�1=2Þ
i

Dt
(9)

where n is the time index according to t ¼ nDt.
Some special treatment at the boundaries is needed,

which will not be given here.

3. Boundary conditions

At the boundaries of the finite computation domain the
electromagnetic field has to be modified to model infinite
space. For these purposes, we utilise the scattered field
formulation (see Fig. 1), which is equivalent to surface
currents

__

js and
__

ms according to Huygen’s principle.
The part of the calculation domain containing the line

current indicated by
__

jL;i is regarded to be a total field
region. The scattered field domain is depicted in grey.
The total field can be calculated from

_
e

t
¼

_
e

s
þ

_
e

i, where s

indicates scattered field and t; i total field and incident
field, respectively. The incident field is the eigenfield
of the moving charges in an homogeneous environment.
Therewith, one can modify the curl operations at the
boundary. For instance, the local evaluation of (1) yields

according to Fig. 2(a)

�
d
__

b
s

y;i;j;k�1

dt

¼
_
et

x;i;j;k �
_
es

z;iþ1;j;k�1 �
_
es

x;i;j;k�1 þ
_
es

z;i;j;k�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contained in C

_
e

�
_
ei

x;i;j;k. ð10Þ

Analogously, the result of the local evaluation of (2) based
on Fig. 2(b) is

d
__

d
t

y;i;j;k

dt
¼

_

h
t

x;i;j;k �
_

h
t

z;i;j;k �
_

h
s

x;i;j;k�1 þ
_

h
t

z;i�1;j;k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contained in eC_h

�
_

h
i

x;i;j;k�1.

(11)

Depending on the realisation of the time derivative these
boundary conditions can be implemented either in time
domain or in frequency domain. The method of calculating
the incident field needed in Eqs. (10) and (11) is described
in the next section.

4. Numerical ‘‘incident field’’ solution

The incident field mentioned in the section before, is
caused by moving charged particles in a homogeneous
environment—thus no scattered field exist. Here and in the
following, we assume particles moving in waveguides—
more precisely, in beam tubes. An analytical field solution
cannot be applied, since the method must fulfill some
consistency laws in the discrete sense.
In time domain we use the explicit leapfrog scheme

where the time derivative is replaced by central differences
and electric and magnetic field are allocated on a staggered
time grid.
The dynamic ‘‘incident field’’ calculation will be reduced

to a static field calculation. Therefore, a new grid is
introduced, where the transverse topology is identical to
the base grid topology and the longitudinal grid step equals
Dz ¼ vDt. Further, we transform the grid into the rest
frame of the charge by a Lorentz transformation. In the
rest frame of the charge the static field can be determined
by solving a discrete Poisson’s equation. The resulting
electrostatic field has to be retransformed into the
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Fig. 1. Total/scattered field domain.

Fig. 2. Modification of electric (a) and magnetic curl (b) for scattered field

formulation.
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laboratory frame to obtain the desired dynamic field. With
this procedure, one gains the dynamic electric field

_
eiðnÞ for

one instance of time n. Since the longitudinal grid step of
the calculation domain is related to the velocity of the
particles by Dz ¼ vDt, the charge is moving from one cell to
the next within one timestep. Thus, solving Poisson’s
equation with the charge in different cells yields the
incident electric field at different timesteps.

For a full description of the incident field, we still need
the magnetic field components. According to the leapfrog

scheme, these are allocated at half timesteps
_

h
iðnþ1=2Þ

. Also,
electric and magnetic fields are allocated on a staggered
spatial grid. This property can be utilised, when the
dynamic magnetic field components have to be determined
from the electrostatic fields in the rest frame. Further, we
know the velocity of the moving charges. This is also the
velocity of the corresponding electromagnetic field in a
homogeneous environment. With this information, a direct
relation between the retransformed electric and magnetic
field can be found. If we reduce Dt such that Dz ¼

ð2 �mþ 1ÞvDt with m 2 Nþ the incident magnetic field can
be evaluated by

_

h
iðnþ1=2Þ

x;i;j;kþ1=2 ¼ �
b
mc

eDx

Dy

_
e

iðn�mÞ
y;i; j;k ð12Þ

_

h
iðnþ1=2Þ

y;i;j;kþ1=2 ¼
b
mc

eDy

Dx

_
e

iðn�mÞ
x;i; j;k ð13Þ

where again the electric grid voltages
_
e

iðn�mÞ
y;i;j;k and

_
e

iðn�mÞ
x;i;j;k

have been obtained by solving Poisson’s equation in the
rest frame of the charges and a retransformation after-
wards. The reduction of the timestep with m ¼ 0 would
violate the Courant criterium, so the smallest possible m

ensuring stability is chosen, which results in an only slightly
reduced time step compared to the standard Courant
timestep.

In the frequency domain the incident field is found by an
additional field calculation within a homogeneous wave-
guide with open boundary conditions according to Ref. [4].
The calculation domain used in this reference calculation
needs to consist of only a few grid cells in longitudinal
direction when matching the obtained field with an
appropriate phase difference.

5. Numerical results

The method has been implemented in a code using the
same grid data as the commercial software tool CST
MicrowaveStudio [5]. An example for validation of the
proposed time domain code is a pickup/kicker electrode as
used in the stochastic cooling system in the GSI storage
ring. These electrodes serve for detecting and deflecting the
beam. For further information see [6,7].

The pickup output UPU when excited by a beam is
related to the kicker input UK when exciting the electrode
structure [7]. This offers the opportunity to calculate the
beam/electrode coupling in two different reciprocal ways.

One way is the excitation of the electrode, which results in
electromagnetic fields interacting with the beam. This
interaction is evaluated using CST MicrowaveStudio [5].
The line current—introduced in Section 2—serves as
excitation in the second way. The resulting output at the
electrode is evaluated by means of the proposed code. The
velocity of the beam is v ¼ 0:75c, the number of grid points
is NP ¼ 89; 640. Fig. 3 shows a good agreement between
the two calculation approaches. The increase of the
difference around 2.2GHz is due to propagating and
nearly propagating modes in the beam tube—cut-off
frequency of the first mode is 2.23GHz—where the
reciprocity correlation is no longer valid.

6. Conclusion

A realisation of open boundary conditions for particle
beams has been proposed. The velocity of the particles can
be chosen arbitrarily. The method is based on the
application of a scattered field formulation. Crucial to
the method is a correct evaluation of the incident field for
the given computational grid. This is implemented in time
domain by a static field calculation in the charge’s rest
frame and a retransformation of the fields. In the frequency
domain the known dependency of the electromagnetic
fields is used for a separate calculation of the beam in a
homogeneous waveguide. The proposed method and the
corresponding code have been verified by several validation
examples, showing a good accuracy compared to existing
algorithms.
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Abstract

Future FEL operations in the ELETTRA LINAC require a high quality beam with an ultra short bunch. The knowledge of the short-

range wakefields in the backward traveling wave (BTW) accelerating structure is needed to predict the beam quality in term of the single

bunch energy spread and emittance. To calculate the effect of the longitudinal and transverse wakefields we have used the time domain

numerical approach with a new implicit scheme for calculation of wake potential of short bunches in long structure [A. Novokhatski, M.

Timm, T. Weiland, Transition dynamics of the wake fields of ultra short bunches, Proceeding of the ICAP California, USA, 1998, I.

Zagorodnov, T. Weiland, Calculation of transverse wake potential for short bunches, ICAP, 2002]. The wake potentials of the BTW

structure are calculated numerically for very short bunches and analytical approximations for wake functions in short and long ranges

are obtained by fitting procedures based on analytical estimations.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.17.þw; 41.20.�q; 41.60.Cr; 41.75.Ht

Keywords: Wakefields; Longitudinal wake function; Transverse wake function

1. Introduction

The FERMI@ELETTRA project [1] aims to construct a
single-pass FEL user-facility in the spectral range
100–10 nm using the existing normal conducting 1.0GeV
linac. In order to raise the beam energy after pre-injector
from 100MeV to 1GeV, the linac includes seven accel-
erating sections. Each section is a backward traveling wave
(BTW) structure composed by 162 nose cone cavities
magnetically coupled and operated in the 3=4p mode. The
total length of the accelerating structure is about 6m [2].
To avoid undesirable beam degradations, in term of energy
spread and emittance, the wakefields effects have to be
carefully considered. We have studied the longitudinal and
transverse cases using the time domain code ECHO with a

new implicit scheme for calculation of the wake potential
of short bunches in long structures [3,4]. We have
considered the wakefields evolution for bunches of
different lengths passing through a single cell, a multi-cell
and a complete accelerating structure [2]. This paper
reports the longitudinal and transverse wakefields calcula-
tions for the complete BTW accelerating structure.

2. Longitudinal wake function of the BTW structure

The wake potentials of Gaussian bunch with length
ranging from 1000 to 50 mm are calculated for a whole
BTW accelerating structure. In Fig. 1 (left) the calculated
longitudinal wake potentials (solid lines) are reported. To
find an analytical approximation of the wake function we
have chosen a combination of periodic [5] and one cell [6]
dependence since the BTW structure can be treated as a
periodic structure of finite length.
From the fit of the numerical wake potentials we have

obtained an analytical expressions approximating the wake
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function (in ½V=pC�):

w10kðsÞ ¼ A01e
�
ffiffiffiffiffiffi
s=s0
p

þ
A02ffiffi

s
p , (1)

where A01 ¼ 7300, s0 ¼ 3:2� 10�4 and A02 ¼ 3:4. Fig. 1
(left) shows the longitudinal wake function (1) (black
dotted line), which tends for small s to be an envelope
function to the wakes and fits the numerical results up to
1.5mm. To find an analytical approximation up to 5mm,
we have added to expression (1) an additional term with

ffiffi
s
p

dependence. Taking into account the last correction term
the fit gives the following analytical expression (in ½V=pC�):

w20kðsÞ ¼ A01e
�
ffiffiffiffiffiffi
s=s0
p

þ
A02ffiffi

s
p þ A03

ffiffi
s
p

, (2)

where A01 ¼ 7450, s0 ¼ 3:1� 10�4, A02 ¼ 3 and
A03 ¼ 3000. The previous relation approximates the long-
itudinal wake function on a wider range compared to
expression (1). Fig. 1 (left) shows the longitudinal wake
function (2) (black dashed line) that tends to be an envelope
function to the wakes up to 5mm. Fig. 1 (right) plots the
numerical (box) and analytical (lines) loss factors and
energy spread as function of bunch length s. The
coincidence of the numerical and analytical loss factors
and energy spread can be seen for both the analytical
expressions 1 (red solid lines) and 2 (blue dashed lines). Fig.
2 (left) presents the calculated longitudinal wake potentials
(blue solid lines) together with analytical approximations (2)

(red dashed lines). A more detailed analysis of Figs. 1 (left)
and 2 (left) show that the analytical expression 2 approx-
imates very well the longitudinal wake function up to 5mm.
To estimate long range wakefields the wake potential for

Gaussian bunch with s ¼ 5mm is calculated for a distance
up to 2m after the bunch. The calculation is carried out
with code ECHO for complete � 6m long BTW structure.
The longitudinal wake function can be approximated by
the following expression:

wkðsÞ ¼ �yðsÞ2
X1
i¼1

Ki cos
2p
c

f is

� �
, (3)

where the frequencies f i and amplitudes Ki have been
calculated with a direct analysis of the numerical wake
potentials using the Prony–Pisarenko algorithm [7]. The
Prony–Pisarenko algorithm is a method to fit a set of
decaying oscillation characterized by amplitudes, phases
and damping constants to a given curve or data set and it is
used in this example as alternative to the discrete Fourier
transform. To obtain an approximation of the long range
wake function we keep in (3) only a finite number ðN ¼ 20Þ
of addends corresponding to the lowest frequencies. The
results are shown in Table 1. Fig. 2 (right) shows the long
range numerical (blue line) and analytical (3) (red line)
longitudinal wake potentials for Gaussian bunch with
RMS length s ¼ 5mm. An excellent coincidence of the
curves can be seen.
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Fig. 1. Left: Longitudinal wake potentials (solid lines) and longitudinal wake functions of the BTW structure. Right: Comparison of numerical (box) and

analytical (solid and dashed lines) integral parameters as function of bunch length s.
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Fig. 2. Left: Longitudinal numerical (blue solid lines) and analytical (red dashed lines) wake potentials of the BTW structure. Right: The long range

numerical (blue line) and analytical (red line) longitudinal wake potentials for Gaussian bunch with s ¼ 5mm in the BTW structure.

P. Craievich et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 58–61 59



3. Transverse wake function of the BTW structure

Fig. 3 (left) shows the calculated transverse wake
potentials (solid lines) for different bunch length s. As
in the previous case, the BTW structure is treated as
a periodic structure of finite length and to find an
analytical approximation for the transverse wake function,
a combination of periodic [5] and one cell [6] dependence
was chosen. The expression for the wake function is
obtained with a fit of the numerical wake potentials
(in ½V=pC=m�):

w1
?ðsÞ ¼ A11 1� 1þ

ffiffiffiffi
s

s1

r� �
e�

ffiffiffiffiffiffi
s=s1
p� �

þ A12

ffiffi
s
p

, (4)

where A11 ¼ 1:7� 105, s1 ¼ 1:2� 10�4 and A12 ¼

8:5� 104.
Fig. 3 (left) shows the transverse wake function (4)

(black dashed line), which tends to be an envelope function
to the wakes up to distance s ¼ 2mm after the bunch
center. Fig. 3 (right) presents the numerical (box) and
analytical kick factors (blue line) and kick spreads (red
dashed line) as function of bunch length s. Fig. 4 (left)
plots the calculated transverse wake potentials (blue solid
lines) together with their analytical approximation (4) (red
dashed lines). For transverse case no additional term is
introduced and the wake function fits the results up to
2mm.
To estimate the long range transverse wakefields the

wake potential for Gaussian bunch with s ¼ 5mm is
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Table 1

The lowest frequencies and their amplitudes for long range longitudinal wake function of the BTW structure (f i in GHz and Ki in [V/pC])

f i 2.98 3.00 5.38 5.41 6.77 6.85 8.24

Ki 123.18 57.84 32.24 15.57 37.14 14.46 75.69

f i 8.37 9.36 10.68 10.82 11.61 11.86 12.00

Ki 35.73 14.48 9.65 6.44 23.11 26.09 8.19

f i 14.38 14.59 16.51 17.32 17.68 20.22

Ki 33.11 25.04 14.08 21.31 21.51 30.90
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Fig. 3. Left: Transverse wake potentials (solid lines) and transverse wake functions (black dashed line) of the BTW structure. Right: Comparison of

numerical (box) and analytical (line) kick factor (blue) and kick spread (red) as function of bunch length s.
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Fig. 4. Left: Transverse numerical (blue solid lines) and analytical (red dashed lines) wake potentials of the BTW structure. Right: The long range

numerical (blue line) and analytical (red line) transverse wake potentials for Gaussian bunch with s ¼ 5mm in the BTW structure.
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calculated for a distance up to 2m after the bunch. The
transverse wake function can be approximated by the
following expression:

w?ðsÞ ¼ yðsÞ2
X1
i¼1

Ki

c

2pf i

sin
2p
c

f is

� �
, (5)

where the frequencies f i and amplitudes Ki, as in the
longitudinal case, have been obtained with the help of the
Prony–Pisarenko algorithm. To obtain an approximation
of the long-range wake function we keep in (5) only a finite
number ðN ¼ 18Þ of addends corresponding to the lowest
frequencies. The results are shown in Table 2. Fig. 4 (right)
shows the long range numerical (blue line) and analytical
(5) (red line) transverse wake potentials for Gaussian
bunch with s ¼ 5mm up to 1m after the bunch. We can
see that the wake function (5) is a good approximation of
the long range numerical wake.

4. Conclusion

Calculations of the wakefields for short bunches passing
through a complete BTW accelerating structure have been
presented. The short range longitudinal and transverse
wake potentials have been calculated in time domain with
the code ECHO. From the numerical results analytical
approximations of the point-charge wake functions were

found. For the analytical model we have chosen a
combination of periodic and one cell dependences. In the
longitudinal case the term that describes the finite structure
(one cell behavior) is very small compared to the periodic
structure term. Hence in range of s we have considered, the
longitudinal wakes shows mainly a periodic structure
behavior. In addition, for better fitting of the data up to
5mm, we have used an additional term in the model.
Furthermore, the long range longitudinal and transverse
wakefields were estimated by a direct analysis of the
numerical wake potential for Gaussian bunch calculated
for a distance up to 2m after the bunch.
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Table 2

The lowest frequencies and their amplitudes for long range transverse wake function of the BTW structure (f i in GHz and Ki � 1017)

f i 4.94 6.89 6.92 8.53 9.91 10.41 12.03 12.15 12.91

Ki 8.67 3.41 5.96 0.72 39.67 1.46 15.51 23.09 5.96

f i 14.04 15.02 15.14 16.14 16.67 17.21 18.94 20.62 21.47

Ki 2.81 18.44 20.13 11.32 24.10 5.43 8.23 19.28 4.88
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Abstract

Wakefield generation by short electron bunches traveling along the vacuum channel of an accelerating structure loaded with a

conductive ceramic dielectric has been investigated. The dielectric response is defined as no dispersion of the real part of permittivity and

linear increase of loss tangent versus frequency. This model is in good agreement with measured microwave properties of some materials

tested for Dielectric Wakefield Acceleration experiments. It has been shown that the dielectric conductivity has an essential impact on the

wakefield. The loss factor influences most strongly on short electron bunch generation of the multimode wakefields.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In Ref. [1] the first experimental results of a new
wakefield acceleration scheme was demonstrated. The
multibunch driven, multimode, dielectric wakefield accel-
erator was performed at the Argonne Wakefield Accel-
erator (AWA) as well [2]. In this experiment, a bunch train
of 4–5 nC electron bunches, separated by 760 ps, was
passed through a 60 cm long dielectric-lined cylindrical
waveguide. The separation was chosen to match the net
acceleration wavelength of the multimode dielectric loaded
structure. By carefully measuring the energy spectrum of
the four beams after they passed through the waveguide, it
was shown that the wakefield is indeed enhanced by a train
of periodically spaced electron bunches. This work
represents the first experimental demonstration of the
concept and also shows that multipulse operation of
wakefield accelerators is worth further investigation.

It should be mentioned that in Ref. [2] the loss factor of
the material was not taken into account which was

reasonable at that time because the bunch length s was
equal to 4.5mm and the high-order modes did not affect
the accelerating gradients significantly. At the same time, in
order to get the high accelerating gradient and increased
acceleration efficiency, the short 1–2mm electron bunches
will be used [3] that are available at AWA now.
In this paper, we present numerical simulations of

Cherenkov wakefield generation by short electron bunches
traveling along the vacuum channel of an accelerating
structure loaded with a conductive ceramic dielectric. We
consider ultrarelativistic beams corresponding to the beam
parameters available at the AWA.

2. Properties of materials

It should be mentioned that the dispersive properties of
the dielectric can affect significantly the electromagnetic
field generation caused by the fast moving electron
bunches. The method of the Cherenkov radiation analysis
in dielectric media with the various dispersion models has
been developed, in particular, in Ref. [4]. The same
approach has been used in Ref. [5] for the Cherenkov
radiation generated by the particles moving in the
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waveguide filled material with the resonant dispersion. It
was shown that this kind of dispersion defines the radiation
spectrum by reducing the high mode amplitudes signifi-
cantly.

The dielectric constant of the low-loss ceramics and
some another dielectric is almost flat in the frequency range
from few GHz and up to few hundreds GHz, at the same
time imaginary part of the dielectric response linearly
increases with frequency [6,7]. The dispersion of these
materials is a relaxation. It is described approximately by
means of Debye model where the real and imaginary part
of the dielectric constant are defined as

e0ðoÞ ¼ Re eðoÞ ¼
e0 þ e1o2t2

1þ o2t2
,

e00ðoÞ ¼ Im eðoÞ ¼
ðe0 � e1Þot
1þ o2t2

, ð1Þ

where e0 and eN are the dielectric constant values at the
upper and low limit frequency band, respectively (it should
be noticed that e04e1) and t is a relaxation time. The
frequencies of the harmonics contribute to the wakefields
of the bunch under the condition of e0ot51. One can see
from Eq. (1) that dispersion of the real part of the dielectric
permittivity is of second infinitesimal order while the
imaginary part is of first order one with the linear
dependence of a frequency:

e0 � e0; e00 � ot0, (2)

where t0 ¼ ðe0 � e1Þt.
At the frequencies 4100GHz (or even less for some

specific materials) some dielectrics show the resonance
dispersion instead of the relaxation one. Taking into
account just one resonant frequency one can write the
definition of the dielectric constant as e ¼ 1þ o2

L

ðo2
0 � o2 � inoÞ�1, where o0 and oL are a resonance and

plasma frequencies, respectively, n is the attenuation
parameter. It is worth nothing that under the condition
of o5o0, n5o0 the real part of the dielectric constant is
weakly dependent on the frequency while the imaginary
part shows a small value increasing linearly: e0 � 1þ o2

L=
o2

0, e
00 � ðo2

Ln=o
4
0Þo. Thus, with the above assumption the

resonance dispersion approximation gives the same for-
mulas (2) where one has to define the constants of e0 and t0.

The proposed model validation at the wide frequency
range has been tested and proofed with the numerous
experimental data of the ceramic loading testing at the
wakefield acceleration in recent decade [1–2,8].

3. Analytical results

The basic structure is very simple—a cylindrical, di-
electric loaded waveguide with an axial vacuum channel is
inserted into a conductive sleeve. A high charge (typically
20–40 nC), short, (1–4mm) electron drive beam generates
TM01 mode Cherenkov radiation (wakefields) while
propagating down the vacuum channel. Following at a
delay adjusted to catch the accelerating phase of the

wakefield is a second electron witness beam. The witness
beam is accelerated to high energy by the wakefield
produced by the drive beam. A series of proof of principle
experiments have been successfully performed at Argonne’s
Advanced Accelerator Test [1] and AWA facilities [2]. The
initial energy of the AWA beam is 15MeV that corre-
sponds to b ¼ 0:9994. We can consider in all following
calculations b! 1 at the same estimation accuracy.
It is usually supposed that the charge bunch distribution

is Gaussian: pðzÞ ¼ 1=
ffiffiffiffiffiffi
2p
p

s expð�z2=2s2Þ, where z ¼ z

�Vt, z is the axis of the structure, b ¼ cV is the velocity
of the bunch. It should be mentioned that s corresponding
to the longitudinal bunch size is much less than the first
TM01 mode wavelength of the Cherenkov radiation
generated by the bunch.
Electromagnetic field simulations for the dielectric

waveguide have been developed previously in Ref. [4]. At
the same time there were no wakefield simulations
presented for the dielectric loading with the dispersion of
the dielectric constant.
We used the iterations method for the dispersion

equation solution under condition of the small loss tangent
values: tan d ¼ ot0=e051. The modes frequencies of the
dielectric loaded waveguide with the dielectric constant of
e0 and no dispersion have been taken as zero approxima-
tion of the equation solution. It yields to the mode
frequency corrections that are imaginary. Omitting all
intermediate simulation one can write approximate expres-
sion for the longitudinal electrical field behind the bunch as

Ez ¼
X1
m¼1

Emz exp �dm

z

c
� t

��� ���� �
cos om

z

c
� t

� �� �
, (3)

where

Emz ¼ �
4q

cb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � 1
p

c1ðsÞ

ðd=doÞððsb=2Þc1ðsÞ � ec0ðsÞÞ

� exp �
o2s2

2c2

� �����o¼om
s¼sm

, ð4Þ

c0ðsÞ ¼ J1ðsbÞN0ðsaÞ � J0ðsaÞN1ðsbÞ,

c1ðsÞ ¼ J0ðsbÞN0ðsaÞ � J0ðsaÞN0ðsbÞ, ð5Þ

and s ¼ ðo=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � 1
p

. Here, Jn(x) and Nn(x) are Bessel and
Neyman functions accordingly, a is the waveguide radius, b

is the channel radius. Proper value and corresponding
proper frequency om ¼ csm=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � 1
p

are given by the
dispersion equation

sbc1ðsÞ � 2ec0ðsÞ ¼ 0. (6)

At the same time values dm defining the modes attenuation
are connected with the frequencies with the following
expression:

dm ¼
ot0ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � 1
p

o
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 � 1
p

�

�
2cc0ðsÞ

bc1ðsÞ þ bsdc1ðsÞ=ds� 2e0dc0ðsÞ=ds

�����o¼om
s¼sm

. ð7Þ
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The right part of expression (7) utilizes the om and sm

values calculated in the case of nonconductive dielectric
with the dielectric constant of e ¼ e0 as a solution of
Eq. (6). It should be noticed that all of dm values are
positive ones.

4. Numerical simulations

We present here some examples of the Dielectric
Wakefield Accelerator parameters for the high-mode
attenuation study of the acceleration field. The accelerating
structure parameters are e0 ¼ 38:1, a ¼ 1:44 cm, b ¼ 0:5 cm
that corresponds to the wakefield accelerator parameters of
the experiment presented in Ref. [2] (the fundamental mode
frequency is 1.582GHz). This structure is a typical one for
the multimode dielectric wakefield accelerators. We defined
loss tangent value as tan d ¼ 10�4 at 1GHz that gives at
the arbitrary frequency tan d ¼ 10�13n.

Fig. 1a and b corresponds to the short electron bunch
of s ¼ 1mm. Fig. 1a gives harmonics amplitudes of
component Emz in the case of loss less dielectric and in
the case of conductive dielectric for distance z ¼ 100 cm. As
we see the wakefield spectrum of the second case is

characterized by essential decreasing amplitudes of high
harmonics. Therefore, we obtain essential decreasing
maximums of wakefield in Fig. 1b. The second negative
peak of the accelerating field is reduced 1.5 times in
comparison with the case of no dispersion, and the fourth
one is decreased 2.5 times. The bunch with s ¼ 2mm does
not show such strong dependence of the accelerating field
amplitude on the imaginary part of the dielectric constant,
the fourth peak reduction does not exceed 1.5. For the
bunches with sX4mm after the four cycles of the field
there was no significant magnitude reduction, but it will
become apparent at the long enough distance behind the
bunch.
Fig. 2 shows the negative extremums of the field

depending on tan d (it relates to the frequency 1GHz) in
the cases of s ¼ 1 and 4.5mm. One can see the
monotonous magnitude decreasing. For the bunch with
s ¼ 1mm, the significant magnitude reduction began
at a loss factor value of tan d ¼ 10�5, and for the bunch
with s ¼ 4:5mm we found the same phenomenon for
the lossy material with tan d ¼ 10�4. It should be noticed
that the same bunch with s ¼ 4:5mm was used in Ref. [2]
for the multibunch acceleration demonstration and our
present study results confirmed that for the parameters
published in Ref. [2] and for the loss factor of the material
in the range of 10�5210�4 at 1GHz the conductivity
impact on the accelerating field magnitude is negligible.
But for the more short bunches to be used in upcoming
experiments, the loss factor of the material becomes a
critical issue.
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Summarizing we would like to point out that in
Dielectric Wakefield Accelerator development the loss
factor of the dielectric loading has to be taken into account
and the impact of the loss tangent on the accelerator
parameters has to be studied, especially for the multibunch
multimode acceleration where the high modes contribution
into the accelerating gradient becomes significant. It should
be noticed that the loss factor of the accelerator loading of
the typical microwave ceramics material increases linearly
versus the frequency in the range of 1–100GHz and
therefore critically affects the high mode magnitudes. One
can overcome the loss factor influence by utilizing only
low-loss materials like alumina and tantalum compositions
for the high dielectric constant loading as well as for the
interbunch distance adjustments inside the bunch train.
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Abstract

A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field.

The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the

Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic

integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a

powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction

region in high energy colliders.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In most storage rings, magnetic field can usually be well
approximated by dominant transverse components. Thus,
a single longitudinal component of the magnetic vector
potential Asðx; y; sÞ is sufficient to describe the system.
Because the Hamiltonian can be separated into a term that
depends only on coordinates and another on momenta, the
phase-space coordinates can be advanced with the conven-
tional symplectic integrators [1].

However, a general 3-D magnetic field cannot be
represented by a vector potential As alone. The vector
potential needs at least two transverse components, e.g. Ax

and Ay. The Hamiltonian can no longer be separated into
the coordinate-dependent-only and the momenta-depen-
dent-only terms. This paper presents a new algorithm to
obtain self-consistent symplectic maps for general 3-D
magnetic field. In Section 2, a differential algebraic Drift-
kick-kick-drift (DKKD) procedure is presented to obtain

the self-consistent reference orbit and the Hamiltonian
expanded around the reference orbit. In Section 3, we
discuss symplectic mapping and particle tracking. The
conclusion is given in Section 4.

2. The Hamiltonian and the determination of reference orbit

After being normalized to the mechanical momentum
magnitude of a reference synchronous particle, the
dimensionless Hamiltonian for a charged particle in a
three-dimensional magnetic field can be given, in Frenet–-
Serret coordinate system, by

H ¼ � As � 1þ
x

r

� �
½ð1þ dÞ2 � ðpx � Axðx; y; sÞÞ

2

� ðpy � Ayðx; y; sÞÞ
2
�1=2 ð1Þ

where r is the radius of curvature, d is the fractional
momentum deviation, px and py are the canonical
conjugate momenta, Ax; Ay, and As are the magnetic
vector potential components that are functions of the
coordinates, x; y; s, where s is the time-like coordinate
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along the longitudinal direction while x; y are the
transverse coordinates. Note that eliminating the x=r term
would simply yield the Hamiltonian in the local Cartesian
coordinate system. The mixing of conjugate momenta
ðpx; pzÞ with the vector potential Ax and Ay that are
functions of the coordinates ðx; yÞ poses the challenge of
obtaining symplectic Taylor maps for particle tracking.
This problem is tackled by using a differential algebraic
drift-kick-kick-drift (DKKD) algorithm to derive the self-
consistent reference orbit and obtain Taylor map with
respect to the reference orbit.

We consider a region of 3D magnetic field, longitudin-
ally located between si and sf with L ¼ sf � si. The system
is divided into N-slices such that the length of each slice is
Ds ¼ L=N. The entry, mid-point, and exit of the kth slice
are sk ¼ si þ ðk � 1ÞDs, s̄k ¼ si þ ðk � 1=2ÞDs, and skþ1 ¼

si þ kDs. The differential algebraic DKKD algorithm is
used to obtain the particle’s reference trajectory: ~z0ðd; sÞ �
ðx0ðd; sÞ; px0ðd; sÞ; y0ðd; sÞ; py0ðd; sÞÞ. The Hamiltonian is ex-
panded around this reference orbit.

(1) We evaluate the Hamiltonian Hðx; px; y; py; d; skÞ,
dx=ds ¼ qH=qpx and dy=ds ¼ qH=qpy at the slice-
interface sk. The coordinates of reference orbit are
advanced to the mid-point s̄k by

x0ðd; s̄kÞ ¼ x0ðd; skÞ þ ðDs=2Þ � ðqH=qpxÞj~z0ðd;skÞ
(2)

y0ðd; s̄kÞ ¼ y0ðd; skÞ þ ðDs=2Þ � ðqH=qpyÞj~z0ðd;skÞ
. (3)

(2) We now evaluate H with the updated new reference
coordinates, dpx=ds ¼ �qH=qx and dpy=ds ¼ �qH=qy

at the mid-point of the slice. The conjugate momenta of
reference orbit at the mid-point are advanced by

px0
ðd; s̄kÞ ¼ px0

ðd; skÞ � ðDs=2Þ � ðqH=qxÞj~z0ðd;s̄kÞ
(4)

py0
ðd; s̄kÞ ¼ py0

ðd; skÞ � ðDs=2Þ � ðqH=qyÞj~z0ðd;s̄kÞ
. (5)

(3) The Hamiltonian Hðx; px; y; py; d; s̄kÞ, dpx=ds ¼

�qH=qx, and dpy=ds ¼ �qH=qy at the mid-point can
be evaluated. Changing the conjugate phase-space
coordinates ðX ¼ x� x0; pX ¼ px � px0

;Y ¼ y� y0;
pY ¼ py � py0

Þ at the mid-point s̄k, one can evaluate
and save the Hamiltonian, ~Hðd; s̄kÞ ¼ hk þ f k. Which
describes the dynamics and is Taylor-expanded around
the parameterized reference orbit. It is integrated with
the previous concatenated map by a second-order
symplectic integrator for obtaining the section-map.

(4) With the dpx=ds ¼ �qH=qx and dpy=ds ¼ �qH=qy

obtained at this mid-point, the conjugate momenta of
reference orbit are then advanced to the end-point skþ1

of the kth slice by

px0
ðd; skþ1Þ ¼ px0

ðd; s̄kÞ � ðDs=2Þ � ðqH=qxÞj~z0ðd;s̄kÞ
(6)

py0
ðd; skþ1Þ ¼ py0

ðd; s̄kÞ � ðDs=2Þ � ðqH=qyÞj~z0ðd;s̄kÞ
. (7)

(5) The H at the mid-point is re-evaluated with the updated
new reference momenta. The dpx=ds ¼ �qH=qx and
dpy=ds ¼ �qH=qy are also obtained. The coordinates
of reference orbit are advanced to the end-point skþ1 of
the kth slice by

x0ðd; skþ1Þ ¼ x0ðd; s̄kÞ þ ðDs=2Þ � ðqH=qpxÞj~z0ðd;s̄kÞ
(8)

y0ðd; skþ1Þ ¼ y0ðd; s̄kÞ þ ðDs=2Þ � ðqH=qpyÞj~z0ðd;s̄kÞ
. (9)

Using conjugate phase-space coordinates at the end-
point skþ1, one evaluates the Hamiltonian Hðx; px; y;
py; d; skþ1Þ, dpx=ds ¼ �qH=qx and dpy=ds ¼ �qH=qy.
The integration procedure repeats for the next slice.

In this integration process, an important constraint is the
continuity of the vector potential at the interface of each
slice. Since this process uses differential algebras, the
dependence of the reference orbit on d is included up to a
desired order. The transfer map is given by
expf�Ds : ~Hðx; px; y; py; d; s̄kÞ :g, where the canonical
phase-space coordinates are with respect to the d-depen-
dent reference orbit. Note that the reference orbit may also
be obtained by solving the tedious differential equations
that turn out to obey the Lorentz force law after making a
canonical transformation with the generating function

F2 ¼ ðx� x0ÞðpX þ px0
Þ þ ðy� y0ÞðpY þ py0

Þ

such that the linear part of the transformed Hamiltonian
vanishes [2].
The DKKD integration algorithm does not require

symplecticity. It is a natural method to derive the self-
consistent reference orbit and obtain the Hamiltonian
for symplectic mapping using Lie operator method. One
can also use the Runge-Kutta integration methods to
solve the reference orbit and derive the Hamiltonian.
However, the continuity condition must be carefully
implemented in order to obtain a proper Hamiltonian for
transfer map.

3. Map concatenation

For convenience, let the state vector ~z represent the
transverse particle canonical phase-space coordinates with
respect to the reference orbit, i.e. ~z � ðx; px; y; pyÞ

y. The
Hamiltonian Hð~z; d; s̄Þ is a polynomial with a minimum
order of 2 and the transfer map that advances the particle
phase-space coordinates (with respect to the reference
orbit) from the entrance to the exit for the kth slice is given
by expf�Ds : Hðz; d; s̄kÞ :g.
One can choose to track particles slice by slice. But this

would be quite CPU time consuming. Instead, one can
choose to concatenate all the slice transfer maps into one
for fast tracking. To do so, we first reform each of the slice
transfer maps into two major terms, one for the linear
motion and the other for the nonlinear motion. For
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example, the kth-slice transfer map would be reformed as

exp �Ds :
X
j¼2

Hjðs̄kÞ :

( )
¼ expf: hk þ f k :g

where the linear part hk � �Ds �H2ðs̄kÞ and the nonlinear
part f k � �Ds �

P
j¼3 Hjðs̄kÞ can be separated by a sym-

plectic integrator. Using the second order symplectic
integrator, one obtains

expf: hk þ f k :g ¼ expf: 1
2

hk :g expf: f k :g expf:
1
2
hk :g, (10)

and the whole map as

M ¼
YN
k¼1

fe:1=2hk :e:f k :e:1=2hk :g ¼ e:h:e:f :, (11)

where e:h: is the concatenated linear map. The nonlinear
map e:f : can be evaluated by the method of integrable
polynomials [3]. Therefore, the initial phase-space coordi-
nates ~ZðsiÞ at the entrance of a subsystem can be directly
mapped to the final coordinates ~Zðsf Þ at the exit of the
subsystem. One must keep in mind the continuity condition
of mechanical momenta required at the entrance and the
exit. If the transverse vector potentials are zero at both the
entry si and the exit sf , then the transverse canonical
momenta is equal to their corresponding mechanical
momenta. Otherwise, one should make additional trans-
formation between mechanical momenta and canonical
momenta at the entrance and the exit.

We use a quadrupole to illustrate and check the validity
of our algorithm. Conventionally, the vector potential of a
quadrupole field is represented by a single longitudinal
component ~A � ðAx;Ay;AsÞ ¼ ð0; 0;B1=2ðy2 � x2ÞÞ, where
B1 ¼ qBy=qx. To check the slice integration algorithm, the
Quadrupole vector potential is represented by two trans-
verse components, ~A ¼ ðB1xs;�B1ys; 0Þ for a valid com-
parison of the slice-by-slice integrated numerical transfer
matrix to the corresponding analytic one. The parameters
in our calculation are K ¼ B1=B0r ¼ 2:870480m�2, the
quadrupole-length L ¼ 0:35m, and B0r ¼ �5:00346T-m.

We set the entry position si ¼ 0 such that particle’s
mechanical momenta are the same as the canonical
momenta. However, at the exit position, sf ¼ L�, an
additional transformation has to be made for the transfer
map from canonical momenta to mechanical momenta that
become the canonical momenta at s ¼ Lþ provided that
the vector potential outside the quadrupole is 0. This is
because a hard-edge quadrupole prevents us from making
vector potential continuous on both boundaries. If the

fringe fields have been included to achieve vector potential
continuity at both boundaries, the additional transforma-
tion at sf ¼ L would not be necessary.
The linear transfer matrix of the quadrupole agrees with

the analytic formula to better than 10�4, provided that
NX20 longitudinal slices are used. One may gain precision
by taking higher order symplectic integrators and a larger
number of slices. For the second order symplectic
integrator, we find the error is proportional to 1=N2 .

4. Conclusion and discussion

We have developed a slice-by-slice symplectic transfer
mapping in a 3D magnetic field where the vector potential
cannot be described by As alone. We divide the system
longitudinally into N-slices and implement a differential
algebraic drift-kick-kick-drift (DKKD) procedure to ad-
vance the parameterized (d-dependent) reference orbit
phase-space coordinates and simultaneously obtain the
Hamiltonian with respect to the reference orbit. Note that
the reference orbit is chosen such that the Taylor expanded
Hamiltonian is without the first order so that all feed-
downs from higher-order multipoles are automatically
included in the transfer maps. For fast particle tracking,
one may concatenates slice transfer maps into one with a
symplectic integrators. That the reference orbit is actually
Taylor expanded in momentum deviation d offers the path
length difference and the dispersion functions. Require-
ment of mechanical momenta continuity can be automa-
tically satisfied if one imposes the continuity condition of
the vector potential.
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Abstract

Derived from the Vlasov equation the Ensemble Model [A. Novokhatski, T. Weiland, PAC’99, New York, March 1999] has been

elaborated for fast and efficient beam dynamics simulations. The Model represents a particle beam as a set of sub-beams or Ensembles,

described by coordinates of the centroid and 6D phase space correlations. Whereas a space charge routine for the Single Ensemble Model

(SEM) has been developed and tested [M. Krassilnkov, et al., ICAP 2000, Darmstadt, September 2000], implementation of the space

charge algorithm for the Multi Ensemble Model (MEM) needs more efforts. A space charge model based on the Multi-Centered

Gaussian Expansion (MCGE) [M. Krassilnikov, T. Weiland, ICAP’02, East Lansing, USA, October 2002] implies a smooth particle

density distribution within an Ensemble but it requires rather large computational efforts. This paper presents another space charge

algorithm, based on the analytical solution for the electromagnetic field of an ellipsoidal 3D charge distribution [M. Comunian, et al.,

Phys. Rev. Spec. Topics—Acc. Beams 4 (2001) 124201]. Using this algorithm one can calculate the space charge force and its gradient

inside and outside the driving Ensemble. Features of the implementation and simplifying approximations are discussed in this paper.

r 2005 Elsevier B.V. All rights reserved.

PACS: 41.75.�i

Keywords: Space charge; Emittance; Phase space

1. Introduction

The Ensemble Model [1] describes a particle beam by a
set of sub-beams or Ensembles, each of them is character-
ized not only by average position, but also by correlations
(or moments of the Ensemble distribution function) in a
6D phase space. The Single Ensemble Model (SEM)
considers the moments up to the second-order and
describes each Ensemble by 27 parameters (6 moments of
the first and 21 moments of the second-order). This implies
linear external and internal forces inside the Ensemble and
therefore, Ensemble emittance invariance [1]. Beam emit-
tance can be simulated by extension of the SEM to higher-
order moments but it results in significant increasing the
equation number and in complication of their form. As
another approach to simulate the beam emittance the
Multi Ensemble Model (MEM) [2] can be used. Nonlinear
Lorentz force effects can be modeled by a set of Ensembles
distributed in the phase space. Whereas external force

implementation in MEM is straightforward, the space
charge force algorithm needs more efforts.

2. Main equations of the Ensemble Model

A beam distribution function could be represented by
means of a superposition of Ensembles:

Cð~r;~pÞ ¼
X

n

wncnð~r;~pÞ (1)

where wn is related to the nth Ensemble charge weight
function ð

P
nwn ¼ 1Þ. Each Ensemble is described

by 6 first-order moments of the distribution function
cnð~r;~pÞ:

hxi ¼
Z

xcnð~r;~pÞd~rd~p

hpni ¼

Z
pncnð~r;~pÞd~rd~p ð2Þ
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and by 21 moments of the second-order:

Mxn ¼ hDx � Dni ¼
Z

Dx � Dn � cnð~r;~pÞd~rd~p

Mxpn ¼ hDx � Dpni ¼

Z
Dx � Dpn � cnð~r;~pÞd~rd~p

Mpxpn ¼ hDpx � Dpni ¼

Z
Dpx � Dpn � cnð~r;~pÞd~rd~p ð3Þ

where x; n ¼ fx; y; zg and Dx ¼ x� hxi;Dn ¼ n� hni.
Assuming Ensemble energy spread small, one can obtain

main equation for any Ensemble parameter m ¼ fx; pn;Dx �
Dn;Dx � Dpn;Dpx � Dpng [1,2]:

qhmi
qt
¼

qm
q~r
~p

g

� �
þ

qm
q~p

~F

mc2

* +
(4)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ~p �~p

p
is the normalized energy, ~p ¼ ~P=ðmcÞ

is the normalized momentum, t ¼ ct, and ~F is an applied
Lorentz force.

Using Lorentz force expansion till linear terms

~F

mc2
¼ F
!
ðh~ri; h~piÞ þ F̂

X
� D~rþ F̂

P
� D~p (5)

where matrices

F̂
X

ij ¼
1

mc2
q~Fi

qrj

�����
h~ri;h~pi

; F̂
P

ij ¼
1

mc2
q~F i

qpj

�����
h~ri;h~pi

(6)

one can obtain 6 time equations for the first-order
moments h~ri; h~pi:

dh~pi

dt
¼ F
!
ðh~ri; h~piÞ,

dh~ri

dt
¼ Ŵ � h~pi, ð7Þ

and 21 equations for the second-order moments:

dM̂pp

dt
¼ F̂

X
� M̂xp þ F̂

P
� M̂pp þ ðF̂

X
� M̂xp þ F̂

P
� M̂ppÞ

T

dM̂xp

dt
¼ V̂ � M̂pp þ M̂xx � ðF̂

X
Þ
T
þ M̂xp � ðF̂

P
Þ
T

dM̂xx

dt
¼ M̂xp � V̂þ V̂ � M̂

T

xp. ð8Þ

Elements of the auxiliary matrices Ŵ; V̂ used in Eqs. (7)
and (8) are

Ŵij ¼
1

gm

dij �
M̂pipj

g2m

 !

V̂ij ¼
1

gm

dij �
hpiihpji

g2m

� �
ð9Þ

where g2m ¼ 1þ
P

n¼x;y;z ðhpni
2 þ M̂pnpn

Þ is squared normal-
ized Ensemble energy.

3. Space charge implementation

Since the Ensemble Model implies an internal motion
even in the case of the SEM, collective effects in beam
dynamics can be simulated. Despite the beam emittance
remains constant in the SEM (with linear Lorentz force)
there is a good agreement in beam size and beam
divergence simulation [2].
The space charge implementation makes an Ensemble

charge distribution function an important issue. The rigorous
problem reduces to the determining the stationary 3D charge
distribution (which does not explicitly depend on time), which
corresponds to the linear applied forces. The distribution in
which the forces are linear and the phase space area remains
constant is known as microcanonical distribution [5]. A
homogeneous ðx; yÞ ellipsoidal beam distribution, known as
K–V distribution leads to a perfect linear space charge force
within the beam radius. The space charge algorithm for the
SEM is based on the homogeneously charged ellipsoid.
Calculation of the Lorentz force gradient at the Ensemble
center is reduced to the obtaining a resulting force at small
offsets from the homogeneously charged ellipsoid and
integrating over the thin shell of uncompensated charges [1].
In the case of several Ensembles (MEM) it is necessary to

calculate not only the space charge gradient at the center of
the driving Ensemble, but also Lorentz force and its gradient
at centers of other Ensembles. The most probable macro-
particles configuration is a set of overlapping Ensembles.
One of the algorithms, based on distribution function
expansion is the Multi-Centered Gaussian Expansion
(MCGE) discussed in Ref. [3]. This approach is based on
the expansion of the Ensemble charge density in spatially
distributed basis functions with known solutions of the field
equation. The main advantage of this algorithm is a
smoothness of the distribution function, but necessity of
solution of linear equation system on each integration step
for each Ensemble makes this approach comparatively slow.
The model of homogeneously charged 3D ellipsoid being

very useful for the calculation of the space charge force
gradient in the SEM can be extended to the MEM. The
uniform ellipsoidal distribution is not a solution of the
Poisson–Vlasov system because the corresponding station-
ary distribution in the phase space is singular; nevertheless,
it allows one to keep Hamiltonian character of the 3D
model similar to the dynamics of the full particle system
(Liouville problem) [4].

4. Space charge field of an ellipsoidal Ensemble distribution

The distribution function of a 3-axis homogeneous
ellipsoidal Ensemble is given by

cðx; y; zÞ ¼

3g
4psxsysz

if
x2

s2x
þ

y2

s2y
þ

g2z2

s2z
p1

0 if
x2

s2x
þ

y2

s2y
þ

g2z2

s2z
41

8>>>><
>>>>:

(10)
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where ellipsoid semi-axes and RMS sizes are defined by
matrix elements (3): s2x ¼ 5s2x ¼ 5Mxx, s2y ¼ 5s2y ¼ 5Myy,
s2z ¼ 5g2s2z ¼ 5g2Mzz. From Newton’s potential theory [6]
the electric field ~E in the Ensemble’s rest frame is given:

Ei ¼
qri

sxsysz

~Giðax; ay; azÞ (11)

where q denotes the Ensemble charge, ai ¼ s2i þ l is a
square of the equivalent confocal ellipsoid semi-axis,
parameter l ¼ 0 for internal point of the ellipsoid,
otherwise, for an external point l can be determined as
the positive root of the equation:

x2

s2x þ l
þ

y2

s2y þ l
þ

g2z2

s2z þ l
¼ 1. (12)

This equation determines one and only one ellipsoid
passes through any point ðx; y; zÞ outside the ellipsoid. A
geometrical form factor ~Gi:

~Gi ¼
sxsyszffiffiffiffiffiffiffiffiffiffiffiffiffi
axayaz
p G

ai

aj

;
ai

ak

� �
where

Gðp; qÞ ¼ 3 �

Z 1

0

v2 dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ ð1� pð Þv2Þ qþ ð1� qð Þv2Þ

p ð13Þ

is constant for the internal point of the ellipsoid, so as is
well known, the electric field is linear inside the ellipsoid.
Here fi; j; kg defines any permutation of the indices fx; y; zg.
For external point ai ¼ f iðx; y; zÞ and ~Gi determines a field
decay with an offset from the Ensemble center. Eq. (12) can
be interpreted in the following way: at any external point
the electric field generated by an ellipsoidal uniform charge
distribution is equivalent to the electric field generated by a
confocal uniformly charged ellipsoid passing through the
point ðx; y; zÞ.

The geometrical form factor as a consequence of the
Gaussian theorem for the electric field satisfies the equality:

G
ax

ay

;
ax

az

� �
þ G

ay

ax

;
ay

az

� �
þ G

az

ax

;
az

ay

� �
¼ 3. (14)

Assuming that the driving Ensemble has energy E ¼

mc2g ¼ mc2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
and the center coordinate

h~rd
i ¼ fxd ; yd ; zdg, the Lorentz force acting from the driving

Ensemble on the test particle fxt; yt; zt;bt
x ¼ vt

x=c;bt
y ¼

vt
y=c; bt

z ¼ vt
z=cg is given by

Fd!t
x ¼ egð1� bbt

zÞ � E
d
xð
~D

dt
Þ � eEd

xð
~D

dt
Þ=g

¼
eq � ðxt � xd Þ

53=2g2sxsysz

~Gx

Fd!t
y ¼ egð1� bbt

zÞ � E
d
yð
~D

dt
Þ � eEd

yð
~D

dt
Þ=g

¼
eq � ðyt � ydÞ

53=2g2sxsysz

~Gy

Fd!t
z ¼ eEd

z ð
~D

dt
Þ þ ebgðbt

xEd
xð
~D

dt
Þ þ bt

yEd
yð
~D

dt
ÞÞ � eEd

z ð
~D

dt
Þ

¼
eq � ðzt � zdÞ

53=2sxsysz

~Gz ð15Þ

where vector ~D
dt
¼ fxd � xt; yd � yt; ðzd � ztÞ � gg takes into

account Lorentz transformation for the coordinates. The
matrix F̂

X
is given by

F̂
X
¼

eq

mc2
1

g2sxsysz

�

~Gx 0 0

0 ~Gy 0

0 0 g2 ~Gz

0
BB@

1
CCA

8>><
>>:

þ

ðx0 � xdÞ � ~G
1

x

ðy0 � ydÞ � ~G
1

y

z0 � zdÞg2 ~G
1

z

0
BBBB@

1
CCCCA

�
ql
qx

ql
qy

ql
qz

� �
9>>=
>>;

ð16Þ

where ~G
1

i ¼
P

j¼x;y;z
q ~Gi

qaj
. Geometrical form factors can be

tabulated or obtained by using some analytical approx-
imation.

5. Simulation of the space charge dominated beam

For the illustration of the proposed space charge
algorithm a space charge dominated electron beam (1 nC,
5MeV) in a drift space has been simulated using Ensemble
Model in comparison with conventional tracking code
(ASTRA) [8]. Initial beam transverse phase space of the
beam is shown in Fig. 1, where equivalent phase space
ellipses depict Ensemble parameters (Fig.1b).
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Fig. 1. Initial transverse phase space ðx; pxÞ: (a) Conventional tracking code (ASTRA), 10,000 macroparticles; (b) Ensemble Model (50 Ensembles).
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Transverse RMS beam size, beam divergence and
normalized beam emittance as functions of a flight time
are shown in Fig. 2 for the case without space charge. The
agreement between conventional tracking code (ASTRA)
and Ensemble Model (even using single Ensemble) is very
good, whereas computation time is much smaller for the
Ensemble Model (10 variables for SEM vs. 40,000 ASTRA
transverse particle coordinates).

Corresponding dependencies for the case with space
charge are shown in Fig. 3. The beam size as well as
divergence can be simulated with SEM with rather good
agreement, but for the emittance simulations MEM should
be used.

Resulting phase spaces are shown in Fig. 4. It should be
noted that a discrepancy in emittance is caused mainly by a
non-perfect interface between conventional macroparticles
(10000 ASTRA particles) and Ensembles (50 Ensembles in
MEM). To illustrate the influence of the Ensemble number

the beam emittance simulated with 10 Ensembles is shown
in Fig. 3c as well.
As it can be seen from Fig. 3b, the RMS beam divergence

decreases till the beam waist ðt � 2:5 nsÞ, whereas for the case
without space charge it is constant (Fig. 2b). It should be
figured out that this takes place even for the linear space
charge algorithm (SEM). From expression (25) for the space
charge force one can obtain the matrix element F̂

X

xx ¼

k=Mxx; where k ¼ ð2=5bgÞðI=IAÞ. Differential equations for
transverse phase space take a form:

dMpxpx

dt
¼ 2k �

Mxpx

Mxx

dMxpx

dt
¼

Mpxpx

gm

þ k

dMxx

dt
¼

2

gm

�Mxpx
. ð17Þ

Without solving this nonlinear system one can obtain the
following integral:

Mpxpx
ðtÞ ¼Mpxpx

ð0Þ þ kgm ln
MxxðtÞ
Mxxð0Þ

. (18)
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Fig. 2. Simulations of the electron beam in a drift using conventional

tracking code (ASTRA), SEM and MEM (50 Ensembles) without space

charge. (a) RMS beam size; (b) RMS beam divergence; (c) RMS beam

emittance.
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tracking code (ASTRA), SEM and MEM with space charge. (a) RMS

beam size; (b) RMS beam divergence; (c) RMS beam emittance.
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Hence, applying a space charge force under definite (negative)
phase space correlation the logarithmic term in Eq. (18) is
negative (before the focus MxxðtÞoMxxð0Þ) and RMS beam
divergence decreases as a result of the space charge effect.

6. Conclusions

Space charge algorithm for the Multi Ensemble Model
(MEM) based on the 3-axis homogeneously charged
ellipsoid has been developed. Analytical expressions for
the Lorentz force and its gradients have been obtained.
MEM simulations of the nonlinear effects in transverse
phase space of the space charge dominated beam showed
good agreement with conventional tracking code, demon-
strating advantage in variable number and computational
efficiency.
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Abstract

Peculiarities of the charged particle motion in a discrete magnetic field is described analitically. A need for considering this problem

follows the difference between the synchrotron radiation properties in accelerators with straight sections on the boundaries and these

properties inside a magnet.
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The notion of long wavelength radiation on the
boundary of straight sections and curved lines was
discussed in special cases [1,2]. The ultrarelativistic electron
radiation in synchrotrons is of interest to this paper.
Synchrotron radiation in accelerators and storage rings
was previously determined under the assumption that
rotations of electrons are averaged. In this case, it was
found that the emission depends significantly on the
vertical betatron oscillations [3–5]. This coincides with
experimental data.

Let an electron revolve in a magnetic system consisting
of N ¼ 4 periods. One element of the system contains one-
half of a free gap of length l, a magnet of length a ¼

2pR=N (R is the radius of curvature) and again a part of a
straight section.

If the origin of a cylindrical coordinate system is located
symmetrically inside an accelerator, the coordinate r can be
represented as

r ¼

l1= cos j;j 2 ½0; arctanð1=bÞÞ

ðl2=Rþ R sin fÞ= sin j;j 2 ½arctanð1=bÞ; arctan bÞ;

f 2 ½0;p=2�

l1= sin j;j 2 ½arctan b; p=2�

8>>>><
>>>>:

where j is the azimuth angle, b ¼ l1=ðl=2Þ; l1 ¼ l=2þ

R; l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl=2Þ2 þ l21

q
.

However, a Fourier-expansion of r leads to double series
and extra difficulties in the subsequent calculations can
arise.
On the other hand, the components Hr and Hz of the

magnetic field (or the gradient n of the magnetic field) can
be developed in a Fourier series on an interval j 2 ½0;p=2�
in the form HðtÞ ¼ H � f ðtÞ, where

f ðtÞ ¼
2

p
pþ f 1ðtÞ; f 1ðtÞ ¼

2

p

X1
n¼1

ð�1Þn

n
sin 2np cos nt,

p ¼ arctanððb2
� 1Þ=2bÞ; t ¼ Nj,

2p=p � 1=ð1þ kÞ; k ¼ l=a.

The operator f ðtÞ ‘‘switches on’’ and ‘‘switches off’’ the
magnetic field. Physically, of some interest is an area which
is close to j 2 ½arctanð1=bÞ; arctan b�. Taking into account
the radial betatron oscillations, we have r ¼ l2 þ rðf ¼ 0Þ
at the edge of magnet, r ¼ Rþ l=

ffiffiffi
2
p
þ rðf ¼ j ¼ p=4Þ at

the midpoint. In the first case the equations of small
betatron vibrations in the linear approximation take the
form:

d2z

dt2
þ
ð1þ kÞ

N2

l2

R
nf ðtÞz ¼ 0 (1)
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d2r
dt2
þ

1

N2
1� n

l2

R
ð1þ ð1þ kÞf 1ðtÞÞ

� �
r

�
1þ k

N2

Z
_rf 1ðtÞdt ¼ �

1þ k

N2
l2f 1ðtÞ ð2Þ

under the condition that angular velocity can be repre-
sented as follows:

_j ¼ o0
1

1þ k
1�

r
l2

� �
þ

1

l2

Z
_rf 1ðtÞdt

� �
(3)

where o0 ¼ e0H0=ðmcÞ and H0�R�n; ðn 2 ð0; 1ÞÞ.
The solution of Eq. (1) we will seek in the form

z ¼ expðigztÞ � jzðtÞ, where jzðtÞ is a periodic function.
This procedure is close to the Whittaker method and the
technique of stretched parameters for the Mathieu
equation in Ref. [6]. The function jzðtÞ must satisfy a
new differential equation

d2jz

dt2
þ 2igz

djz

dt
� g2zjz þ

n1

N2
f ðtÞjz ¼ 0

where n1 ¼ ð1þ kÞl2n=R; the solution being defined as the
asymptotic series

jzðtÞ ¼ j0ðtÞ þ
X1
i¼1

jiðtÞ=Ni; gz ¼
X1
i¼1

gi=Ni.

Here, the coefficients of the same powers of the parameter
1=N are equal to zero. Then the chain of equations can be
derived as follows:

€j0 ¼ 0; €j1 þ 2ig1 _j0 ¼ 0,

€j2 þ 2ig1 _j1 � g21j0 þ n1f ðtÞj0 ¼ 0

€j3 þ 2ig1 _j2 þ 2ig2 _j1 þ 2ig3 _j0 � g21j1 � 2g1g2j0

þ n1f ðtÞj1 ¼ 0 and so on.

The secular terms are eliminated in the solutions of these
equations.

This subsequently gives: j0 ¼ b;j1 ¼ b1, where b; b1 are
constants:

g1 ¼

ffiffiffiffiffiffiffiffi
n

l2

R

r
; j2 ¼

2n1

p
b
X1
n¼1

ð�1Þn

n3
sin 2np cos nt,

g2 ¼ 0; etc.

Eventually, the asymptotics up to 1=N4 can be written in
the form

z ¼ B cos tz 1þ
2n1

pN2

X1
n¼1

ð�1Þn

n3
sin 2np cos nt

"

þ
8g21n1

pN4

X1
n¼1

ð�1Þn

n5
sin 2np cos nt

þ
2n2

1

p2N4

X1
m¼1

ð�1Þm

m

X1
n¼1

ð�1Þn

n3
sin 2mp sin 2np

�
1

ðm� nÞ2
cos ðm� nÞtþ

1

ðmþ nÞ2
cos ðmþ nÞt

� �

þ
n2
1

2p2N4

X1
n¼1

sin2 2np

n6
cos 2nt

#
þ B sin tz

4g1n1

pN3

�
X1
n¼1

ð�1Þn

n4
sin 2np sin nt; man ð4Þ

where tz ¼ ðnz=NÞtþ c, B is the amplitude of axial
oscillations, and c is an initial phase. The frequency can
be constructed in the form n2z ¼ g21 þ 2g1g3=N2 or

n2z ¼ n
l2

R
þ

l2

R

� �2 p2n2k2

3ð1þ kÞ2N2
.

By analogy, asymptotics for radial oscillations can be
derived similarly. The total velocity after averaging over
the period is constant.
In these formulas for the middle of magnet the

parameter l2 may substituted by Rþ l=
ffiffiffi
2
p

.
These results will be used for an analysis of the radiation

intensity. Expressions for spectral and angular distribu-
tions of the linear polarization components, obtained in
Refs. [4,5], are

dWsðnÞ
dO

¼
ce2nn0

12p4R2

Z 2p

0

dd�21K2
2=3

n0

3
�
3=2
1

� �
,

dWpðnÞ
dO

¼
ce2nn0

12p4R2

Z 2p

0

dd�1ðcos y� a cos dÞ2K2
1=3

�
n0

3
�
3=2
1

� �
ð5Þ

where

n0 ¼ nð1þ _o=EÞ; o ¼ no0; o0 ¼ b
c

R

�1 ¼ �� 2a cos y cos dþ a2cos2 d; � ¼ 1� b2 sin2 y.

The parameter a cos d is equal to bzjt¼0 (the slope of the
electron velocity vector), where a has specific value for
different magnetic structure.
In the more important case of storage rings we have

a ¼

ffiffiffiffiffiffi
Az

p

r
1ffiffiffiffiffi
bz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

2

dbz

ds

� �2
s2

4
3
5
j¼0

where Az is the emittance and bz is the beta function of
vertical motion depending on orbital length s. Here, the
azimuthal angle is recorded from the point from which the
radiation is collected.
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Eq. (4) for z, taking up to 1=N3, after differentiating can
be represented as

dz

dt
¼ � Bnz

o0

1þ k
sin tz 1�

2n1

pN2

X1
n¼1

ð�1Þn

n3
sin 2np cos nt

" #

� B
2n1

pN

o0

1þ k
cos tz

X1
n¼1

ð�1Þn

n3
sin 2np sin nt ð6Þ

where accuracy is 1=N2.
The edge of magnet corresponds the angle j ¼

arctanð1=bÞ and r is close to parameter l2. In this case a
approximately equals toffiffiffi

n
p
ðB=RÞðl2=RÞ=ð1þ kÞ.

At a centrally located points j ¼ p=4 and

a �
ffiffiffi
n
p

B=ðRð1þ kÞÞð1þ l=ð2
ffiffiffi
2
p

RÞÞ.

The parameter B would be more properly selected from
experimental data for a concrete position of particle.
Nevertheless, these calculations revealed the correction
factors for amplitude B.

It is necessary to note that the betatron oscillations
significantly change spectral-angular and angular distribu-
tions. Quantum corrections in Eq. (5) do not play an
essential role in the formation of synchrotron radiation.

Thus, the emission problem is resolved for a monoener-
getic electron and the bunch effect is taken into account by
averaging over the initial phases since injection of the
particles is continued during some turns. In addition, B is a
mean square quantity because in any cross-section of the
beam there is a set of variable amplitudes.

In Eq. (5) parameters a;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
, and cos y � c (c is the

conventional term in literature) are small quantities of the

same order while corrections of the order of B2=R2, A2=R2

(A is the amplitude of radial oscillations) with respect to
main terms were already omitted. At the y�p=2 integrals in
Eq. (5) can be evaluated by passing to the Airy functions
and expanding them in power series.
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Abstract

A new high-power electron accelerator for industrial applications has been developed in Novosibirsk. The main parameters of the

accelerator are: operating frequency of 178MHz, electron energy of 5MeV, and average beam power of up to 300 kW. The accelerator

consists of a chain of accelerating cavities connected by on-axis coupling cavities with coupling slots in the walls. A triode RF gun on the

base of a grid-cathode unit placed on the wall of the first accelerating cavity is used for internal injection of electrons. The paper presents

the results of modeling and optimization of the accelerating structure, internal injection, and beam dynamics. A modification of the

electrostatic computer code SAM designed for simulation of beam dynamics in linear RF accelerators by the long-wave approximation

method is described.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Currently, there is interest in X-ray radiation technolo-
gies because of the high penetration ability of X-rays. This
is of particular importance for the pasteurization of a wide
spectrum of food products, disinfection of mail deliveries,
and other applications. However, because of the low
efficiency of X-ray conversion for electrons with energy
below 5MeV, the intensity of X-rays required for some
industrial applications can be achieved using 5-MeV
electron beams with power up to 300 kW [1].

A new RF accelerator for industrial applications, the
ILU-12, is now being developed in BINP, Novosibirsk.
The main parameters of the accelerator are: operating
frequency of 178MHz, electron energy of 5MeV, and
average beam power of up to 300 kW [2]. A general view of
the accelerator is shown in Fig. 1.

The electrons are accelerated in a low-frequency multi-
resonator standing wave structure with axis-disposed coupling
resonators. This design makes it possible to decrease power
losses in each resonator compared with a single-resonator
accelerator (at the same average beam power) and to obtain
accelerator electron efficiency of approximately 70%.
It is proposed to use internal beam injection from the

grid-cathode unit, which is placed directly after the first
accelerating gap. This concept permits sufficient simplifica-
tion of the design, reducing the cost of the accelerator,
respectively, as well as improving its reliability and
reducing maintenance charges.
To successfully design the ILU-12 accelerator, the

following problems have to be solved:

� Achievement of the required pulse beam current at
relatively low electric field strength in the accelerating
gaps compared with a single-resonator accelerator; and
� Lossless transportation of a powerful electron beam

through the accelerating structure without the use of
electro- and magnetostatic lenses.
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To solve these problems, a new grid-cathode unit was
designed. A general view of this important component is
shown in Fig. 2. The report describes the methods and
results for detailed simulation of the internal injection and
beam dynamics in the ILU-12 accelerator.

Computer simulations were performed in long-wave
approximation using the SAM code [3], modified for a
solution of the problems mentioned above. Use of standard
SUPERLANS [4] and PARMELA [5] codes is impossible
because of the necessity for exact modeling of the internal
beam injection.

2. RF field simulation using long-wave approximation

Generally, the amplitude of electric and magnetic fields
in the accelerating structure is described by the appropriate
Maxwell equation

rot ~E ¼ �jk � ~B (1)

rot ~B ¼ jk � ~E (2)

where k ¼ 2p=l.
However, since the aperture radius a ¼ 35mm and the

maximum accelerating gap l ¼ 110mm in the accelerating
structure are well below the wavelength l � 1:7m, the
right-hand side of the former of these equations may be
omitted. This means that the static electric field, which can
be easily calculated using the SAM program, may be used
as the RF electric field amplitude in the accelerating gap.
From Eq. (2), the magnetic RF field in the accelerating

gaps, which has only an azimuthal component and has a
notable influence on the relativistic electron dynamics, may
be calculated with acceptable accuracy in a long-wave
approximation. Subject to the field cylindrical symmetry,
Eq. (2) may be rewritten in the following integral form:

By r; zð Þ ¼ j
k

r

� �Z r

0

Ezðr
0; zÞr0dr0 (3)

where j is an imaginary unit that represents the magnetic
field phase shift by 901 relative to the electric RF field, and
Ez is the longitudinal component of the static electric field.
The following estimation of the maximum relative error

for the electric field long-wave approximation within the
cavity accelerating gap aperture may be derived from
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Fig. 1. General view of the accelerator.

Fig. 2. General view of the grid-cathode unit.
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Eqs. (1) and (3)

dE

E

�
max

�
�
ðkaÞ2

4
. (4)

For the accelerating structure chosen, this estimation is
approximately 0.4%. Eqs. (3) and (4) give the following
estimation for the maximum relative error for the magnetic
field calculation in long-wave approximation within the
cavity accelerating gap aperture:

dB

B

�
max

�

�
ðkaÞ3

8
. (5)

For the accelerating structure chosen, this estimation is
approximately 0.025%.

Fig. 3a shows a comparison of the longitudinal
distributions in a full accelerating gap (20-mm radius) of
the electric RF field components calculated by the Super-
LANS program [4] designed for RF field simulations, and a
static electric field calculated by the SAM program. The
relative difference in electric field values does not exceed
0.2% and is in good agreement with Eq. (4) estimation.

Fig. 3b presents a comparison of longitudinal distribu-
tions in a full accelerating gap (20-mm radius) of the
magnetic RF field calculated by the SUPERLANS
program, magnetic field calculated by Eq. (3), and static
electric field calculated by the SAM program. According to
Eq. (5), the relative difference in the magnetic field value is
really one order less than for the electric field and is defined
by the field approximation accuracy over the mesh.

For beam injection and dynamics simulation, the whole
accelerating structure aperture from the grid-cathode unit
up to the accelerator output is covered by a set of uniform
rectangular meshes closely attached to one another. First,
the static electric field is calculated once in all the mesh
nodes; this field is used as the amplitude of the electric RF
field. Then the magnetic RF field amplitude is calculated
according to Eq. (3). Biquadratic approximation over the
node values is used for field calculation at an arbitrary
point. The mesh set allows us to precisely describe RF

fields near the grid-cathode unit, as well as in each of the
accelerating gaps for a minimal number of nodes in all
meshes.

3. Internal injection simulation

3.1. 2D model of the grid-cathode unit cell

Fig. 4 presents the grid-cathode unit model for simula-
tion. The main geometric parameters of the unit are:
cathode-grid gap d, grid step h, and wire diameter D. At the
accelerating field value of 80 kV/cm in the grid plane, the
maximum beam pulsed current of 7A required is provided
at equipotential grid and cathode and the following
geometric parameters of the grid-cathode unit:
d ¼ 1:5mm, h ¼ 3mm, and D ¼ 1mm. All the grid-
cathode unit simulation results presented below were
obtained using these geometrical parameters. The compu-
ter optimization of these parameters was carried out using
the ULTRASAM program [6] in static approximation
subject to the effect of emission limitation by the beam
space charge.
Fig. 5 shows the simulation results for a single cell of the

grid-cathode unit at equipotential grid and cathode. The
flow characteristics from a single grid-cathode unit cell at
1-mm distance from the grid surface were used as starting
conditions in the beam dynamics simulation. However, as
may be observed from Fig. 5b, in this cross-section the
current density is strongly non-uniform, and the flow phase
curve is a multiple-value function. Therefore, separate
descriptions of the start coordinate dependence of the
current density at the cathode (Fig. 5a), output radius, and
flow trajectory slope angle were used. Such an approach
was previously used in the BEAM program [7]. These
dependences are always single-value functions and may be
easily approximated by a power series using the least-
squares method (Fig. 6). For a single cell, the average grid-
cathode gap transit time and electron output energy were
also calculated.

ARTICLE IN PRESS

Fig. 3. Results of simulation of the longitudinal distribution of electromagnetic fields in full accelerating gap at 20-mm radius using SuperLANS and SAM

codes: (a) electric field components; and (b) azimuthal magnetic field.
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Simulations of the cell static characteristics listed above
were carried out for a set of node values of the control
cathode voltage at an accelerating field of 80 kV/cm in the
grid plane. For calculation of the cell static characteristics
at arbitrary values of the control cathode voltage, linear
interpolation was used.
Fig. 7 presents calculation curves for the average density

of the current emitted from the grid-cathode unit and the
maximum electron relative transverse velocity in the grid
plane versus the grid-cathode voltage.
A prototype of the proposed grid-cathode unit was

designed, manufactured and tested. The results of

ARTICLE IN PRESS

Fig. 5. Single cell of the grid-cathode unit: (a) equipotentials and current density distribution at the cathode; and (b) electron trajectories, current density

distribution and flow phase curve at 1mm from the grid surface.

Fig. 4. Grid-cathode unit simulation model.
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measurements and simulation of this prototype at accel-
erating field strength of 60 kV/cm are shown in Fig. 8.

3.2. 3D model of the grid-cathode unit

A simulation 3D model of the grid-cathode unit (Fig. 9)
was developed to describe beam injection into the
accelerator. It considers the existence of seven various-

length longitudinal slots in the grid located in front of the
20-mm cathode. In addition, the spherical form of the grid
and cathode is also taken into account.
Results of a single grid cell simulation were used for

calculation of emission current distributions across the
slots, as well as electron coordinates and output angles.
Here, the cathode start transverse coordinates for each slot
was defined equidistantly, giving a total of Ny points. To
describe the beam parameters along the slots, they were
divided into equal microcells, so that the maximum number
Nx was defined for the central slot. The length of each cell
was determined according to the condition that the
microcell central point did not leave the cathode radius.
The dynamic value of the emission current density for

each microcell with transverse coordinates ðx; yÞ was
calculated using the following formula:

Jðx; y; tÞ ¼ Javer
UgðtÞ

CEðx; yÞ sinot

� �
ðCEðx; yÞ sinotÞ3=2 (6)

where JaverðUÞ is the control voltage static dependence of
the average emission current density (Fig. 5), UG(t) is the
time dependence of the grid-cathode control voltage,
CEðx; yÞ ¼ Eaccðx; yÞ=Eo is the accelerating RF field ampli-
tude ratio to the field value at which the static characteristic
calculations were made (80 kV/cm), and o ¼ 2pf is the
accelerator operating cycle frequency.
The total emission current obtained from each microcell

was then allocated along single macroparticles with various
transverse coordinates in accordance with the curves
presented in Fig. 6. A total of Ny macroparticles with
various currents started from each microcell at every given
moment of time.
Similar to Eq. (6), the dynamic values of the transit time

in the grid-cathode gap and the electron initial energy are

Dtðx; y; tÞ ¼ Dtaver
UgðtÞ

CEðx; yÞ sinot

� �
ðCEðx; yÞ sinotÞ�1=2

(7)

W ðx; y; tÞ ¼W aver
UgðtÞ

CEðx; yÞ sinot

� �
CEðx; yÞ sinot (8)

where Dtaver(U) and Waver(U) are the average values of
grid-cathode gap transit time and electron output energy as
a function of the grid-cathode control voltage; the other
parameters are the same as in Eq. (6).

4. Beam dynamics simulation

4.1. Calculation of current micropulse and beam spectrum

Eq. (6) describes the current micropulse form on the
cathode. However, calculation of the macroparticle dy-
namics in the accelerator starts at a distance of 1mm
behind the grid-cathode unit. Here, the transit effect leads
to a delay in electron departure from the grid-cathode unit
and deformation of the current micropulse form.
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Fig. 7. Grid-cathode potential dependence of average current density and

relative transverse velocity for accelerating field strength of 80 kV/cm.

Fig. 8. Experimental and calculated grid-cathode potential dependence of

average current density for the prototype grid-cathode unit.
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To simulate the transit effect, a range of possible phases
of electron injection from the cathode and their departure
from the grid-cathode unit was introduced. This range was
divided into Nj equal intervals, in the center of which the
test macroparticles were launched from the cathode. The
current of each test macroparticle was calculated using
Eq. (6) and consideration of the cathode microcell area.
Then the transit time and starting phase behind the grid
were calculated from Eq. (7) for each test macroparticle.

After calculation of the parameters for all test macro-
particles, calculation of the current micropulse form behind
the grid was carried out. A starting phase histogram for the
test particles behind the grid was constructed over the same
Nj phase intervals, and the current of all particles was
summarized in every interval.

Curves 1 and 2 in Fig. 10 show the simulation results for
current micropulse form on the cathode and at a distance
of 1mm behind the grid. The control grid-cathode voltage
there has the following time dependence:

UgðtÞ ¼ U0 þU1 sinðotþ j1Þ (9)

where U0 ¼ 22:05 kV is the constant voltage on the grid-
cathode unit, and U1 ¼ 2 kV and j1 ¼ 701 are the
amplitude and phase shift of the additional voltage of the
first harmonic. The simulations were performed for the
phase range from 01 to 1401 at Nj ¼ 70; the current
micropulse amplitude behind the grid reached 4.75A.
Since the main electron acceleration and transverse

velocity take place at the grid-cathode unit output, the
starting energy and transverse angles of macroparticles
were calculated without consideration of the transit effect.
Then 3D simulation of the macroparticle dynamics in the
accelerator was carried out. The simulation results for the
accelerating field phase dependence of the beam energy and
normalized transverse emittance at the accelerator output
are also presented in Fig. 10 (curves 3 and 4).
As may be observed from Fig. 10, the electron output

energy depends substantially on the accelerating field phase
on the cathode. This fact alone leads to the necessity of
using an additional first-harmonic voltage at the grid-
cathode gap to shift the current micropulse into the
acceptable phase area and narrow the beam energy
spectrum. As a result, average electron energy derivation
from the beam average energy amounts to only 3.3%. The
beneficial effect of using an additional first harmonic was
experimentally proved for the present single-gap ILU-10
accelerator [2].

4.2. Beam transportation through the accelerator

The calculated average output power of the beam with
parameters presented in Fig. 10 is 305 kW. For such a high-
power beam, the problem of lossless transportation
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becomes very important. Here, it is necessary to keep in
mind the space charge influence on the electron transverse
dynamics, especially at the first acceleration stage. Thus,
for every macroparticle the effective current, which resulted
in the appearance of an additional transverse electric field
of the beam space charge, was calculated

I eff ðx; y; tÞ ¼ Jðx; y; tÞpr20 (10)

where Jðx; y; tÞ is the dynamic value of the emission current
density for a macroparticle with transverse starting
coordinates ðx; yÞ and starting time t calculated from
Eq. (6); r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the macroparticle starting radius.

During particle motion in the accelerator, it was assumed
that the effective current did not change and the effective
beam space charge transverse field had only a radial
component, calculated using the following formula:

EðqÞr ¼
Z0I eff

2prbg2
(11)

where Z0 � 120pðOÞ is the impedance of free space, r is the
current value of the macroparticle radius, and b and g are
the current values of the relative velocity and relativistic
factor for the macroparticle.

Fig. 11 presents a typical view of electron trajectories in
the accelerator (Nx ¼ 1, Ny ¼ 3, Nj ¼ 10). As is obvious
from the figure, the beam consists of a central core formed
by electrons that started from centers of slots in the grid
and moved transversely to the cathode. In addition, there is
a noticeable halo formed by electrons that started from the
edges of slots and moved at some angle to the normal.
The results presented were obtained after optimization of
the sphere radius of curvature and accelerator aperture of
the grid-cathode unit. Simulations proved the possibility to
transport the beam through the accelerator at the expense
of increasing the aperture and the RF focusing effect
without using additional focusing elements.

Figs. 12 and 13 show the results of more precise
simulations of beam motion through the accelerator
(Nx ¼ 30, Ny ¼ 19, Nj ¼ 70). The Z-coordinate values in
these figures correspond to the scale in Fig. 11. Fig. 12

presents the profiles calculated for average beam current
density in the micropulse at the second accelerating gap
input (a), in the middle between the third and fourth gaps
(b), at the accelerator output (c), and at a distance of 1.5m
from the accelerator output (d). Beam transverse dimen-
sions are shown in millimeters. It is evident that because of

ARTICLE IN PRESS

Fig. 11. Typical view of electron trajectories in the accelerator: (a)

Z ¼ 750mm; (b) Z ¼ 2100mm; (c) Z ¼ 3500mm; and (d) Z ¼ 5000mm.
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injection transverse velocity spread only across the slots,
the beam current density profile has an elliptical shape at
the second accelerating gap entrance (Fig. 12a). It is also
clear that RF focusing leads to progressive elimination of
this effect at the accelerator output (Fig. 12b, c). However,
in this case, overfocusing of extreme particles takes place,
and the beam profile regains a slightly elliptical shape at a
distance of 1.5m from the accelerator (Fig. 12d). This
effect may be eliminated by additional beam magnetic
focusing in a beam-deflecting device at the target.

Fig. 13 presents results of a detailed analysis of the
density profile in the central part of the beam of 20-mm
diameter at the same stages as in Fig. 12. The lines of
specified intensity correspond to lines of identical current
density. The beam transverse dimensions are shown in the
cell number of the mesh, used for density line construction.
The size of one cell is 0.2� 0.2mm2. We note that a
different part of the total beam current passes through a
20-mm diaphragm at different stages of beam transporta-
tion. It is equal to 70.5% at the second accelerating gap
entrance (Fig. 13a), 99.8% in the middle between the third
and fourth gaps (Fig. 13b), 99.99% at the accelerator
output (Fig. 13c), and 90.6% at a distance of 1.5m from
the accelerator output (Fig. 13d). Appreciable traces of the
grid of the grid-cathode unit are apparent in the central
part of two last pictures.

5. Conclusions

The results obtained prove the possibility of solving the
main problems involved in creating an efficient and

powerful electron accelerator for energy of 5MeV and
beam power up to 300 kW. Methods for simulation of the
internal injection and beam dynamics have been developed.
As a result, a new grid-cathode unit and accelerating
structure have been designed. The methods described are
fairly universal and may be used for the design of any
accelerator satisfying the long-wave approximation.
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Abstract

We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between

parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution

by solving the Vlasov–Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the

macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch

compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler

computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame

by approximating the Perron–Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp.

r 2005 Elsevier B.V. All rights reserved.

PACS: 41.60.�m; 41.60.Ap; 42.25.Kb; 52.65.Ff; 41.75.Fr; 41.20.�q

Keywords: CSR; Coherent synchrotron; Bunch compressor; Vlasov equation

1. Introduction

Coherent synchrotron radiation (CSR) is expected to
play an important and often detrimental role in various
advanced accelerator projects, for instance in linac-based
coherent light sources [1] and energy recovery linacs [2]. A
large concern is that CSR may cause transverse emittance
growth in a bunch compressor by inducing an energy
spread that is mapped into the transverse motion through
dispersion. There are two principal tasks in numerical
modeling of such phenomena. First, one must compute the
fields produced by the particle bunch from a knowledge of
past and present values of its charge/current density.
Principally, the longitudinal field within the bunch is
needed to find the energy change due to the field of the
bunch itself. Second, one needs to find the effect of this

field in subsequent evolution of the bunch form. This
second problem, the question of self-consistency, is usually
addressed by the macro-particle method.
Codes to address these issues have been developed in

recent years by various authors (Li, Dohlus, Kabel,
Limberg, Giannessi, Quattromini, Borland, Emma),
and despite formidable complications a decent agreement
of the different codes has been found in a benchmark
test proposed at a meeting in Zeuthen [3]. Nevertheless,
some discrepancies remain, and the problem is so
complicated that there is probably room for improvement
in the algorithms. We report some efforts to improve
the formulation in two directions: (1) to simplify the
field calculation, and (2) to study multi-particle dynamics
by the Vlasov equation rather than by the macro-
particle method. We hope to repeat the success of a
Vlasov study of longitudinal motion in storage rings
with CSR [4]. That was in a two-dimensional phase
space but over time intervals very much longer than
those of the four-dimensional, single-pass problem of a
bunch compressor.
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2. Coordinate systems and charge/current densities

We have in mind single-pass systems such as a chicane
bunch compressor traversed only once by the particles [3].
With small modifications our treatment should apply as
well to multi-pass systems such as storage rings. In the
laboratory frame the spatial coordinates are ðZ;X ;Y Þ and
the independent variable is u ¼ ct. The particle orbits lie
between two infinite, parallel, perfectly conducting plates,
which are perpendicular to the Y-axis and separated by a
distance h ¼ 2g. Points with Y ¼ 0 are in the midplane,
and every orbit is in some plane Y ¼ const: 2 ð�g; gÞ. The
Y-direction is ‘‘vertical’’. For the chicane the reference
orbit (design orbit) follows the Z-axis initially and finally,
and is in the midplane. We write the reference orbit as
R0ðbuÞ with R0 ¼ ðZ0;X 0Þ, where bc is the speed of the
reference particle. Generally, bold face letters refer to two-
component vectors.

A point can also be specified in terms of Frenet–Serret
coordinates: arc-length s along the reference trajectory, and
the perpendicular distance x from the trajectory at R0ðsÞ.
Thus, R ¼ ðZ;X Þ ¼ R0ðsÞ þ xnðsÞ where the unit normal
vector is nðsÞ ¼ ð�X 00ðsÞ;Z

0
0ðsÞÞ, chosen so that its X

component is positive. The corresponding unit tangent is
tðsÞ ¼ R00ðsÞ ¼ ðZ

0
0ðsÞ;X

0
0ðsÞÞ. After a change of independent

variable from u ¼ ct to s through standard manipulations,
a convenient set of dynamical variables for motion in
horizontal planes consists of the ‘‘beam frame’’ phase space
coordinates ðz; pz; x; pxÞ. Here zðsÞ ¼ s� bctðsÞ, where tðsÞ is
the time of arrival at arc-length s. Thus z is the signed arc
length from the reference particle, positive for particles in
front. The conjugate variable is the relative energy
deviation pzðsÞ ¼ ðEðsÞ � E0Þ=E0, with E0 ¼ mgc2 the en-
ergy of the reference particle. Also pxðsÞ ¼ vxðsÞ=bc where
vx is the velocity component along n.

Clearly Z;X and u are determined explicitly from z;x; s.
To obtain an explicit form for the inverse we note that we
are interested in a bunch of particles with small z and x.
Expanding to lowest order in z and x we obtain

R ¼ R0ðzþ buÞ þ xnðzþ buÞ

¼ R0ðbuÞ þMðbuÞrþOðkðz2; xzÞÞ ð1Þ

where r ¼ ðz;xÞ and M ¼ ðt; nÞ is a rotation matrix. The
factor k in the remainder is the curvature of the reference
orbit and is defined by n0ðsÞ ¼ kðsÞtðsÞ. Since the radius of
curvature is much greater than the bunch size in our cases
of interest, the remainder is negligible. Thus given Z;X and
u we have r ¼MTðbuÞðR� R0ðbuÞÞ to good approxima-
tion, where T denotes transpose.

We wish to solve the Vlasov equation for the distribution
function on beam frame coordinates, f ðz; pz;x; px; sÞ. On
the other hand, it is most convenient to solve the
Maxwell equations in the laboratory frame. We must then
express the lab frame charge/current density in terms
of f. To that end suppose that f has unit integral over all

space and define

rðr; sÞ ¼ Q

Z
dpz dpxf ðz; pz; x; px; sÞ

tðr; sÞ ¼ Q

Z
dpz dpx pxf ðz; pz; x; px; sÞ ð2Þ

where Q is the total charge. To an excellent approximation
the lab frame charge density rL is

rLðR;Y ; uÞ ¼ HðY Þrðr;buÞ; r ¼MTðbuÞðR� R0ðbuÞÞ

(3)

where
R

HðY ÞdY ¼ 1 and HðY Þ is an arbitrary fixed
vertical distribution of charge. The main approximation
(beyond the use of the first order expansion (1)) is that at
fixed r the density rðr; sÞ does not change appreciably when
s varies by an amount comparable to the bunch size. If in
addition we assume that f varies little when s changes by a
bunch size then we find a corresponding good approxima-
tion for the lab frame current density, which is defined by
JLðR;Y ; uÞ ¼ QHðY Þ

R
VF ðR;V; uÞdV, where V is the lab

frame velocity and F the lab frame phase space density with
unit integral. The formula is

JLðR;Y ; uÞ ¼ bcHðY Þ½rðr;buÞtðbuþ zÞ þ tðr; buÞnðbuþ zÞ�

(4)

where r is as in Eq. (3). It is justified to expand t and n

through first order in z. A derivation of Eqs. (3) and (4) will
be reported elsewhere.

3. Field calculation

We calculate the electric field produced by ðrL;JLÞ, but
averaged over the Y-distribution:

EðR; uÞ:¼hEðR; �; uÞi ¼

Z g

�g

HðY ÞEðR;Y ; uÞdY . (5)

The averaged field can be computed much more quickly,
and we believe that it will produce nearly the same
dynamics in the ðZ;X Þ plane as the full field. To
evaluate (5) we begin with the general formula for the
electric field,

EðR;Y ; uÞ ¼ �
1

4p

Z
dR0

Z
dY 0xðY 0Þ

�
SðR0; u� ½ðR0 � RÞ2 þ ðY � Y 0Þ2Þ�1=2

½ðR0 � RÞ2 þ ðY � Y 0Þ2Þ�1=2
ð6Þ

where S ¼ rrL=�0 þ m0qJL=qt and xðY Þ is the effective
vertical charge distribution needed to impose boundary
conditions at the parallel plates by the method of images,
namely xðY Þ ¼

P1
k¼�1ð�1Þ

kHðY � khÞ. Here we assume
that the support of HðY Þ is well within the interval ð�g; gÞ.
The term with k ¼ 0 gives the potential for free space. To
average the potential over Y as in Eq. (5) we replace the
integration variable Y 0 by Z ¼ Y 0 � Y and find the
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averaged form

EðR; uÞ ¼ �
1

4p

Z
dR0

Z
dZFðZÞ

�
SðR0; u� ½ðR0 � RÞ2 þ Z2Þ�1=2

½ðR0 � RÞ2 þ Z2Þ�1=2
ð7Þ

where FðZÞ ¼
R

HðY ÞxðY þ ZÞdY . For a Gaussian HðY Þ

with rms width sY we suppose that sY5g and obtain

FðZÞ ¼
X1

k¼�1

ð�1Þkffiffiffiffiffiffi
2p
p

s
exp �

1

2

Z� kh

s

� �2
 !

; s ¼
ffiffiffi
2
p

sY .

(8)

We assume that s is sufficiently small to justify replacing
the Gaussians in Eq. (8) by delta functions. Thus, the
averaging produces just a two-dimensional integral

EðR; uÞ ¼ �
1

4p

X1
k¼�1

ð�1Þk
Z

dR0

�
SðR0; u� ½ðR0 � RÞ2 þ ðkhÞ2Þ�1=2

½ðR0 � RÞ2 þ ðkhÞ2Þ�1=2
. ð9Þ

The integration in Eq. (9) is restricted to a very small
part of the full R0 plane, because of the small size of the
bunch, but it is awkward to locate this region owing to the
fact that spatial and temporal arguments of the source both
depend on R0. The bunch moves around, so to speak,
during integration. The task of integration is made
drastically easier if we take the temporal argument to be
a new variable of integration. We first go into polar
coordinates ðz; yÞ, then use the temporal argument v in
place of the radial coordinate z. That is

R0 � R ¼ zeðyÞ; eðyÞ ¼ ðcos y; sin yÞ

v ¼ u� ½z2 þ ðkhÞ2�1=2. ð10Þ

This incidentally gets rid of the small divisor in Eq. (9),
giving the field simply as an integral over the source

EðR; uÞ ¼ �
1

2p

X1
k¼0

ð�1Þkð1� dk0=2Þ

Z u�kh

�1

dv

Z p

�p
dySðR̂; vÞ

(11)

where R̂ ¼ Rþ ½ðu� vÞ2 � ðkhÞ2�1=2eðyÞ. It is quite easy to
determine the effective region of the y integration in Eq.
(11). Note that the source in Eq. (11) has significant values
only for R̂ restricted to a bunch-sized neighborhood of
R0ðbvÞ, according to Eqs. (3) and (4). For the CSR wake
field at time u we are interested only in R in a bunch-sized
neighborhood of R0ðbuÞ. Thus the integrand is appreciable
only when

R0ðbuÞ � R0ðbvÞ þ ½ðu� vÞ2 � ðkhÞ2�1=2eðyÞ ¼ OðDÞ (12)

where D is a suitable measure of the bunch size. For k ¼ 0
and u� v large compared to D, this cannot be satisfied
unless eðyÞ has nearly the same direction as
R0ðbuÞ � R0ðbvÞ, which is to say that the domain of y
integration is tiny (and close to y ¼ 0 for a chicane with

small bending angle). When u� v gets close to D the
domain expands precipitously to the full ð�p;pÞ. For ka0
condition (12) cannot be met unless u� vbkh, so for image
charges there are no contributions to the v-integral close to
its upper limit.

4. Integration of Vlasov equation

To state the Vlasov equation in the beam frame
coordinates we need the single-particle equations of
motion. We assume that the only external forces are from
sharp-edged bending fields. To a good approximation the
equations can be linearized, except for the nonlinear CSR
force. Using also the fact that g is large (order of 104) we
obtain

z0 ¼ �kðsÞx; p0z ¼ eEðr; px; sÞ=E0; x0 ¼ px; p0x ¼ kðsÞpz.

(13)

These are the equations of standard linear optics perturbed
by the collective force from CSR, as in Ref. [5]. Here kðsÞ
is the curvature and its sign must be taken consistent
with the sign of the external magnetic field. Also, to
good approximation, Eðr; px; sÞ ¼ ðtðsÞ þ pxnðsÞÞ � EðR0ðsÞþ

xnðsÞ; ðs� zÞ=bÞ. Note that the lab frame velocity is
essentially bcðtðsÞ þ pxnðsÞÞ. We have neglected the trans-
verse electric and transverse magnetic force, since for
relativistic particles one is expected to cancel the other to
high accuracy (for typical small values of the curvature).
The validity of this neglect will be checked at a later stage.
The unperturbed version of Eq. (13) with E ¼ 0 can be

solved explicitly [5] in terms of the lattice functions
DðsÞ;D0ðsÞ;R56ðsÞ. This gives the transport map Fðsj0Þ from
s ¼ 0 to arbitrary s, with inverse Fð0jsÞ. For the Vlasov
formulation we use the initial conditions of the unper-
turbed motion as phase space variables [5]. With
z ¼ ðz; pz;x; pxÞ, the phase space coordinates will be
z0 ¼ Fð0jsÞz. Now z0 is constant in the unperturbed case,
and possibly slowly varying in presence of the perturba-
tion. The Vlasov equation for the distribution function
gðz0; sÞ ¼ f ðz; sÞ is

qgðz0; sÞ
qs

þ
qgðz0; sÞ
qpz

e

E0
Eð½Fðsj0Þz0�1; ½Fðsj0Þz0�3; ½Fðsj0Þz0�4; s; gÞ ¼ 0.

(14)

The Vlasov equation is to be integrated by approximating
the Perron–Frobenius (PF) operator. Over a small interval
ðs; sþ DsÞ we regard Eðr; px; s; gÞ as independent of s,
having the value it had after the previous s-step, and solve
the initial value problem for the single-particle equations
corresponding to Eq. (14) on that interval. We represent
the solution of the IVP as a map Cðsþ DsjsÞðz0Þ that takes
any initial z0 into its image under the flow. The inverse map
is Cðsjsþ DsÞ. The propagation of g is given by the PF
operator P associated with C, which is to say

gðz0; sþ DsÞ ¼ Pgðz0; sÞ ¼ gðCðsjsþ DÞðz0Þ; sÞ. (15)
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To apply this method we need some finite-dimensional
representation of g and a numerical integration of the
differential equations to produce Cðsjsþ DsÞ. For the
former a simple choice is local polynomial interpolation of
values of g on a grid in phase space, say a grid with uniform
cell size h in each dimension. One-dimensional interpola-
tion is done successively in each of the four dimensions.
Then in a cell labeled by grid point zðpÞ the distribution is a
sum over k4 terms, where k is the order (degree+1) of the
polynomial. Each term is a value of g at a grid point near
zðpÞ, times a product of four one-dimensional polynomials
evaluated at ðzi � zðpÞi Þ=h; i ¼ 1; � � � ; 4; respectively. There
are just k defferent polynomials, determined entirely by the
choice of k. This gives a fast algorithm, but it does not give
a representation with overall continuity. In experience to
date the lack of continuity does not seem to be a big
drawback, perhaps because the grid is ususally fine enough
so that jumps from one cell to the next are small. In further
work, especially in attempts to use a coarser grid, some
more advanced interpolation methods should be evaluated,
for instance application of radial basis functions [6].

Now consider the particular case of a bunch compressor,
similar to that of the LCLS design. The initial distribution
has the form

f ðz0; 0Þ ¼
1

2p�0
exp �

1

2�0b0
ðx2

0 þ ða0x0 þ b0px0Þ
2
Þ

� �

�mðz0Þrcðpz0; z0Þ ð16Þ

where b0; a0; �0 are initial Twiss parameters and x-
emittance. The factor rc expresses ‘‘energy chirp’’, a close
correlation of energy with longitudinal position in the
bunch:

rcðpz0; z0Þ ¼ a exp �
1

2s2u
ðpz0 � uz0ð1þ Cðz0ÞÞÞ

2

� �
. (17)

Here u is the slope of the correlation line at z ¼ 0, su is a
small parameter expressing lack of the desired perfect
correlation, a is for normalization, and z0Cðz0Þ is a small
nonlinearity in the correlation, significant at the ends of the
z0-distribution and well represented as cubic. This non-
linearity represents effects of wake fields in the linac and
curvarture of the applied r.f. field. The function mðz0Þ is
approximated as parabolic over an interval, and zero
elsewhere. Because of the tight correlation, the pz0

distribution will also be nearly parabolic.
The pz0–z0 correlation will make the interpolation

scheme mentioned above quite awkward, since one would
need a fine mesh in both pz0 and z0, with a lot of wasted
mesh points at which the distribution is negligible. It will
help to make a change of variable, for example using w1 ¼

ðpz0 � uz0Þ=su and w2 ¼ z=sz0 in place of pz0 and z0, where
sz0 is the initial bunch length. A convenient initial mesh
for these variables is easily provided, but the mesh mush
be redefined at later times. At the least it must be
translated, since the radiation causes a large displacement
of w1.

5. Preliminary numerical studies

We have concentrated to date on the crucial matter of
field computation, taking an assigned charge/current
source rather than one determined self-consistently. The
source in Eq. (11) is determined from Eq. (16) evolved in
time by the backward linear map Fð0jsÞ. All numerical
calculations reported here take mðz0Þ to be Gaussian,
Cðz0Þ ¼ 0 and use benchmark bunch compressor para-
meters from Ref. [3], i.e. g ¼ 9785, �0=g ¼ 1mm-mrad,
b0 ¼ 40m, a0 ¼ 2:6, sz0 ¼ 200mm, su ¼ 2� 10�6,
u ¼ �36m�1, Q ¼ 1 nC. The evolution of the charge
density in the Z–X plane in the absence of CSR is shown
in Fig. 1. We have focused on calculations of the mean and
variance of the relative energy loss. We calculate these in a
first order perturbative manner where we integrate the
equations of motion (13) with initial conditions at s ¼ 0
chosen randomly according to Eqs. (16), (17), using the
field E from the assigned charge/current source.
The relative energy loss, pzLðsÞ, for a single particle is

given by pzLðsÞ ¼ pzðsÞ � pz0 ¼ ðe=E0Þ
R s

0
Eðrðs0Þ; s0Þds0

where rðsÞ is determined from Eq. (13), and depends on
the initial conditions, and pz0 is the unperturbed relative
energy deviation. Since the standard deviation of pzL is
roughly 2� 10�4, the statistical error with n particles is
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2� 10�4=
ffiffiffi
n
p

. Thus we have taken 400 particles giving a
statistical error of order 10�5.

Our result for no shielding is shown by the solid (blue)
curve in Fig. 2 where we plot hpzLi vs s. Note our statistical
error of 10�5 is very small on the scale of the figure. The
self-consistent, no shielding calculation of Kabel [3] is also
shown on the figure by the dotted (red) curve and the
agreement is good. Nevertheless we expect that our self-
consistent calculation will make changes in the result. By

the dashed (green) curve we plot our result including
shielding, for interplate gap h ¼ 1 cm. We added only the
contribution from k ¼ 1 which we believe to be dominant.
In Fig. 3 we show our results for the standard deviation

spzLðSÞ ¼ hðpzLðsÞ � hpzLðsÞiÞ
2
i1=2 of pzL by the dashed

(blue) curve. The solid (red) curve is the negative of
hpzLðsÞi with no shielding from Fig. 2. As in Fig. 2 spzL was
computed using 400 particles only as fluctuations for this
number of particles were small.
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Abstract

The multiparticle code DYNAMION (DYNAMics of ION) was written in ITEP for precise beam dynamics simulation in high-current

linear accelerators, and was used world-wide for linacs design and for study of linacs in operation. In collaboration between GSI and

ITEP the DYNAMION code is in use since many years for the investigation of operation of the GSI high-current heavy-ion linac

UNILAC. Results of the beam dynamics simulations are described and compared with other codes as well as with experimental data.

The main feature of the code is the possibility to calculate the 3D particle motion in the whole linac potentially consisting of RFQs,

different types of DTL structures, transport lines and other elements. During the last years, the development of the code was focused to

the increasing of accuracy and reliability of calculations. These goals were reached by an improved description of the external fields inside

the code. Additionally, data from measurements or from calculations done with external codes (e.g., focusing and accelerating fields,

beam emittance, etc.) are usable. In the paper, the latest features of the DYNAMION code are presented.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.17.+w; 41.75.Lx; 41.20.�q

Keywords: Beam dynamics simulation; Linac design; Space charge influence

1. Introduction

The design of high-intensity linear ion accelerators and
the physics of intense beams require a tool adequate to
‘‘modern’’ tasks—a beam dynamics simulation code has to
work with any accelerating/focusing structure taking into
account all details of particle motion caused by space
charge effects, coupling between oscillations in different
phase planes or nonlinearities of external fields. The
calculated output data have to allow deep and flexible
analysis of the particle motion. To reach these goals the
multi-particle code DYNAMION (DYNAMics of ION)
has been written [2] and implemented to numerous projects
in ITEP and several accelerator centres around the world,
namely in GSI (Darmstadt, Germany), CERN (Geneva,
Switzerland), ANL (Argonne, USA), LNL-INFN (Leg-
naro, Italy) and INR (Troitsk, Russia).

A significant part of the DYNAMION development has
been done during many years of collaboration between GSI
and ITEP. The code has been widely used for the
investigation and optimization of the GSI heavy-ion high-
current linac UNILAC (UNIversal Linear ACcelerator) [6].

2. GSI UNILAC

The UNILAC is designed to fill the heavy-ion synchro-
tron SIS up to its space charge limit for all ion species, with
mass over charge ratios of up to 8.5. It consists of the
36MHz high-current injector (HSI), a gas stripper section
at an energy of 1.4MeV/u and a 108MHz Alvarez post-
stripper, accelerating ions up to of 11.4MeV/u. The pre-
stripper section HSI consists of the low energy beam
transport (LEBT), a radio frequency quadrupole (RFQ)
accelerator and two interdigital H (IH) -structure tanks.
The HSI is designed for the acceleration of ions with a
charge to mass ratio up to 65 and a maximum U4+ beam
current of 15 emA, resulting in 12.6 emA U28+ after
stripping in a supersonic gas jet and subsequent charge
state separation.
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The HSI is in routine operation since November 1999
and has achieved the design intensities for light and
medium isotopes, but with a significant surplus of the
primary beam current coming from the ion source. For
heavy ions the beam intensities reached behind HSI are a
factor of two lower than the design values. Intense beam
dynamics studies of the whole UNILAC have been done by
means of the DYNAMION code. Several measures were
proposed and partially realized for the increase of the beam
current and brilliance at the entrance of the synchrotron
SYS 18 [7,9,10].

3. Description of the code

3.1. Particle motion equation

The general three-dimensional equation of charged
particle motion in external and internal fields is used in
the most common form and is solved numerically by time
integration.

3.2. Calculation of the space charge effects

Space charge forces are taken into account by the
calculation of the particle to particle interaction including
the non-uniformity of particle distribution. To avoid
artificial collisions of particles, after a discrete steps of
integration a special routine is introduced. Nevertheless,
due to the relatively small size of the integration steps, the
probability of such collisions is low.

For the adequate calculation of the space charge
influence to the dynamics of continuous beams, two
neighbouring virtual bunches are created. Virtual bunches
are identical to the simulated one and are used only for
calculating of space charge fields.

In order to decrease the computing time a fast Poisson
solver is now under development, as well as the adjustment
of the code for parallel computing.

3.3. Input particle distribution

Several types of the input particle distributions including
KV, truncated Gaussian, uniform, etc. can be generated by
DYNAMION. The results of beam dynamics simulation in
a linac performed by any tracking code can be transformed
to the input data for the DYNAMION calculation of the
following structures. The data of an emittance measure-
ment can be used for generating of input particle
distribution which includes non-uniformities of a real
beam.

3.4. Multi-charge particle distribution

A beam coming from the heavy ion source usually is a
mixture of ions with different charge states and, therefore,
different energies. Several DYNAMION simulations with

such beams have been carried out under space charge
conditions using adequate particle distributions [3,9].

3.5. Beam transport lines

Different focusing elements usually installed in beam
transport lines can be simulated in the DYNAMION code,
including quadrupole/octupole magnetic lenses, electro-
static lenses, solenoids, bending magnets, slits, etc.
Most realistic results of beam dynamics simulations can

be obtained with a detailed description of the external
focusing fields. Instead of simplified approximations it can
be done by means of special codes (OPERA, MAFIA, etc.)
or by measurements of the electromagnetic fields.

3.6. RFQ accelerator

The potential distribution in an RFQ is expressed by well-
known Fourier–Bessel series [1]. Analytical formulas for the
coefficients of the series can be obtained in the assumption
of the special hyperbolic transverse shape of electrodes,
which is complicate to realize in practice. Usually, the shape
of RFQ electrodes is far from the ‘‘ideal’’. Historically the
‘‘ideal’’ two-term series was used for the beam dynamics
simulations and an RFQ design. Expansion of the series to
eight terms, as it is done in the well-known code
PARMTEQ/PARMTEQM, includes multipole effects of
the ideal shape of electrodes. But, compared to the real
geometry it may lead to significant errors. For the low
energy heavy ion RFQ in TRIUMF, even complete loss of
resonance acceleration was observed [5].
In the earlier DYNAMION version the two-term series

with coefficients corrected for the real geometry of RFQ
cell was implemented. It provided more reasonable results,
but multipole effects were not included. In the present
version of the DYNAMION code, the Laplace equation
for the potential is solved on the grid by the finite element
method, including all details of the electrode geometry. The
expression of the eight-term series for the potential at each
node of the grid is written, and the system of linear
equations is solved by the least-squares method for the
coefficients. The Expression for electrical field can be
obtained by derivation of the formula for the potential.
The longitudinal electrical field along an RFQ cell,

calculated by means of DYNAMION code, is shown in
Fig. 1. Parameters of the cell correspond to the medium
part of the HSI RFQ. The curves correspond to ‘‘ideal’’
two-term series and two-term and eight-term series for the
real geometry of electrodes. The field is shown at a radius
of 9/10 of the aperture. The significant difference (up to
40% in some area) between an ideal and a realistic
representation of the field in an RFQ is obvious.
For the specific beam dynamics simulations in an RFQ

input radial matcher, the adequate description of it is
necessary. In this part, the aperture and the shape of
electrodes change with a certain law to provide for the 6D
matching of the beam to the RFQ. Also, the transition
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from the resonator wall to the electrodes has to be taken
into account. In the DYNAMION the Laplace equation
for this area is solved on the grid by finite element method.
Direct field mapping or an approximation series of 90
coefficients can be used for the calculation of the particle
motion.

3.7. Drift tube linac (DTL)

For beam dynamics in DTLs the electrical field is
calculated separately for each cell, combined by a gap and
a drift tube. The real geometry of the drift tube is used
including inner/outer diameters and rounding of the edges.
Assuming axial geometry, the Laplace equation is solved
by the finite element method. The potential Uðr; zÞ and the
field components Ezðr; zÞ, Erðr; zÞ in a gap and inside a drift
tube are approximated by series with 30 coefficients An:

Uðr; zÞ ¼ �V
z

l
þ
X1
n¼1

An sin ð2nkzÞI0ð2nkrÞ

" #
,

where r,z is the coordinates, I0, I1 the Bessel functions, l

the half of cell length, k ¼ p=l. The voltage factors V ¼R l

�l
Ezð0; zÞdz along the tank may be obtained from the

design data or by measurements. The expression for
electrical field can be calculated by derivation of the
formula for the potential.

Several test calculations of the field carried out by the
DYNAMION have shown excellent agreement with the
results of the OPERA code in the working area (9/10 of the
aperture). Close to the drift tube aperture the discrepancy
is a few percent. Nevertheless, the accuracy of the
calculations can be easily improved by increasing the
number of terms in the series.

3.8. Stripping process and particle separation

The stripping of ions to higher charge states increases the
accelerating efficiency. Simultaneously, the beam current
increases several times. The process of stripping results in a

wide spectrum of ions with different charge states, and a
special section for the charge separation is necessary. In the
DYNAMION code a special routine calculates the particle
behaviour in the stripper section. Theoretical or measured
charge states spectrum is introduced as input data. When
each particle passes the stripper, its charge state changes
randomly in accordance with the weight of each charge
state in the spectrum.

4. Comparison of calculations and measurements

4.1. HSI LEBT system

Data of the beam emittance measurements in the LEBT
(X–X0 phase plane) and generated macroparticle distribu-
tion are presented in Fig. 2. The level of measured intensity
is shown with a grey scale (left plot). The number of
particles in each bin is proportional to the measured
intensity (right plot).
The GSI LEBT is intended to transport the pre-

accelerated beam from the ion source to the RFQ
accelerator. The matching of the beam is mainly done by
means of four quadrupole lenses before the RFQ. The
distribution of the magnetic field for each lens has been
measured separately for different levels of the field, and is
introduced into DYNAMION simulations as an input file.
The magnetic field in the whole quadrupole quartet,
including field overlapping between lenses, is calculated
as a superposition of separate fields in accordance with the
field setting in each lens (Fig. 3).

4.2. HSI RFQ

The HSI RFQ of the UNILAC was designed at the
Frankfurt University [4] and commissioned in 1999 [6]. Its
measured transmission for the high current U4+ beam
(E60%) is significantly lower than predicted by PARM-
TEQ (95%) and calculated by an earlier version of the
DYNAMION (83%) [7].
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distribution (right) in X–X0 plane for a 15 emA beam current (U4+) at an
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The low transmission can be explained by a mismatch of
the beam and a misalignment of electrodes. The different
effects were taken into account in recent DYNAMION
simulations:

� data of an emittance measurement (Fig. 2) were used for
generating the particle distribution;
� the measured magnetic fields distribution in four

quadrupole lenses before the RFQ, with machine
settings during operation, were introduced as input data
(Fig. 3);
� the electrical field in the RFQ was calculated with an

eight-term series on the base of the real geometry of the
resonator and electrodes;
� the measured voltage distribution along the RFQ was

applied;
� the measured misalignments of the ten RFQ sections

were taken into account.

The measured U4+ beam current before the quadrupole
quartet was 15 emA. Due to the limited space between the
last matching quadrupole and the RFQ, it is not possible to
measure the beam current exactly at the RFQ entrance.
Behind the RFQ a beam current of 8.3 emA was measured.

The simulations with the DYNAMION were performed
for the system LEBT RFQ, including all available
information about the beam and the linac. Behind the
RFQ a beam current of 8.7 emA was calculated.

4.3. UNILAC DTL structures

The design of the HSI IH structures was done by means
of the LORASR code, based on the KONUS beam
dynamics [8]. The well-known code PARMILA, which is
usually used for the calculations of DTLs, is not suitable
for the simulation of fields and beam dynamics of such
structure, whereas the DYNAMION was successfully
implemented for the task. Simulations have shown a good
agreement with measurements in front of the IH section
and behind it.

Numerous simulations by means of DYNAMION were
carried out for the Alvarez section of the GSI UNILAC.
The code was used for systematic investigations of
matching a high-current beam to the periodic Alvarez
DTL. The rms Twiss parameters of a realistic initial
distribution were matched to the entry of the first tank. The
simulated emittance growth along the whole DTL was
considerably decreased by a factor of two in all three
dimensions.

4.4. UNILAC stripper section

In the UNILAC gas stripper section the design U4+

pulse beam current of 15 emA rises up to seven times
during stripping. The U28+ ions have to be purely
separated from the neighbouring charge states under
extremely high space charge influence.
The process of stripping has been calculated by

DYNAMION for intense Ar1+ and U4+ beams. During
stripping the measured spectra of ion species were used.
The high resolution of the separation has been confirmed
by simulations of the subsequent sections.

5. Conclusion

DYNAMION is a versatile multi-particle code for the
simulation of acceleration, focusing and transport of space
charge dominated ion beams. The general equations of
particle motion are solved with precise calculation of the
external fields and space charge forces. Electromagnetic
external fields are represented by analytical formulas,
internal Laplace solvers, field maps or field measurements.
The real geometry of the accelerator elements, measured
beam emittances and errors of mechanical tuning can be
easily introduced into the code. Numerous features of the
code give the possibility of end-to-end beam dynamics
simulation even in complicate linacs, as the GSI UNILAC.
DYNAMION was successfully tested with several linacs

in operation, and good agreement between calculations
and measurements was demonstrated. Results of the
DYNAMION calculations have been used successfully in
several leading accelerator centres for the linacs design and
for the optimization of operating ones. The DYNAMION
code comes up as a universal, advanced tool developed for
the precise solutions of various tasks in the physics of high-
current linear accelerators.
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Abstract

In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time

calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and

other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the

dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al.

[Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput.

Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As

numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Computation of wake fields of short relativistic bunches
in long structures remains a challenging problem even with
the fastest computers available. It demands developing new
numerical approaches for long-time calculation of electro-
magnetic fields. The conventional FDTD scheme [3], used
in MAFIA [4] and other wake and Particle-In-Cell (PIC)
codes, suffers from numerical grid dispersion and the
staircase approximation problem. As an effective cure of
the dispersion problem, a numerical scheme without
dispersion in the longitudinal direction can be used as it
was shown in Refs. [1,2].

In this paper, a new two-level economical conservative
scheme for short-range wake field calculation in three
dimensions is presented. The scheme does not have
dispersion in the longitudinal direction and is staircase
free (second-order convergent). Unlike the FDTD method
[3] and the scheme developed in Ref. [2], it is based on a
transversal electric–transversal magnetic (TE/TM)-like
splitting of the field components in time. Additionally, it

uses an enhanced alternating direction splitting of the
transverse space operator that makes the scheme as
computationally effective as the conventional FDTD
method. Unlike the FDTD ADI method, the splitting
error in our scheme is only of the fourth order. As
numerical examples show, the new scheme is much more
accurate on the long-time scale than the conventional
FDTD approach. For axially symmetric geometries, the
new scheme performs at least two times faster than the
scheme suggested in Ref. [2] achieving the same level of
accuracy.

2. Formulation of the problem

At high energies, the particle beam is rigid. To obtain the
wake field, the Maxwell equations can be solved with a
rigid particle distribution. The influence of the wake field
on the particle distribution is neglected here; thus, the
beam-surroundings system is not solved self-consistently
and a mixed Cauchy problem should be considered.
The problem reads: for a bunch moving with the velocity

of light c and characterized by a charge distribution r, find
the electromagnetic field ~E; ~H in a domain O which is
bounded transversally by a perfect conductor qO. The
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bunch introduces an electric current ~j ¼ ~cr and thus we
have to solve

r � ~H ¼
q
qt
~Dþ~j; r � ~E ¼ �

q
qt
~B; r � ~D ¼ r,

r � ~B ¼ 0, ð1Þ

~H ¼ m�1~B; ~D ¼ e~E; ~Eðt ¼ 0Þ ¼ ~E0,

~Hðt ¼ 0Þ ¼ ~H0; x 2 O,

~n� ~E ¼ 0; x 2 qO.

3. Implicit numerical scheme

Following the matrix notation of the finite integration
technique (FIT) [5], the Cauchy problem (1) can be
approximated by the time-continuous matrix equations:

C e

�

¼ �
d

dt
b

��

; C� h

�

¼
d

dt
d

��

þ j

��

; S b

��

¼ 0,

S� d

��

¼ q; e

�

¼Me�1 d

��

; h

�

¼Mm�1 b

��

. ð2Þ

With changing of variables, system (2) reduces to the
skew-symmetric one:

d

dt
e ¼ C�0hþ j;

d

dt
h ¼ �C0e; e ¼M

�1=2
e�1 e

�

,

h ¼M
�1=2
m�1 h

�

; j ¼M
1=2
e�1 j

��

; t ¼ ct. ð3Þ

System (3) is a time-continuous and space-discrete

approximation of problem (1). The next step is a
discretization of the system in time. The field components
can be split in time and the ‘‘leap-frog’’ scheme can be
applied. Below two kinds of the splitting are considered:
electric–magnetic (E/M) and TE/TM schemes.

As suggested by Yee [3], the E/M splitting of the field
components yields the explicit FDTD scheme (E/M
scheme):

enþ0:5 ¼ en�0:5 þ DtC�0h
n þ Dt jn,

hnþ1 ¼ hn � DtC0e
nþ0:5. ð4Þ

Scheme (4) is a two-layer scheme:

B
ynþ1 � yn

Dt
þ Ayn

¼ fn; B ¼
I 0

DtC0 I

 !
,

A ¼
0 �C�0

C0 0

 !
; yn ¼

en�0:5

hn

 !
; fn ¼

jn

0

 !
.

Discrete energy of electromagnetic fields can be defined
as

En
E=M ¼ 0:5h½B� 0:5DtA�yn; yni

¼ 0:5ðhen�0:5; en�0:5i þ hhn; hn�1iÞ. ð5Þ

If the right-hand side vanishes, then the scheme is energy
conserving En

E=M ¼ E0
E=M.

Scheme (4) is widely used in electromagnetic modeling.
However, the FDTD algorithm causes non-physical dispersion
of the simulated waves in a free-space computational lattice.
Why is zero dispersion for a special direction important?

Unlike plasma problems, the charged particles in accelerators
are organized and a direction of motion (the longitudinal
direction) can be identified. Hence, the computational
domain is very long in the longitudinal direction and
relatively short in the transverse plane. Additionally, the
electromagnetic field changes very fast in the direction of
motion but is relatively smooth in the transverse plane.
To find the scheme, let us consider Fig. 1 and subdue an

update procedure to the motion of the bunch. We suggest
that a charged particle is moving in the z-direction with
velocity of light. Additionally, let us suggest that our
numerical scheme allows to take a time step Dt equal to the
mesh step Dz in the z-direction. If at the time t0 the particle
has the position aligned with the left z-facet of the primary
grid (see Fig. 1), then in the time t0 þ 0:5Dt, it will be
aligned with the left z-facet of the dual grid and in the time
t0 þ Dt, it will be again aligned with the next z-facet of the
primary grid. It suggests that we should replace the E/M
time splitting of the field components in scheme (4) by a
more adequate TE/TM splitting. Indeed, in the time t0, it is
reasonable to update the TM components ex; ey; hz and the
half time step later, namely in time t0 þ 0:5Dt, we have to
update the TE components hx; hy; ez.
Following the above consideration, let us rewrite scheme

(4) in the equivalent form:

d

dt
u ¼ D11uþD12vþ ju,

d

dt
v ¼ D22v�D�12uþ jv ð6Þ

where u ¼ ðhy; hy; ezÞ
T and v ¼ ðex; ey; hzÞ

T.

ARTICLE IN PRESS

ex

ey

hz

ez

hx

hy

�0 �0 + �/2 �0 + �
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different moments of time. The time step is chosen equal to the

longitudinal mesh step.
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Applying to system (6) the suggested TE/TM splitting of
the field in time, the following numerical scheme is
obtained:

unþ0:5 � un�0:5

Dt
¼ D11

unþ0:5 þ un�0:5

2
þD12v

n þ jnu, (7a)

vnþ1 � vn

Dt
¼ D22

vnþ1 þ vn

2
þD21u

nþ0:5 þ jnþ0:5v . (7b)

As scheme (4), scheme (7) is also two-layer one:

B
ynþ1 � yn

Dt
þ Ayn

¼ fn; A ¼ �A�,

Q ¼ Q�; Q ¼ B� 0:5DtA.

With the help of the energy inequalities method [6], we
can prove

Theorem 1. The condition Q � B� 0:5DtAX0 is neces-
sary and sufficient for the stability in Hilbert space HQ (see
[6]) of schemes (4) and (7) with respect to the initial data y0

and to the right-hand side fn.

Discrete energy in TE/TM scheme can be defined by the
relation

En
TE=TM ¼ 0:5h½B� 0:5DtA�yn; yni

¼ En
E=M þOðDt2Þ.

If the right-hand side vanishes, then the scheme is energy
conserving En

TE=TM ¼ E0
TE=TM.

Stability condition can be rewritten in the form
I� ðDt2=4ÞPi

z Pi�

z

� �
X0. The last relation resembles the

well-known stability condition of the explicit FDTD
scheme for the one-dimensional problem. In the following,
an equal mesh step Dz in the z-direction will be always
suggested. Then for vacuum domain with staircase

approximation of the boundary, the stability condition
reads DtpDz.

With the time step Dt equal to the longitudinal mesh step
Dz, scheme (7) does not have dispersion in the longitudinal
direction. Stability condition does not contain information
about the transverse mesh. Hence, the transverse mesh can
be chosen independent of stability considerations.

So far, we have found a scheme which fulfills the main
requirements formulated above. However, in a general
case, the staircase scheme is only first-order accurate. To
overcome the problem and avoid reducing of the stable
time step, the uniformly stable conformal (USC) approach
described in Refs. [2,7] will be used.

With the latter approach, the scheme possesses the
desired features. However, it is implicit and non-economic-
al. The economical scheme modifications, based on
operator splitting, will be considered in the next section.

4. TE/TM-ADI2 scheme in three dimensions

In the following, we consider only modification of
relation (7a). The numerical scheme using the ADI2

splitting in three dimensions has the form

h

� nþ0:5

x � h

� n�0:5

x

Dt
¼Mm�1x

Pz e

� n

y � Py

e

� nþ0:5

z þ e

� n�0:5

z

2

2
4

3
5,
(8a)

h

� nþ0:5

y � h

� n�0:5

y

Dt
¼ �Mm�1y

Pz e

� n

x � Px

e

� nþ0:5

z þ e

� n�0:5

z

2

2
4

3
5,
(8b)

We
ADI2

e

� nþ0:5

z � e

� n�0:5

z

Dt
¼Me�1z

P�y h

� n�0:5

x

 

þ
Dt
2
Mm�1x

Pz e

� n

y � Py e

� n�0:5

z

� �!

þMe�1z
P�x � h

� n�0:5

y �
Dt
2
Mm�1y

�Pz e

� n

x þ Px e

� n�0:5

z

� � !

þMe�1z
j

��
z ð8cÞ

where

We
ADI2 ¼ Iþ

Dt2

8
Me�1z

P�yMm�1x
Py

� �

� Iþ
Dt2

4
Me�1z

P�xMm�1y
Px

� �

� Iþ
Dt2

8
Me�1z

P�yMm�1x
Py

� �
.

If material matricesMm�1 ,Me�1 are diagonal, then system
(8c) has only product of tri-diagonal matrices on the left-
hand side and can be resolved easily.
However, the conformal scheme with the diagonal

material matrices reduces the stable time step. To restore
stability condition and possibility to use the time step
Dt ¼ Dz, we will use modification of USC method [7]. The
last approach results in modified non-diagonal but sym-
metric matrices Mm�1x

, Mm�1y
. Other material matrices in

scheme (7)–(8) remain diagonal. It means that solution of
Eq. (8c) requires additional efforts.
To overcome the problem, an iterative method can be

applied [2]. Already the first iteration (which we refer as
TE/TM-ADI2(1) scheme) produces accurate and stable
results.

5. Numerical examples calculated by three-dimensional code

Finally, we discuss the results of numerical computations
with fully three-dimensional realization of TE/TM-
ADI2(1) schemes (7) and (8). Two test problems are
considered.
To be able to check the accuracy of the three-

dimensional realization of the TE/TM scheme, we have
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chosen for the tests only rotationally symmetric structures.
However, in the three-dimensional calculations, the sym-
metry of the structures was not exploited.

As the first example, we consider a structure consisting
of the 20 TESLA cells supplied with infinite ingoing and
outgoing pipes with diameter 35mm.

Fig. 2 shows the longitudinal wake potential for
Gaussian bunch with RMS length s ¼ 1mm moving on
the axis. The left figure shows results calculated by two
(2.5D)-dimensional codes. The solid line (POT-2.5D)
corresponds to the reference solution obtained with the
vector potential method [2]. The two other lines show
results obtained with different mesh resolution from
MAFIA code [4] based on the classical Yee’s scheme (E/
M-2.5D). The observed oscillations are due to dispersion
error of the Yee’s scheme. The right figure shows
comparison of the reference solution (solid line) with the

results obtained with the help of three-dimensional schemes
(7) and (8) (marked as TE/TM-3D).
It can be seen that the three-dimensional TE/TM-ADI2

scheme produces very accurate results even with the coarse
meshes. Indeed, in the example, the three-dimensional code
uses only 2.5 mesh points on s in the longitudinal direction.
As the last example, we use the round collimator

example. Fig. 3 demonstrates the wake potential for the
collimator with parameters a ¼ 30mm, b ¼ 2mm,
c ¼ 50mm, L ¼ 200mm and the Gaussian bunch with
RMS length s ¼ 1mm. Again, the high accuracy of the
suggested three-dimensional scheme can be seen.
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Abstract

The accelerator considered is a planar tetrode-type system. It contains a grid of lengthy glowers emitting beamlets, which cover an

anode exit window of 6600 cm2 in area. Key parameters of the system, i.e. maximal extracted current, continuous service life and

reliability, depend directly on the physical properties of the exit window foil, as well as non-uniformity in density of the accelerated beam.

Adequate computer simulation is necessary in designing the latter. In this paper, careful modeling of electrostatic fields, which are highly

nonlinear near the grid rods of small diameter, has been performed using the boundary collocation method. Stray magnetic cathode fields

were found analytically. Electron ray tracing in these fields provided useful information on abnormal local heating of the foil due to

aberrations in the beamlets.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.27.Eg; 41.20.Cv; 41.85.Ew

Keywords: Electron optics; Grid fields; Large-area beam; Electroionization laser

1. Introduction

Large-area electron beams are widely used in radio-
technology and plasmochemistry. The necessary cross-
section size of the beams is usually the result of numerous
beamlet overlapping. The accelerator considered in this
paper is involved in the ionization device of a mobile
powered CO2 laser intended for remote metal construction
cutting in accident emergencies [1]. It is an electrostatic
three-stage accelerator. Fig. 1 shows schematically the
accelerator optics with calculated trajectories of the
electrons produced by one emitter (i.e. with a beamlet).

In general, the accelerator cathode contains a flat grid of
lengthy glowers emitting beamlets. The beamlets combine
to form an integral electron flow with a typical spread of
transverse velocities. The cathode operates in the space-
charge-limited mode. The beamlet current is controlled by
the low voltage of the first thin grid. The second thicker
grid screens the cathode from the main accelerating field of
160–180 keV applied between the grid and the anode. The
anode simultaneously serves as a beam output device. It

consists of a foil support window through which the
electrons are injected into the laser gas medium. Not far
from the glowers, a reflecting screen (spreader) is mounted
at the cathode potential. All the grids take the form of rods
parallel to the cathode filaments. Rod diameter and
spacing are chosen with regard to breakdown strength.
Destination and service conditions of the laser place a

high requirement on impulse density of the excitation beam
with consequent restrictions on the accelerator parameters,
namely, maximal extracted current, continuous service life
and reliability. These parameters directly depend on the
physical properties of the exit window foil, as well as
divergence and spatial non-uniformity of the accelerated
beam. Adequate computer simulation of the latter is
necessary for design study.

2. Electric field

Grid field calculations in the accelerator are reduced to
the solution of the first boundary problem in the Laplace
equation. Applying common numerical methods, such as
finite difference or finite elements, to the problem failed for
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the following two reasons: the large disproportion of the
rod cross-section size to the accelerator volume, the
aliquant rod spacing in the grids.

In practice, variously approximating solutions to the
problem are used [3,4]. As a rule, for example, see Ref. [5],
the planar grid field is replaced by the potential field of a
row of infinitely long line charges of charge density q per
meter:

V ðx; yÞ ¼
q

4pe0
ln 2 cosh

2px

p

� �
� 2 cos

2py

p

� �� �
, (1)

where p is the line charge spacing. For validity of Eq. (1) in
a real situation, the grid rod diameter must be small and
the flat electrodes, such as the anode or spreader, must be
parallel to and distant from the grid. Otherwise, the rod
contours and the electrode profiles mismatch to the
respective equipotential surfaces of Eq. (1). Moreover,
the approximation neglects the edge effect caused by the
finite length and number of rods. Nevertheless, the effect
can be compensated constructively within certain limits.

The approximation is improved by replacing every grid
with a system of dummy line charges [6]. In the simplest
case it takes the form

Uðx; yÞ ¼ Aþ Bxþ
XNG

i¼1

XNC

j¼1

Vi;jðx; yÞ, (2)

where

Vi;jðx; yÞ ¼
qi;j

4pe0

� �
ln 2 cosh

2pðx� xi;jÞ

pi

� ��

�2 cos
2pðy� yi;jÞ

pi

� ��

is the potential filed produced by the jth infinite row of
dummy line charges replacing the ith grid. The coordinates
ðxi;j ; yi;jÞ comply with singular points of the field and specify
a spatial arrangement of the line charges. It is self-evident
that dummy charges have to be placed inside the grid rods.
To provide proper equipotential contours of plane electro-
des, part of the line charges may be located out of the
computed area, following the mirror-image method.

ARTICLE IN PRESS

grids beamlets
anode window

cathode

0.000 0.015 0.030 0.045 0.060 0.075 0.090 0.105 0.120 0.135 0.150 0.165 0.180 0.195

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Y
,m

X,m

(a)

(b)

Fig. 1. Layout of accelerator optics and calculated trajectories of one beamlet.
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Otherwise, the dummy charge arrangement is arbitrary,
while influencing the accuracy of the approximation used.
If ðxi;j ; yi;jÞ have been chosen, Uðx; yÞ is fitted to the
boundary condition without difficulty by means of the
other free parameters: A, B and qi;j. Substituting the
coordinates of collocation points ðxk; ykÞ and their asso-
ciated values of potential Uk in Eq. (2) gives the mandatory
system of linear equations:

Uðxk; ykÞ ¼ Uk; k ¼ 1 . . .NGNC þ 2.

The system is solvable by conventional methods.
Figs. 2 and 3 present the results of such an operating

sequence. The figures depict the field maps, calculated by
Eq. (2), by varying the collocation points and the number
of line charges. Variants (a)–(c) correspond to one dummy
charge being at the center of a real rod. Collocation points
lie on the rod contour and have the coordinates: (a)
x1 ¼ x0 � R0, y1 ¼ y0; (b) x1 ¼ x0 � R0, y1 ¼ y0; (c)
x1 ¼ x0, y1 ¼ y0 � R0, where ðx0; y0Þ is the center of the
rod, R0 is rod radius. Variant (d) corresponds to two
dummy charges at x1;2 ¼ x0 � dx; , y1;2 ¼ y0, and the
collocation points at x1;2 ¼ x0 � R0, y1;2 ¼ y0. Comparing
Figs. 2 and 3 reveals a strong dependence of approximation
accuracy on differences in electric strength at the front and

rear of the grid. Having added terms, such as

unðx; yÞ

¼
qn

4pe0
ln

coshðpðy� ynÞ=hÞ þ cosðpðxþ xnÞ=hÞ

coshðpðy� ynÞ=hÞ � cosðpðx� xnÞ=hÞ

� �
, ð3Þ

Eq. (2) offers a simple way of accounting for edge effects
and grid defects (Fig. 4). Eq. (3) is the potential field
produced by one line charge qn placed at the point ðxn; ynÞ

between two parallel metal plates at a distance h [2,4].

3. Magnetic field

The magnetic field B̄ induced by the cathode filament
current may be calculated in quasistationary approxima-
tion through the vector magnetic potential Ā. In plane-
parallel fields, vector Ā has a single component Azðx; yÞ,
which satisfies the Poisson equation:

q2Az

qx2
þ

q2Az

qy2
¼ �m0jzðx; yÞ, (4)

where jz is filament current density. A solution to Eq. (4)
with allowances for translation symmetry (equispaced
cathode filaments and oppositely directed currents in
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adjacent filament) can be obtained in the same manner as
the solution to the problem of an infinitely long line charge
placed between parallel metal plates [2]:

Azðx; yÞ ¼ A0 ln
coshðpðx� x0Þ=pÞ þ cosðpy=pÞ

coshðpðx� x0Þ=pÞ � cosðpy=pÞ

� �
. (5)

Here, p is the spacing between the cathode filaments and x0

is the coordinate of the central filament. The integration

constant A0 is calculated from the condition

I
l

B̄dl ¼ m0I ,

where l is an arbitrary contour that encloses the filament
with a current I . The general view of component Azðx; yÞ is
given in Fig. 5.
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4. Ray tracing

Ray tracing was performed by integrating a relativistic
form of the Newton–Lorentz equation in the fields of Eqs.
(2) and (5). It was assumed that, at the initial moment, all
test particles are uniformly distributed over the surface of
the cathode filament. Integration was carried out numeri-
cally by the fourth-order Runge–Kutta method with
automatic step selection. The solution accuracy was

checked with the integrals of motion:

m0gc2 ¼ m0c
2 � eðUðx; yÞ �UðxS; ySÞÞ,

m0g_z ¼ �eðAzðx; yÞ � AzðxS; ySÞÞ;

the relative deviation from which was no greater than
0.1%. Here, UðxS; ySÞ and AzðxS; ySÞ are the electrostatic
and vector potentials at the start point, and are the same
for all particles from any emitter because x2

S þ y2
S ¼ r2C,
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Fig. 6. Phase portrait of particles on plane yy0 at x ¼ 15:5, 44.8, 45.2, 64, 66 and 185mm. The particles are emitted by one cathode filament located at

x ¼ 15mm.
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Fig. 7. Beam current distribution over an elementary optics cell near the foil support window at zero (dash) and maximal (solid) magnetic field intensity.

Cases (a)–(d) correspond to the electric field approximation of cases (a)–(d) in Figs. 2 and 3, respectively. Operating mode: grid potentials are 800 and

1500V; anode potential is 200 kV.
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where rC is the radius of the cathode filament. Since
particle travel time from cathode to anode is much shorter
than filament current alternation, effects associated with
magnetic field variation in time are neglected.

Detailed analysis of tracing can be found in Ref. [7]. Fig.
6 shows the evolution of a beamlet on the yy0 plane as the
particles travel through the accelerator optics. The beam-
cutting and beam-focusing effects due to grid rods placed
in the planes x ¼ 45 and 65mm are clearly seen. Fig. 7
demonstrates the extent to which computed spatial non-
uniformity in the beam near the exit window depends on
the accuracy of the electric field approximation, as well as
magnetic field effects.

The accelerator optics inevitably causes an intersection
of the adjacent trajectories. The beamlet envelope is found
to be a caustic surface (Figs. 1 and 6). The resultant density
distribution is most uniform when the beamlet edges are
intercepted by the second grid. Otherwise, the efficiency of
the accelerator is higher but the beam distribution contains
regions of anomalous density. To preserve the foil from
dangerous local overheating, the accelerating voltage pulse

must be phase-synchronized with the sinusoidal filament
current.
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Abstract

A method to obtain DA approximations of Poincaré maps directly from a DA approximation of the flow of the differential equation

for certain types of flows and Poincaré sections is presented. Examples of the performance of the method, its computational

implementation, and its use for problems in beam physics are given.
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1. Introduction

Poincaré maps are a standard tool in general dynamical
systems theory for the study of properties of a system
under consideration, e.g. the flow generated by an ordinary
differential equation. A Poincaré map essentially describes
how points on a plane Si (a Poincaré section) which is
transversed by such an orbit O (the reference orbit) and
which are sufficiently close to O get mapped onto another
plane Sf by the flow. A frequent application is the case
where Si ¼ Sf , and one of the most prominent applications
is the study of asymptotic stability of periodic or almost
periodic orbits.

For applications in Accelerator Physics, Poincaré maps
are important because the dynamics is usually described in
terms of so-called curvilinear coordinates, i.e. an orthogo-
nal coordinate system that is attached to a reference orbit
such that one of its axes points in the direction of its
velocity, another one in the direction of its acceleration
component perpendicular to the velocity, and so on; for
details see for example Refs. [1–4]. Instead of solving the
ODEs of the original system under consideration with time
as the independent variable, the ODEs are transformed

such that the new independent variable is the arclength
along the reference orbit, and everything is described in
terms of the coordinates in the plane perpendicular to the
reference orbit.
The benefits of this approach are many: for imaging

systems like electron microscopes or other optical systems,
the method directly describes how particles originating in
the object plane Si are mapped into the image plane Sf ,
since what matters is the position on this image plane
where a detector or, in earlier days, photographic paper or
plates are located. Likewise, for dispersive systems, it
describes how particles of different energies are mapped
into different locations in a detector plane Sf . Finally, for
large storage rings and circular accelerators, one usually
picks one plane S in the ring and assesses long-term
stability by studying the Poincaré map for S ¼ Si ¼ Sf .
For many of the conventional particle optical systems,

the reference orbit and the dynamics in the corresponding
curvilinear coordinates is well-known [1,5]. However, for
some of the modern particle optical elements this is not the
case, and the mere formulation of the ODEs describing the
system under consideration represents a significant pro-
blem. Two of the prominent examples of such cases are the
dynamics in muon accelerators and storage rings, which
are characterized by very large emittances and unusual field
arrangements [6–8], and the analysis of modern high-
resolution large acceptance particle spectrographs, where
the details of the orbits in the fringe field regions of magnets
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play a prominent role [9–11]. In these cases it is still possible
to solve the underlying ODEs in conventional Cartesian
coordinates with time as an independent variable; but for
the connection with subsequent analysis, it is necessary to
transform the results to the form of a Poincaré map.

In the following sections, we will show how this can be
obtained using differential algebraic (DA) tools as in Refs.
[2,12]. We remark that the proposed algorithm is a part of
an extended method which allows the computation of
rigorous interval enclosures of the polynomial approxima-
tion of the Poincaré map discussed here.

2. Review: Essential DA-tools

The DA tools which are necessary to appreciate the
method are described in detail in Ref. [2]. However, we
wish to review briefly the two most important applications
of DA-methods as far as they relate to the problem which
is discussed here: the DA-integration method which is
employed to obtain high-order polynomial approximations
of the flow jðx0; tÞ and the functional inversion tools which
are necessary in later steps of the algorithm.

2.1. DA-integration of ODEs

First, we tackle the problem of obtaining a polynomial
approximation of the dependence on initial conditions of
the solution of the initial value problem

_xðtÞ ¼ f ðxðtÞ; tÞ; xð0Þ ¼ X 0 þ x0 (2.1)

where f : Rn � Uopen�!Rn is given as a composition of
intrinsic functions which have been defined in DA-
arithmetic. As a byproduct this also entails that f exhibits
sufficient smoothness to guarantee existence and unique-
ness of solutions for all initial conditions. The vector X 0 2

Rn is constant and the midpoint of the domain box
D ¼ ½�di; di�

n, i 2 f1; . . . ; ng, for the small relative initial
conditions x0 2 D. Typical box widths di are of the order
10�2–10�8. The polynomial approximation jðx0; tÞ of the
flow of Eq. (2.1) we desire is an expansion in terms of the
independent time coordinate t and the relative initial
conditions x0, and the representation of this approximation
is a so-called DA-vector which stores the expansion
coefficients up to a desired order n in a structured fashion.

To achieve the aforementioned goal, we proceed by
recalling that the standard procedure of a Picard-iteration
yields a polynomial approximation of the solution of (2.1)
after repeated application of a Picard-operator on the
initial conditions. The iteration in general increases the
order of the expansion by one in every step, and since a
DA-vector can store coefficients up to a prespecified order
n, we expect that the iteration converges after finitely many
steps in the DA-case.

Accordingly, the Picard-operator in the DA-computa-
tion is defined by

Cð:Þ:¼ðX 0 þ x0Þ þ q�1nþ1f ð:Þ

where f is computed in DA-arithmetic and q�1nþ1 is the
antiderivation operator, essentially the integration with
respect to the ðnþ 1Þst variable t. It can now be shown
that C is a contracting operator (with a suitable definition
of a contraction) and fixed-point theorems exist which
guarantee that repeated application of C on the initial
condition xð0Þ ¼ X 0 þ x0 will converge to the DA-vector
representation of the solution jðx0; tÞ of (2.1) in finitely
many steps.

2.2. Functional inversion using DA-arithmetic

Next we wish to review the actual functional inversion
which is employed to obtain the inverse M�1 of a function
M, or rather a DA-vector which stores the expansion
coefficients of M�1 up to the desired order. Assume we are
given a smooth map M : Rn�!Rn s.t. Mð0Þ ¼ 0 and its
linearization M is invertible at the origin. This assures the
existence of a smooth inverse M�1 in a neighborhood of
the origin. If we write M ¼M þN, where N is the
nonlinear part and insert this into the fundamental
condition M �M�1 ¼ I, we easily obtain the relation

M�1 ¼M�1 � ðI�N �M�1Þ

and see that the desired inverse M�1 is a fixed point of the
operator Cð:Þ:¼M�1 � ðI�N � :Þ, which proves to be a
contraction using a suitable definition of a contracting
operator in the DA-picture. Hence the existence of the
fixed point M�1 of C is verified and M�1 can be obtained
through repeated iteration of C, beginning with the identity
I. Also in this case the iteration converges to M�1 in
finitely many steps.

3. Description of the method

3.1. Preliminary remarks

We begin our discussion by the assumption that the
ODE under consideration exhibits a periodic or almost
periodic solution jðX 0; tÞ which starts on a suitable
Poincaré section and returns after a period T, which has
been determined approximately e.g. by a high-order
Runge–Kutta-integration. Once such a periodic orbit
jðX 0; tÞ has been identified, we proceed by performing
the DA-integration of Eq. (2.1) for one cycle as described
in the last section. The goal is to use the new found local
dependence on the relative initial conditions x0 to make
statements about the qualitative properties of the periodic
orbit.
As Poincaré sections, we want to be able to consider as

large a class of surfaces as possible. A suitable assumption
is that the Poincaré section S � Rn is given in terms of a
function s : Rn�!R as S:¼fx 2 Rn : sðxÞ ¼ 0g. Since the
function s also needs to be expressed in terms of
elementary functions available in the computer environ-
ment for DA arithmetic, it is necessarily smooth, and hence
also the surface S. This should contain most types of
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surfaces which might be of practical interest, in particular,
the most common case where S is just an affine plane of the
form S:¼fx 2 Rn : x1 ¼ cg for some c 2 R; here we would
have sðxÞ ¼ x1 � c.

Another condition which needs to be met by S is that the
flow is transversal to it for all possible initial conditions
x0 2 D. Without this assumption a Poincaré map cannot
be defined meaningfully, and we check this condition in the
following way: at any point s 2 S the gradient rsðsÞ is
perpendicular to S, and the direction of the flow is f ðsÞ. So
we need to ensure that the scalar product hrsðsÞ; f ðsÞi does
not change its sign 8 s 2 S \ jðD;TÞ. In fact, we will even
demand the more stringent condition that
0e½hrsðjðx0;TÞÞ; f ðjðx0;TÞÞi�x02D, where ½gðxÞ�x2D de-
notes a rigorous interval enclosure of a function g over D.

3.2. Outline of the method

The general goal of the method is to define a
Poincaré map which is acting on a suitably chosen section
S using only information already available from the DA
vector representation of the flow. For every possible initial
condition, we wish to derive an expression of the crossing
time tcðx0Þ at which the trajectory originating at the said
initial value traverses the section S, and then reinsert this
time tcðx0Þ back into the DA vector jðx0; tÞ describing the
flow. This yields a polynomial jðx0; tcðx0ÞÞ only depending
on the initial conditions x0 which projects these values
almost exactly onto the Poincaré section, up to accuracy
restrictions depending on the approximation order. The
information about this crossing time is contained in the
flow and the geometry of S in an implicit way, hence we
need to use suitable tools for functional inversion in the
DA context as has been described above. The function
jðx0; tÞ as such cannot be invertible, since the dimension-
ality of its domain and range do not even agree. Instead, we
will introduce an auxiliary function cðx; tÞ which is
substantially easier to handle and yields all relevant results.
For cðx; tÞ to be invertible in the first place we need c to
map into Rnþ1. This motivates the following:

Definition 1 (Auxiliary function for j). Let j be a
polynomial representation for the flow under considera-
tion, and let S be a Poincaré section as described above
which is traversed by the flow. We then define the auxiliary

function c : Rnþ1 � D� I�!Rnþ1 by

ckðx; tÞ:¼xk 8k 2 f1; . . . ; ng

cnþ1ðx; tÞ:¼sðjðx; tÞÞ

where I � R is open interval s.t. T 2 I and cnþ1 is well-
defined.

Essentially, c contains the crucial part of the flow and is
‘‘filled up’’ with trivial identities in order to achieve
invertibility. It can be shown that the map c is indeed
invertible at the points fðx;TÞ 2 Rnþ1 : x 2 Dg. We can now
employ DA inversion tools to manipulate c and obtain the

inverse c�1ðx; tÞ. Naturally, because of the identities in c,
also c�1 will preserve these identities and hence only the
component c�1nþ1ðx; tÞ is nontrivial. Once we have estab-
lished c�1ðx; tÞ we evaluate it at the point y:¼ðx0; 0Þ to solve
for the crossing time as a function of x0 and set

tcðx0Þ:¼c
�1
nþ1ðx0; 0Þ.

However, jðx0; tcðx0ÞÞ still depends on all components of
x0, since the crossing time can be specified for the whole
domain box D. But the Poincaré map P is supposed to be
defined on the surface S, a n� 1-dimensional smooth
submanifold of Rn, so one of the coordinates should be
redundant. We can perform this restriction of P to S in the
following way:
We assume that 8x 2 jðD;TÞ \ S the implicit condition

sðxÞ ¼ 0 can be stated explicitly as xj ¼ ~sðx1; . . . ;
xj�1;xjþ1;xnÞ for some j 2 f1; . . . ; ng. This can always be
done locally, but it is not a very strict requirement that this be
true globally in the set jðD;TÞ \ S. From now on, we will
assume wlog that j ¼ 1, i.e. x1 ¼ ~sðx2; . . . ; xnÞ. Then we
define the Poincaré map P by setting x0;1 ¼ ~sðx0;2; . . . ;x0;nÞ

and t ¼ tcðx0Þ in jðx0; tÞ:

Pðx0Þ:¼½jð ~sð:Þ; :; tcð ~sð:Þ; :ÞÞ�ðx0;2; . . . ;x0;nÞ.

As a special case again consider the common instance
S:¼fx 2 Rn : x1 ¼ cg for some c 2 R. Then we have sðxÞ ¼
x1 � c and thus ~sðx2; . . . ;xnÞ ¼ c and Pðx0Þ:¼jðc; x0;2; . . . ;
x0;n; tcðc; x0;2; . . . ;x0;nÞÞ.

3.3. Summary of the algorithm

We conclude the presentation of the method by
summarizing the algorithmic steps:

(1) Obtain a DA-vector representation of the solution
jðx0; tÞ for one cycle.

(2) Verify that 0e½hrsðjðx0;TÞÞ; f ðjðx0;TÞÞi�x02D.
(3) Set up and invert the auxiliary function c using DA

functional inversion to obtain a DA-vector representa-
tion of c�1.

(4) Evaluate tcðx0Þ:¼c
�1
ðx0; 0Þ.

(5) Evaluate Pðx0Þ:¼jðx0; tcðx0ÞÞ.
(6) Restrict Pðx0Þ to S by replacing x0;1 by ~sðx0;2; . . . ;x0;nÞ.

4. Example: A muon cooling ring

The method as described above has been implemented in
the COSY Infinity environment [13], which offers support
for the DA-vector data type and its operations. In fact,
COSY even supports the remainder-enhanced DA-vector
or Taylor Model data type, which offers rigorous error
estimates on the polynomial DA-representation, and we
hope to extend the method described above in such a way
that also validated error bounds for the Poincaré map can
be obtained.
The system we wish to analyze is a problem from

accelerator physics, a simple muon cooling ring based on
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continuous gas-based cooling and continuous re-accelera-
tion. Focusing is provided by a quadrupole-based FO-
DO system; for details refer to Refs. [7,8,14]. The ODEs
governing the motion are described as

_x1 ¼ x3

_x2 ¼ x4

_x3 ¼ x4 � ð1þ kqrxy þ khr2xyÞ � a �
x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

q þ a �
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

q

_x4 ¼ x3 � ð1þ kqrxy þ khr2xyÞ � a �
x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

q � a �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

q

where a describes the cooling and re-acceleration strength,
kq is the quadrupole focusing strength, and kh is the
sextupole strength. In the following simulations, we choose
the specific values a ¼ 0:1, a focusing scheme based on a
12-fold FODO structure described by kq ¼ 10 sinð12tÞ; and
a sextupole strength of kh ¼ 3.

We consider the initial values xð0Þ:¼X 0 þ x0 with
X 0:¼ð0; 1; 1; 0Þ

T and D:¼½�10�4; 10�4�4. The centerpoint
X 0 lies on a periodic orbit of the form jðX 0;tÞ ¼

ðcosðtÞ;� sinðtÞ;� sinðtÞ;� cosðtÞÞ and hence has a period
of T ¼ 2p. However, no other orbit originating in the box
X 0 þ ðDnf0gÞ is periodic, but instead is slowly pulled
towards the invariant solution jðX 0;tÞ with an asymptotic
phase, i.e. jðX 0 þ x0;tÞ !t!1 jðX 0;t� yðx0ÞÞ for some
phase yðx0Þ.

For this example, we compute the Poincaré map for two
planes S1 and S2 before and after one of the 12 FODO
cells, so that they form an angle of 2p=12. This map is
suitable to be iterated by the COSY beam tracking routines
to produce graphics output.

First, we show the results for the crossing time tc and the
components of P after an 14th order computation with a
choice of a ¼ 0:1, kh ¼ 3 and kq ¼ 10. The polynomial
coefficients are scaled to the phase-space coordinate widths
of 10�4; as a result, each coefficient directly shows the
maximum contribution that the corresponding term can
make, which helps readability. For the crossing time tc we
obtain

I Coefficient Order Exponents

1 �0.2107121099493938E�01 1 1 0 0 0 0
2 0.9347612653241022E�02 1 0 1 0 0 0
3 �0.1201628825073957E�01 1 0 0 1 0 0
4 0.2946295382772426E�02 1 0 0 0 1 0
5 �0.1066867771975123E�06 2 2 0 0 0 0
6 0.6346330104788356E�07 2 1 1 0 0 0
7 0.5162610528656688E�06 2 0 2 0 0 0
8 0.2072768191336032E�05 2 1 0 1 0 0
9 �0.1221608485172613E�05 2 0 1 1 0 0
10 0.1203023359953680E�05 2 0 0 2 0 0
11 0.9954413063005544E�08 2 1 0 0 1 0
12 �0.1069046574180368E�05 2 0 1 0 1 0
13 �0.2865490547207094E�06 2 0 0 1 1 0

14 �0.1679258946667011E�07 2 0 0 0 2 0

..

.

95 0.1412525551591218E�16 5 1 0 2 2 0
96 �0.8773781577679656E�17 5 0 1 2 2 0
97 �0.8503558663031080E�17 5 2 0 0 3 0
98 0.7544699027997683E�17 5 1 1 0 3 0
99 �0.9698655865255742E�17 5 1 0 1 3 0

Inserting this into the flow jðx0; tÞ and restricting
jðx0; tÞ to S yields that P1ðx0Þ is given by

I Coefficient Order Exponents

1 0.5551115123125783E�16 0 0 0 0 0 0
2 �0.2475735600348810E�19 4 0 0 0 4 0
3 �0.3388692518831476E�19 5 0 3 2 0 0
4 0.3333120608373854E�19 5 0 2 3 0 0
5 �0.3552515768008433E�19 5 0 2 2 1 0
6 0.3530916534253391E�19 5 0 1 3 1 0

which is indeed zero up to roundoff error, as expected. For
the component P2ðx0Þ we get

I Coefficient Order Exponents

1 1.000000000000000 0 0 0 0 0 0
2 0.4057920121836106E�04 1 0 1 0 0 0
3 0.1403405185907984E�04 1 0 0 1 0 0
4 0.4821854587969232E�04 1 0 0 0 1 0
5 �0.6880188908023518E�08 2 0 2 0 0 0
6 0.2218250197573597E�09 2 0 1 1 0 0
7 0.1569939973211117E�08 2 0 0 2 0 0
8 0.3959964998800090E�08 2 0 1 0 1 0
9 �0.5900424606672487E�08 2 0 0 1 1 0
10 0.1484090992045488E�08 2 0 0 0 2 0

..

.

36 0.2905642684509707E�19 5 0 4 1 0 0
37 0.3555459693963146E�19 5 0 3 1 1 0
38 �0.9121533983931736E�19 5 0 2 2 1 0
39 0.8209709912306776E�19 5 0 1 3 1 0
40 �0.2773032070261215E�19 5 0 0 4 1 0

for P3ðx0Þ:

I Coefficient Order Exponents

1 1.000000000000000 0 0 0 0 0 0
2 0.3916009498009659E�14 1 0 1 0 0 0
3 0.9999999999976929E�04 1 0 0 1 0 0
4 �0.6735131658115734E�15 1 0 0 0 1 0
5 �0.5073800545630164E�08 2 0 2 0 0 0
6 0.5939776450415390E�08 2 0 1 1 0 0
7 �0.1806310552295999E�08 2 0 0 2 0 0
8 0.1202564475352457E�07 2 0 1 0 1 0
9 �0.7241099329147064E�08 2 0 0 1 1 0
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10 �0.2320522246878191E�08 2 0 0 0 2 0

..

.

47 0.4870521605534692E�18 5 0 1 2 2 0
48 �0.1330388468272154E�18 5 0 0 3 2 0
49 �0.8160539983180998E�19 5 0 2 0 3 0
50 0.9361435018707453E�19 5 0 0 2 3 0
51 �0.3132073512809148E�19 5 0 1 0 4 0

and for P4ðx0Þ:

I Coefficient Order Exponents

1 �0.5551115123125783E�16 0 0 0 0 0 0
2 �0.9657136347505140E�04 1 0 1 0 0 0
3 0.5966243086151465E�04 1 0 0 1 0 0
4 0.1191088537008158E�03 1 0 0 0 1 0
5 �0.1332746698395360E�07 2 0 2 0 0 0
6 �0.1368532466582279E�07 2 0 1 1 0 0
7 0.2399464571937943E�08 2 0 0 2 0 0
8 �0.2076327780857213E�09 2 0 1 0 1 0
9 0.3328742850177919E�08 2 0 0 1 1 0
10 �0.1163278287959000E�08 2 0 0 0 2 0

..

.

48 0.7596735610932742E�18 5 0 1 2 2 0
49 �0.7681001402837021E�19 5 0 0 3 2 0
50 0.9040407096077550E�19 5 0 2 0 3 0
51 �0.2515146267314533E�18 5 0 1 1 3 0
52 0.5404827028051936E�19 5 0 0 2 3 0

In the following we utilize the Poincaré maps just
obtained to perform a tracking analysis of the system.
Specifically, we use the rescaled maps P2ðx0Þ and P3ðx0Þ

and perform beam tracking using the COSY Infinity TR-
routine. A total of n ¼ 6 particles are launched on the x-
axis at the positions n � 4 cm. Figs. (1–3) show the evolution
of the motion over 10 turns, 20 turns, and 50 turns,
respectively. The cooling action of the system is clearly
visible, resulting in the apparent collapse towards the
origin. Fig. 4 shows the dynamics displayed in normal form

coordinates [2,15], which decouples horizontal and vertical
motion and, in the case of the damping, leads to a motion
that follows a perfect logarithmic spiral.
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Abstract

Self-consistent distributions for beams in longitudinal magnetic and electric fields are considered. The magnetic and electric fields are

assumed to be uniform in the beam cross-section, but can slowly vary along the beam axis. As a consequence, the beam cross-section

radius and the longitudinal velocities of particles can also vary in the longitudinal direction. New classes of self-consistent distributions

are found as analytical solutions of the Vlasov equation. Some known distributions are particular cases of these distributions. The

analytically described distributions were also numerically simulated.

r 2005 Elsevier B.V. All rights reserved.

PACS: 41.75.�i; 52.27.Jt; 52.65.Ff

Keywords: Charged particle beam; Vlasov equation; Self-consistent distributions; Phase density

1. Introduction

Consider an axially symmetric beam propagating
through longitudinal magnetic and electric fields. Assume
that all particles of any beam cross-section have the same
longitudinal velocity, which can vary along the beam axis.
It is usually assumed that the distribution density function
in the four-dimensional phase space of transverse motion
satisfies the non-linear Vlasov equation.

For longitudinally uniform beams, some stationary
solutions of the Vlasov equation have been found. The
most well-known distribution is the Kapchinsky–Vladi-
mirsky (KV) distribution [1], where the particles have the
same energy for transverse motion. The dimension of the
support of the distribution density function in four-
dimensional phase space for transverse motion is equal to
3. The simplest and best-known case is Brillouin flow [2], in
which all particles rotate around the beam axis with the

same angular velocity. In this case, the dimension of the
support of the distribution density function is equal to 2.
Another distribution known is the water bag distribution
[1,3,4]. Its phase density is constant in that region of the
phase space for transverse motion where the energy of the
transverse motion of a particle is less than some given
value. A wide class of distributions can be obtained using
the density inversion theorem [5]. Distributions were also
found [4,6] for which the phase density depends on a linear
combination of the energy of the transverse motion and the
angular momentum of a particle. Wide classes of self-
consistent distributions have also been reported in the
literature [7,8].
For longitudinally non-uniform beam, distributions have

been investigated for the case of a periodic focusing
magnetic field and new distributions that are similar to the
KV distribution and rigid rotor distributions have been
found [4,9–12].
This paper offers new stationary self-consistent distribu-

tions for an axially symmetric beam propagating through a
longitudinal magnetic and electric field. Our approach is
based on analysis of the distribution density in the space of
integrals of motion. These distributions were found
analytically and were also simulated numerically.
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2. Integrals of motion

Assume that longitudinal components of the external
electric field Ez and of the external magnetic field Bz do not
depend on r and j (where r;j; z are cylindrical coordi-
nates). Then Er ¼ �ðr=2Þ qEz=qz, and the four-dimensional
vector potential of the external magnetic field can be taken
in the form A0 ¼ Ar ¼ Az ¼ 0, Aj ¼ BzðzÞr

2=2.
Consider the case when longitudinal motion of the

particles is relativistic, and the transverse motion is non-
relativistic. Then the equation for particle dynamics, which
is also the equation for the characteristic lines of the Vlasov
equation, is

dp

ds
¼

qL

qx
; L ¼ �mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gikuiuk

q
þ eAiu

i (1)

where p is the particle canonical momentum, s is proper
time, L is the Lagrangian of the particle, u ¼ dx=ds is the
four-dimensional velocity of the particle, and gik are
components of the metric tensor in Minkowski space.

The equation for the azimuthal motion is p0j ¼ 0 (where
the stroke denotes differentiation on s). Introducing
M ¼ pj=mc, the first integral of this equation is of the form

M ¼ r2ðj0 þ o0Þ (2)

where o0 ¼ eBz=2m.
Transforming Eq. (1) for longitudinal components

taking into account u0 ¼ g, uj ¼ j0, qA0=qz ¼ Ez=c,
qAj=qz ¼ ðr2=2ÞqBz=qz, and neglecting the terms arising
from the longitudinal components of the self-field, we
have

b0 ¼
2w

g2
þ

r2j0

g3
do0

dz
(3)

where b; g are the reduced longitudinal velocity and
reduced energy, w ¼ eEz=2mc2. Assume that the magnetic
field varies sufficiently slowly and that the second term in
Eq. (3) can also be neglected. This means that the
longitudinal motion does not depend on the transverse
motion. Then the above assumption that all particles of
any beam cross-section have the same longitudinal velocity
holds, if all particles have the same energy in the initial
cross-section. In this case, the four-dimensional vector
potential of the self-field of the beam is Aself ¼

ð�Uðr; zÞ=c; 0; 0; bUðr; zÞ=cÞ. For distributions which are
considered later it can be shown that the condition of slow
variation of the magnetic field takes the form
do0=dz5o0=R, where R ¼ RðzÞ is the radius of a beam
cross-section.

The equation for radial motion can be reduced to the
form

r00 ¼ �o2
0rþ

M2

r3
�

e

mgc2
qU

qr
� gr

qw

qz
. (4)

We search for distributions in which the particle density in
the configuration space rðr; zÞ is a step-function of the

radial coordinate r

rðr; zÞ ¼
r0ðzÞ; rpRðzÞ

0; r4RðzÞ

(
(5)

where r0ðzÞ ¼ J=ðpRðzÞ2ebcÞ ¼ l=R2 and l ¼ J=ðpebcÞ, J is
the beam current.
Assume that the radius of the beam cross-section R

significantly varies only at distances that are much greater
than R. Then the Poisson equation and the boundary
conditions for the potential of the self-electric field of the
beam Uðr; zÞ can be written as

1

r

q
qr

r
qU

qr
¼

er0ðzÞ
e0

roRðzÞ; UðaÞ ¼ 0; dU=drjr¼0 ¼ 0 ð6Þ

where a is the channel aperture.
Substituting the solution to the problem (Eq. (6) into Eq.

(4)) we obtain an equation for the radial motion of
particles in the form

r00 ¼ �o2rþM2=r3 (7)

where o2 ¼ o2
0 � l=RðzÞ2 þ gdw=dz; l ¼ J=J0bg; J0 ¼

2pe0mc3=e.
For a longitudinally uniform beam, the variable H given

by the expression H ¼ r02 þ o2r2 þM2=r2 is the integral of
motion. However, in our case H is not an integral. Let us
formulate the conditions under which another integral of
Eq. (7) exists. Assume that the beam envelope RðzÞ can be
defined as an envelope only for particles with M ¼ 0. For
such particles the equation for radial motion is linear

X 0 ¼ AX ; X ¼
r

r0

� �
; A ¼

0 1

�o2 0

� �
. (8)

If in the initial cross-section at s ¼ s0 the particles fill the
ellipse

X �0B0X 0p1; B0 ¼
a�20 0

0 c�20

 !

then at sXs0 they will fill the ellipses

X �BXp1

where B ¼ F��1B0F
�1, and F is the matrizant of the system

(Eq. (8)). It can be readily shown that R2 is the first
diagonal element of the matrix B�1, and R satisfies the
equation

R00 ¼ �o2Rþ
a2
0c

2
0

R3
. (9)

The system of Eqs. (7) and (9) can be reduced to the known
Ermakov system [13,14] if the variable o, which depends
on s and R, is regarded as a function of s.
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Using the known expression for the integral of the
Ermakov system [14], we obtain the value

I ¼ ðRr0 � rR0Þ2 þ
M2R2

r2
þ

a2
0c20r

2

R2

¼
dq

dt

� �2

þ
M2

q2
þ a2

0c
2
0q

2 ð10Þ

which is the integral of motion, where q ¼ r=R,
dt ¼ ds=R2. Another integral of motion M can be written
as

M ¼ q2 dj
dt
þ R2o0

� �
. (11)

Note that when M ¼ 0;o ¼ oðsÞ, the integral (Eq. (10)) is
identical to the well-known Courant–Snyder invariant [15].

Let us find a set ~O1 in the space of variables M; I such
that the condition qp1;8sXs0 holds for all particles. It
follows from Eq. (10) that

IpM2 þ a2
0c20. (12)

Furthermore, IXminqððM
2=q2Þ þ a2

0c20q
2Þ ¼ 2a0c0jMj: Ex-

cluding particles corresponding to the lower boundary of
the set ~O1, we obtain

I42jMja0c0. (13)

The set ~O1 defined by the conditions (Eqs. (12) and (13)) is
shown in Fig. 1.

We also consider a set ~OðqÞ of M and I such that the
particles possessing these M and I pass through a point
corresponding to the given q. It follows from the equality
(Eq. (10)) that if the inequality

IX
M2

q2
þ a2

0c
2
0q

2 (14)

is satisfied, then the particle can move at a point
corresponding to this q. Furthermore, the value of the

integral I is bound by the inequality (Eq. (12)). Therefore,
the set ~OðqÞ is defined by Eqs. (12) and (14).

3. Particle distributions in the space of integrals of motion

Consider the phase distribution of the particles of some
infinitely thin layer bounded by two parallel planes moving
along the z-axis with velocity bðzÞc. The stationarity of the
distribution can be ensured by the independence of the time
of the distribution in the initial cross-section (z ¼ z0). Since
the velocity bc can vary along the beam axis, the thickness
of the layer can vary correspondingly. Therefore, we
normalize all densities by dividing them by the thickness
of the layer dz=bc.
Assume that the particles are uniformly distributed on

the angles j and on the phases of their trajectories. The
first assumption implies that the beam has axial symmetry.
Then the phase density in four-dimensional phase space of
the transverse motion n depends only on two phase
variables. The integrals of motion M, I can be taken as
these two phase variables. Thus, let n ¼ nðMðr;j0Þ;
Iðr; r0;j0ÞÞ where nðM; IÞ denotes some function of M and I.
Let us introduce the density distribution function in the

space of integrals M ; I : f ðM ; IÞ. The domain of this
function is the set ~O1.
The simplest distribution is given by f ðM; IÞ ¼

f BdðM ; IÞ. For this distribution, all particles have the
same values of M; I : M ¼ 0, I ¼ 0. It follows from
Eq. (10) that q0 ¼ 0, c0 ¼ 0, and the envelope equation
can be written as

R00 ¼ �o2
0Rþ

l
R
� g

dw

dz
R. (15)

The density in configuration space is R0ðzÞ ¼ J=pRðzÞ2

ebðzÞc. Normalizing as described above, we obtain
f B ¼ J=ebðz0Þc. If o0 ¼ const, w ¼ 0, and R ¼ const, then
R2 ¼ 2mJ=pe0eB2

zbgc, and the density of such a distribu-
tion in configuration space is equal to the density of the
Brillouin flow. Thus, the Brillouin flow is a particular case
of such a distribution. Therefore, it can be called the
generalized Brillouin flow. As distinct from the Brillouin
flow, all particles can move in the radial direction, with
their normalized radial coordinate q constant for each
particle.
It is easy to show for a uniform beam cross-section

distribution (Eq. (5)) that

f ðM ; IÞ ¼

Z qmaxðM ;IÞ

qminðM;IÞ

2p
jq0j

nðM ; IÞdq ¼ p2nðM; IÞ=a0c0. (16)

Expressing the particle density in the configuration space
rðrÞ in terms of f ðM; IÞ, we obtain

rðrÞ ¼
1

rR

Z
~OðqÞ

nðM; IÞdM dI

jq0j

¼
a0c0

p2rR

Z
~OðqÞ

f ðM; IÞdM dI

ðI �M2=q2 � a2
0c20q

2Þ
1=2

. ð17Þ
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In the expression (Eq. (17)) we exclude the particles for
which q0 � 0 in accordance with (Eq. (13)). To allow for
these particles requires an additional term in expression (17).

Let us take f ðM; IÞ as a simple layer with density f 0 with
respect to the variable I on the segment belonging to the set
~O1 and the tangent to the upper bound of this set

f ðM; IÞ ¼ f 0dI¼I0ðkÞþkM ; f 040,

I0ðkÞ ¼ a2
0c20 � k2=4; ðM; IÞ 2 ~O1. ð18Þ

Substituting Eq. (18) into Eq. (17) we have

rðrÞ ¼
a0c0f 0

p2rR

Z
~OðqÞ

dI¼I0ðkÞþkM dM dI

ðI �M2=q2 � a2
0c20q

2Þ
1=2
¼

a0c0f 0

p
.

Hence, the density of the distribution (Eq. (18)) in the
configuration space is constant throughout the beam cross-
section, and therefore it is the solution to the problem.
Normalizing as described above, we have r0 ¼ J=pR2, so
that f 0 ¼ J=a0c0.

It can easily be shown that the support of the
distribution density function (Eq. (18)) is a segment of
the straight line that is tangential to the upper boundary of
the set ~O1. The segment is bounded by the lines I ¼

�2a0c0M (segment A0B0 in Fig. 1). When k ¼ 0, this
segment is parallel to the axis M (segment AB in Fig. 1). If
R; l;o0 are constant, the distribution (Eq. (18)) at k ¼ 0 is
identical to the KV distribution, and the distributions at
ka0 are identical to the rigid rotor distributions described
in Ref. [6]. Therefore, the distribution (Eq. (18)) at k ¼ 0
can be called the generalized KV distribution.

Furthermore, each linear combination of the distribu-
tions (Eq. (18)) will also be uniform in the beam cross-
section

f ðM; IÞ ¼
X
k2K

akdI¼I0ðkÞþkM ; r ¼
a0c0

pR2

X
k2K

ak

where K is a finite set of real numbers, K � ð�2a0c0; 2a0c0Þ,
or

f ðM; IÞ ¼

Z 2a0c0

�2a0c0

aðkÞdI¼I0ðkÞþkM dk

r ¼
a0c0

pR2

Z 2a0c0

�2a0c0

aðkÞdk.

Here, ak in the first case and aðkÞ in the second case are
functions defined on the discrete set K or on the interval
ð�2a0c0; 2a0c0Þ such that there are, respectively,

X
k2K

ak or

Z 2a0c0

�2a0c0

aðkÞdk.

4. Integral equation for uniform distributions in the beam

cross-section

Another way to search for uniform self-consistent
distributions is to consider the equality Eq. (17) as an

integral equation for the density of the distribution.
Introducing new integration variables, we obtain the
integral equation

a2
0c

2
0

2p

Z 2p

0

Z 1

0

F ðy cosða� yÞ; y cosðaþ yÞÞ

ð1� y2Þ1=2
ydyda ¼ J (19)

where

F ðk1; k2Þ ¼
f ðM; IÞðM2 � I þ a2

0c
2
0Þ

1=2; k1Xk2

F ðk2; k1Þ; k1ok2

(
(20)

k1;2 ¼ 2ðM � ðM2 � I þ a2
0c

2
0Þ

1=2
Þ and y ¼ arccos q. This is

exactly the integral equation for the function of two
arguments F ðk1; k2Þ. Both arguments depend on q. The
problem is to find a function F ðk1; k2Þ such that the result
of the integration does not depend on q.
Any non-negative solution of Eq. (19) satisfying the

condition F ðk1; k2Þ ¼ F ðk2; k1Þ corresponds to some self-
consistent particle distribution.
The simplest case is F ðk1; k2Þ ¼ g040, where g0 is

constant. In this case, the density of the distribution in
the space of the integrals of motion is

f ðI ;MÞ ¼ g0ðM
2 � I þ a2

0c
2
0Þ
�1=2. (21)

This distribution does not reduce to any distribution
obtained before.
Another simple case is F ðk1; k2Þ ¼ g1ðk1Þ þ g2ðk2Þ. Sub-

stituting this expression into Eq. (19), it is apparent that
this is exactly the solution. In view of the condition (Eq.
(20)), we have g1ðkÞ ¼ g2ðkÞ þ g0. The term with g0

corresponds to the previous case (Eq. (21)). Omitting this,
we obtain

f ðM ; IÞ ¼
gðk1Þ þ gðk2Þ

ðM2 � I þ a20c20Þ
1=2
; gðkÞX0.

Other solutions can be sought in the form of a series

F ðx; zÞ ¼
X1
m¼0

X1
n¼0

cmnxmzn (22)

or a polynomial. For example, searching for the solution to
Eq. (19) as a third-degree polynomial, we obtain

f ðM ; IÞ ¼
�c ðI � a2

0c20Þð10M2 � 5I þ 2a20c20Þ þ g0

ðM2 � I þ a2
0c

2
0Þ

1=2
. (23)

The constant values c and g0 are such that f ðM; IÞX0 for
all ðM; IÞ 2 ~O1. The values of F ðk1; k2Þ, J, and l can be
arbitrarily great. In this case, the radius of the beam cross-
section RðzÞ behaves according to the envelope equation
(15) with large values of l.

5. Results of the computer simulation

The distributions described in this paper were numeri-
cally simulated using the macroparticle method. Only the
radial motion of particles was investigated. Accordingly,
each macroparticle represents an infinitely thin ring with
the varying radius r centered on the beam axis and lying in
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the plane orthogonal to the beam axis. The dynamics of
this ring is described by the equation

r00 ¼ �o2
0rþ

M2

r3
þ

lNr

rN

where Nr is the number of macroparticles (rings) with a
radius less than the radius of the macroparticle under
consideration, and N is the total number of macroparticles.
The dependence of Bz and R on z is presented in Fig. 2. The
values of Bz are given in tesla, z in centimeters, and R is
divided by a0, which in this case is equal to 2 cm (the initial
radius of the beam cross-section). It is assumed that in the
initial cross-section R0 ¼ 0. The magnetic field linearly
increases from 0.3 T at z ¼ 0 to 1.5 T at z ¼ 20 cm and
remains constant at greater values of z; Ez ¼ 0. The
particle energy is W ¼ 60 kEv and remains constant along
the beam. The beam current is J ¼ 82mA. The initial
divergence is 60mrad, which corresponds to c0 ¼ 2:0� 105.

The results of the simulation of the distribution (Eq.
(21)) are presented in Figs. 3–6 for approximately 32,000
macroparticles. The left-hand side of the figures shows the
distribution of macroparticles in the phase space of the
radial motion (in reduced units r=a0 and v=c0). The

dependence of the index of uniformity of the distribution,
k ¼ Nr=N=ðr2=a2

0Þ, on r is shown in the middle. This index
should be constant for an ideal uniform distribution.
Variations of k when r increases are explained by the
discretization. The right-hand side of the figures shows the
distribution of macroparticles in the space of the integrals
of motion M and I (in reduced units I0 ¼ a2

0c20, M0 ¼ a0c0).
The particles fill a curvilinear triangle defined by the
conditions (Eqs. (12) and (13)) in the space of the integrals
M and I, which remains unchanged.

6. Conclusion

The use of the integrals of motion to analyze charged
particle dynamics is widely known. In this case, the phase
density of a self-consistent distribution is specified as a
function of the integrals of motion. Within the framework
of the approach presented in this paper (see also Refs.
[16,17]), the particle density in the space of the integrals of
motion M and I is introduced. This approach allows the
specification of naturally various self-consistent distribu-
tions, both those known before and new ones.
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Fig. 2. The beam envelope RðzÞ and the longitudinal component of the magnetic flux density BzðzÞ (T) versus the longitudinal coordinate z (cm).

Fig. 3. The distribution of macroparticles in the phase space, the index of uniformity, and the distribution of macroparticles in the space of the integrals of

motion M and I for the density function (20) at z ¼ 0.
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The proposed approach was applied to a beam non-
uniform along its axis, for which wide classes of self-
consistent distributions were found. In the particular
instance of longitudinal uniformity, these are identical to
the distributions for a uniform beam. Therefore, some
of them can be regarded as generalizations of distri-
butions, such as Brillouin flow and KV distribution. The
important feature of these distributions is that the

beam radius, the magnetic field, and the particle long-
itudinal velocity can vary along the beam axis, although
this variation should be sufficiently slow. This means that
they are more realistic than many of the previously
considered distributions, and can be used for the solution
of various problems of modeling and optimization of
accelerating and focusing structures with high-density
beams.
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Fig. 5. The distribution of macroparticles in the phase space, the index of uniformity, and the distribution of macroparticles in the space of the integrals of

motion M and I for the density function (20) at z ¼ 20 cm.

Fig. 6. The distribution of macroparticles in the phase space, the index of uniformity, and the distribution of macroparticles in the space of the integrals of

motion M and I for the density function (20) at z ¼ 30 cm.

Fig. 4. The distribution of macroparticles in the phase space, the index of uniformity, and the distribution of macroparticles in the space of the integrals of

motion M and I for the density function (20) at z ¼ 10 cm.
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Abstract

We analyzed localized vortices in non-neutral electron beams with inhomogeneous density and velocity propagating in vacuum along

an inhomogeneous external magnetic field. These vortices are different to vortices in earlier work because of the inhomogeneous external

magnetic field. New types of vortices were also obtained using a new solution for non-linear equations, different to the standard

Larichev–Reznik or Reznik method. A new axisymmetric expression was found for the electric field potential of a vortex in a wave frame.

The new vortices represent new solitons in an inhomogeneous external magnetic field.

r 2005 Elsevier B.V. All rights reserved.
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1. Basic equations

We analyzed localized vortices in non-neutral electron
beams with inhomogeneous density and velocity propagat-
ing in vacuum along an inhomogeneous external magnetic
field. These vortices are different to those used previously
[1–3] because of the inhomogeneous external magnetic
field.

We investigated a non-relativistic electron beam propa-
gating in vacuum along an external inhomogeneous
magnetic field B in the z-direction of a cylindrical
coordinate system (r; y; z):

~B ¼ ðB0 þ BzðxÞÞn~ez þ BxðzÞn~ex

where B satisfies the Maxwell equation:

qBzðxÞ

qx
¼

qBxðzÞ

qz
.

When the system is in equilibrium and homogeneous in y
and z, it is characterized by radial distributions of the

electron density n0ðrÞ, velocity v0[0,v0y(r),v0z(r)] and elec-
tron field potential j0(r). We assume o2

cbo2
p, where op is

the plasma electron frequency and oc is the electron
cyclotron frequency.
We investigated the non-steady state of the system

characterized by the deviation of n, v and j from
equilibrium values of n0, v0 and j0. For a solution of the
motion and continuity equations for the particles and the
Poisson equation for the electric field potential, we chose a
travelling wave for which all the parameters are functions
of the variables r and Z ¼ yþ kzz2ot, with constant wave
number kz and frequency o. If we neglect the inertial drift
of electrons due to a large value of oc, we obtain the
following equation [4]:

D?j� Ljþ Sj2;j�
odB0

2c
r2

� �
r;Z
¼ 0 (1)

where

f ; g
� �

r;Z ¼
1

r

qf

qr

qg

qZ
�

qf

qZ
qg

qr

� �
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L ¼ �
kzðkz þ kvÞo2

p

o2
d

�
ðkn þ kbÞo2

p

v0od

S ¼
kz

2

ðkz þ kvÞe

mo2
d

� �2

kv ¼
1

ocr

dv0z

dr
; kb ¼

qBz

qx
�

v0

B0ocn0

kn ¼
v0

ocr

dn0

dr
; v0 ¼ v0zð0Þ

od ¼ o� kzv0z �
v0y

r

m and e are the electron mass and charge, c is the speed
of light, and D? is the transverse part of the Laplace
operator.

The new term in L is kb. The influence of the magnetic
field inhomogeneity on the vortex is similar to the electron
density inhomogeneity.

2. Localized vortices

Larichev and Reznik [5,6] solved Eq. (1) only when they
neglected the term Sj2, leading to the so-called Larichev–-
Reznik solution. However, we did not neglect this non-
linear term, but obtained a non-linear equation:

q2j
qr2
þ

1

r

qj
qr
� Ljþ Sj2 ¼ 0. (2)

The non-linear Eq. (2) is distinguished from the Korte-
weg–de Vries (KdV) and Bessel equations. We obtain the
approximate solution to Eq. (2) using an original method
involving functional iteration. The next (n+1)th iteration
is obtained from the equation:

jðnþ1Þ ¼ jðnÞ þ sinðtðnÞð0ÞÞn
1

L
ðtðmÞðrÞÞ (3)

where t(n) is the residual of j(n) in Eq. (2):

tðnÞ ¼
q2j nð Þ

qr2
� LjðnÞ þ

1

r

qjðnÞ

qr
þ SðjðnÞÞ2

� �

and j(0) is the solution for the KdV equation:

jð0Þ ¼
3

2

L
S

1

ch
ffiffiffi
L
p

2
r

� 	� 	2 .

The equation for the first iteration is

jð1Þ ¼ jð0Þ �
1

L
q2jð0Þ

qr2
� Ljð0Þ þ

1

r

qjð0Þ

qr
þ Sðjð0ÞÞ2

� �

with

jð1Þ ¼
3
ffiffiffiffi
L
p

sech
ffiffiffi
L
p

r
2

� 	� 	2 ffiffiffiffi
L
p

rþ tanh
ffiffiffi
L
p

r
2

� 	� 	
2Sr

This iteration jð1Þ is the approximate solution to Eq. (2).
We can obtain jð2Þ, then jð3Þ, and so on. The iterations jð2Þ

and jð3Þ are also approximate solutions to Eq. (2).
The equation for the second iteration j(2) is

jð2Þ ¼
1

L
q2jð1Þ

qr2
þ

1

r

qjð1Þ

qr
þ Sðjð1ÞÞ2

� �
.

The dependence of jð0Þ, jð1Þ, jð2Þ and jð3Þ on the radius r

is shown in Fig. 1 for L ¼ 1 cm22 and S ¼ 1 cm5/2 g–1/2 s.
We see that the maximum amplitude jðnÞ approaches a
constant value with increasing n.
We see that jð1Þ and jð2Þ are close to j(3). Thus, the

functional iteration method for the approximate solution
shows convergence.
Thus, we obtain an approximate solution that exponen-

tially decreases with radius r. This approximate solution
is a continuous function in the first differential, in contrast to
the Larichev–Reznik solution. That approximate solution is
near the KdV solution at large r. A new expression has been
found for the electric field potential of a vortex in a wave
frame. The expression is axisymmetric in the wave frame.
New vortices are the result of external disturbances or the
appearance and development of instabilities, such as a
diocotron instability in a hollow beam or a slipping instability
in a solid beam. The influence of the magnetic field
inhomogeneity on the vortex is similar to the electron density
inhomogeneity.
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Abstract

In a particle accelerator system for heavy ion inertial fusion, space-charge-dominated beam dynamics is investigated during a final

beam bunching. While the space charge effect undertakes an important role for the beam dynamics in the regime, the beam instability

induced by space charge oscillation may occur, depending on the particle distribution of the beam. Particle simulations present that the

instability due to the strong space charge effect may not be serious for realistic particle distributions during the final beam bunching.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In a heavy ion inertial fusion (HIF), research key issues
include a development of high flux ion source, an
accelerator design, final focusing to a target, implosion
dynamics of the fuel pellet, a reactor system design, an
energy conversion system, and so on. Especially, the
generation and transport of intense heavy-ion beam
(HIB) are important in the HIF study. The required beam
parameter values are �GeV particle energy, �100 kA total
current and �10 ns short pulse for an effective pellet
implosion [1,2]. A particle accelerator can produce the
intense HIBs, but these parameters and accelerator system
have not been yet determined. Because the intense-heavy-
ion-beam parameters are far from those of conventional
particle accelerators, and there are no sufficient data for a
system design. For this reason, the study of space-charge-
dominated beam in the HIF accelerator system is
performed in this paper.

In space-charge-dominated beams, theoretical analyses
and numerical simulations have been performed to
investigate the stability of the beam transport [3–5].
Although for the distribution of d function in the four-
dimensional phase space the Kapchinskij–Vladimirskij
(KV) distributed beam [6] is useful for the analytical
treatment, the analysis tends to overestimate the instability
effect in the comparison with more realistic beams. For this
reason, particle simulations with various distributions are
also important for the stability evaluation.
In the final stage of HIF driver, the beam pulse must be

longitudinally compressed from �100 to �10 ns. Induction
voltage modulators, which have a precise waveform
controllability and repetition capability, are proposed for
this purpose [7]. A beam buncher by the induction
modulator applies a bunching voltage so as to make a
considerable velocity tilt between the head and the tail of
the beam bunch. A final focus and beam illumination are
crucial, and a large emittance interferes the focusing to the
small fuel pellet [8]. The final beam bunching is an
important technology in the heavy ion driver system. For
the effective pellet implosion, we should transport and
compress the bunch of HIB with a low emittance growth.
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We investigate the beam dynamics under a strong space
charge effect during the longitudinal bunch compression in
the final beam bunching. The growth of the beam
instability depends on the initial particle distributions. It
is summarized that the beam instability induced by the
space charge effect may not contribute to the emittance
growth for the beam transport with the realistic particle
distributions.

2. Simulation model and beam parameters

The high-energy particle beam is transported by using a
magnetic quadrupole focusing channel as a unit of focus-
drift–defocus-drift (FODO) lattice [9]. Generally, the beam
transport by the FODO lattice causes a non-axisymmetric
behavior in the beam cross-section. We are interested in
such beam dynamics with longitudinal bunch compression.
For the above reasons, the fully three-dimensional
numerical scheme is essentially required by the beam
dynamics simulation. From the viewpoint of the computa-
tional cost, the full calculations are difficult. While the
longitudinal bunch length is of the order of meter, the scale
of the transverse cross-section is only a few centimeter in
the stage of final beam bunching. Consequently, the small-
scale phenomena by the space charge structure will be
dominated by the transverse beam dynamics. We deal with
the particle dynamics in the transverse cross-section of the
beam by multi-particle simulations, and the effect of
longitudinal compression is introduced as the beam
current increases. The current lump-up history is not linear
during the beam transport, and the schedule model can
affect the transverse beam dynamics [10]. The linear
current increase model causes the most serious influence
in the particle dilution in the phase space. From the
viewpoint of the beam physics study, the history of linear
current increase is assumed as model of the longitudinal
bunch compression.

We use the particle-in-cell (PIC) method for descriptions
of the transverse behavior with the longitudinal compres-
sion, the effect of which was evaluated by assuming linear
increase in the beam current. The charge and mass of the
super particles are re-weighted with the beam transport
[11]. The quadrupole occupancy is fixed at 0.5, and the one
lattice period is 3m. The beam parameters are assumed as
Table 1 [2]. The initial generalized perveance is assumed to
3:58� 10�6. The initial undepressed and depressed phase
advances are s0 ¼ 72� and s ¼ 65:2�. The transverse
calculation region is fixed at the square of 10 cm� 10 cm,
and the outer boundary condition is given as a conductor
wall. The initially rms matched KV, waterbag (WB),
Gaussian (GA), Parabolic (PA) [12], and semi-Gaussian
(SG) [11] beams are chosen as the initial particle (non-
stationary) distribution.

The ratio D=lD of the grid zone length D to the Debye
length lD is evaluated by rms emittance �f after the final
beam bunching. The unnormalized rms emittance �i at
initial condition is assumed as 10mmmrad. The beam is a

space-charge-dominated one, and the behavior likes a
quasi-neutral plasma, because of the Debye shielding is
important issue in this region. The grid size of 0:23lD is
used to reproduce the Debye shielding effect and the
calculation cost [13]. For the validation of the numerical
convergence, we also tried to check the calculation results
using the different numbers of grids and super particles.
The mesh number is varied from 64� 64 to 1024� 1024,
and the super particle number is changed from 1� 105 to
3� 106. Figs. 1 and 2 show the ratio of the final emittance
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Table 1

Beam parameters for final beam bunching in HIF

Ion species Pb1þ

Number of ions 6:25� 1014

Particle energy (GeV) 10

Initial beam current (A) 400

Final beam current (kA) 10

Initial pulse duration (ns) 250

Final pulse duration (ns) 10
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Fig. 1. Ratio of final rms emittance to initial one as a function of mesh

number used by particle simulation in the case of initial WB beam.
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Fig. 2. Ratio of final rms emittance to initial one as a function of mesh

number used by particle simulation in the case of initial GA beam.
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to initial one as a function of the calculation mesh number
at the initial WB and GA beams. As mentioned earlier, we
tried to check the many test calculations to change the
numbers of particles and cells used. These figures show
typical results in such test calculations. In the space-
charge-dominated beams, when the transverse particle
distribution is assumed to be WB, the Debye length is
approximated by [14]

lD�
1

2

n
n0

rb (1)

where rb is the beam radius and n=n0 ð¼ s=s0Þ is the tune
depression, respectively. Also in the case of GA distribu-
tion, the Debye length can be assumed as [14]

lD�
1ffiffiffi
8
p

n
n0

rb. (2)

The density of the beam at the center is used for the
evaluation of the tune depression. The final tune depression
and beam radius are estimated as 0.16 and 2.45 cm. As
shown in Fig. 1, the emittance growth is saturated if
the mesh number is increased over 256� 256. For this
reason, it is found that we should consider the Debye
shielding effect for the investigation of beam dynamics
during the final beam bunching. However, we could not
find significant changes from Fig. 2. As a result, we
expected that the cell size does not contribute the emittance
growth in initial GA beam. Consequently, we use the mesh
number of 512� 512 for the accurate calculation in this
study.

3. Charge distribution and beam instability induced by space

charge effect

Fig. 3 shows the charge density maps in physical space at
each lattice period for the initial KV distributed beam. In
the real space maps, the horizontal and vertical scales
correspond to the full calculation region. The charge
density is normalized by the maximum value at each map.
The beam radius is extended with the beam current
increase due to the longitudinal bunch compression. As
shown in Fig. 3, the localized charge distribution in real
space is indicated during the final beam bunching. The
localized density profile can cause the non-linear space
charge effect. As a result, the particle distribution is
changed from the initial KV beam during the longitudinal
compression. For this reason, the disappearance of the
localized density distribution is observed in the near end of
the KV beam simulation.
Fig. 4 shows the charge density maps in real space for the

initial WB beam. In the WB beam, qualitatively similar
behaviors with the KV beam are observed as shown in
Fig. 4. From the previous study, it was reported that the
localized charge distribution is caused by the instability due
to the strong space charge effect [15].
As shown in Figs. 5, 6, and 7, the localized charge

density cannot be observed in the initial GA, SG, and PA
beams, respectively. The beam particles in the KV and WB
beams are distributed into the narrow region in the four-
dimensional phase space, e.g., the distribution of the KV
beam is the d function in the phase space. On the other
hand, the GA, SG, and PA beams diffuse into the large
area in the phase space. As a result, the KV and WB beams
may be sensitive for the beam instability induced by space
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Fig. 3. Normalized charge distribution with initial KV beam, (a) at initial condition, (b) at 50 lattice periods, (c) at 82 lattice periods, (d) at 88 lattice

periods, (e) at 108 lattice periods, and (f) at 150 lattice periods, respectively.
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Fig. 4. Normalized charge distribution with initial WB beam, (a) at initial condition, (b) at 50 lattice periods, (c) at 77 lattice periods, (d) at 97 lattice

periods, (e) at 106 lattice periods, and (f) at 150 lattice periods, respectively.
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charge effect in comparison with the GA, SG, and PA
distributions.

4. Conclusions

The transverse beam dynamics was investigated during
the final beam bunching in HIF driver system. The PIC
simulation with the beam current increase, as a model of
the longitudinal bunch compression, was carried out for
the study of beam transport under the strong effect of
space charge oscillations. The initially KV and WB
distributed beams caused the localized particle distribution
due to the space charge effect during the final beam
bunching. The GA, SG, and PA beams were transported
without the notable effect by the space charge oscillation. It
is expected from the PIC results that the realistic beam may
cause the small effect of instability on HIB induced by the
space charge oscillation during the final beam bunching in
HIF.
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Abstract

A novel approach to the problem of beamline development for high-current electron beam is put forward. A transient electron beam is

considered as a set of independent stationary beams with different currents, energies, and initial conditions. In such a way, the overall

acceptance of a beamline can be maximized effectively for some conditions and the loss can be predicted well. The simulation code

implemented in this approach is described. Some examples of existing and designed beamlines are presented.

r 2005 Elsevier B.V. All rights reserved.
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1. The goal

An optimizer is intended for designing or an adjustment
of a beamline carrying a high-current, transient electron
beam. Additional conditions, such as Z, Z0 [1], rms size and
divergence at the exit, can be set. Although a number of
numerical simulators already exist, none fits the problem
set. The problem is: (i) it seems to be impossible to optimize
anything manually if the number of controlled parameters
exceeds, say, five; and (ii) the parameters of the beam at the
entrance are usually known only very inaccurately. Thus,
an optimizer must minimize the loss of beam in a beamline,
be very time-efficient and take into account main effects,
but must not be very precise.

2. The method

First we define an appropriate model for the problem. It
should take into account the main effects in a high-current
beam and be computation conserving. It must not be too
accurate, as the initial conditions are not known well.

2.1. Basic parametric models

An uncharged linear model [1] considers sin- and cos-like
trajectories of particles in a beamline

C S D
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0 0 1
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>>;
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¼ �
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�
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where the second derivative is taken by the longitudinal
coordinate z. Twiss parameters of the beam are converted
with the matrix obtained, There is no way to take into
account the space charge force in this case.
The KV approach [2] considers a charged beam with a

special distribution in phase space. Thus, the type of
distribution is preserved, and ordinary differential equa-
tions (ODEs) can be derived for its parameters (for rms
values here):
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where x and y are the horizontal and vertical coordinates,
respectively. Emittance is preserved and included as a
‘‘force-like’’ term in each right-hand side. The ratio of the
second term to the first gives a criterion for a high-current
beam. Only if it is 51 can the space charge effect be
neglected. In reality, another criterion is typically much
stronger (analogous to the betatron phase):

Z
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

I0ðbgÞ
3

1

ðxþ yÞðx or yÞ

s
dz� 1 (3)

where L is the total length of the beamline. If only the
second criterion is not valid, the space charge effect can be
considered as a small correction.

2.2. Proposed model

A transient charged beam is considered as a set of
independent stationary charged beams (partial beams) with
different currents and initial conditions, including energy.
Each one has zero emittance and a uniform distribution of
charge within some ellipse in the xy-plane. In xx0 and yy0

phase spaces, it looks like a line segment, with the middle at
the point of origin. The rms size of each one is given by the
KV Eq. (2) without the emittance term.

Passing through a limited aperture, each partial beam
can lose a proportion of particles, depending on the
oversize, i.e., the ratio of the current diameter to the
aperture. The final oversize at the end is the maximum of
local oversize values. The total loss is approximated as

Loss ¼
X

i

Weightið1� 1=OversizeiÞ (4)

where Weighti and Oversizei are the weight coefficient
(proportional to the carrying current) and the final oversize
of a partial beam respectively, independently for x and y.
The target function to be minimized is taken as

X
i

cosh
ffiffiffi
2
p xi � xi

0

Dxi

(5)

where xi is the parameter obtained, xi
0 is the desirable

parameter, and Dxi is the admitted accuracy. Thus, the
strongest effect in the transient beam is considered, while
others are neglected. The latter are microscopic emittance and
the non-uniform distribution of particles in each cross-section.

2.3. The code

The optimizer code consists of three parts: a beamline
editor, a line geometry builder, and the optimizer itself. The
beamline editor inserts a beamline element by element and
edits it. It supports quadrupoles, solenoids, and bending
magnets, including distributed ones. Step-like and linearly
changed apertures are available. The geometry builder
shows the trajectory in the inserted beamline and all the
elements and apertures along it.
The optimizer receives the inserted beamline and

optimizes the chosen elements to minimize the target
function. This involves setting the optimized elements, the
initial parameters, and the target parameters. The latter
can include emittance and current at the entrance, Z, Z0, rms
size and divergence at the exit, and always includes loss.
The initial parameters are current, energy, energy spread,
Z, Z0, rms size and divergence at the entrance.
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3. Optimized beamlines

3.1. Injection beamline at KAERI

The KAERI beamline [3] Fig. 1 is used to transport an
electron beam from an injector to a superconducting RF
cavity. Its regular aperture is 100mm. Its basic parameters
are listed in Table 1. The operation mode is continuous.

Originally the beamline was designed using the un-
charged linear model. During commissioning, it was found
that none of the regimes thus determined could be used due
to great loss in the beamline. This is not surprising, as for a
typical radius of 3mm, both terms in Eq. (2) are
�3� 10–3m–1. Simulations according to KV approach
allowed the manual determination of new regimes that
could be used as an initial approximation. After lengthy
manual adjustment, acceptable loss was obtained. Never-

theless, significant discrepancy between the regimes in-
stalled and those after manual adjustment always occurred.
Then the beamline was optimized with the code described,
the regime found was installed, and further adjustment
included only the first three lenses and the last two, i.e.,
only those lying outside the bends. Thus, they did not
affect the chromatism of the beamline. Total loss of �3%
was easily obtained.

3.2. Beamline for beam splitting into three targets

The beamline Fig. 2 is used to split a short train of
electron bunches (�200 ns) into three shorter ones and
transport them to three separate bremsstrahlung conver-
ters. Thus, three X-ray sources are obtained that flash
almost simultaneously. This is a prototype of a future
diagnostic device. Its operation mode is one pulse for a
long time. The BINP FEL injector [4] is used as a beam
source; this is very similar to the one at KAERI.
The beamline was designed using the described code.

The regular aperture was chosen as 40mm. Additional
conditions were: (i) achromatism of each branch; and (ii)
small spots on the converters. It was found that this
beamline has �1.2-fold poorer acceptance than the one at
KAERI, or 1.5-fold greater loss for the same beam. At the
same time, it proved that the acceptance cannot be
significantly improved and that the beamline cannot be
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Table 1

Beamline at KAERI

Kinetic energy of electrons, MeV 1.5

Peak current, A 20

Average current, mA up to 10

Initial emittance, pmmmrad 10

Energy spread, relative 3� 10�3

Acceptance at 4% loss, p mm?mrad 15.5

Fig. 2. Beamline for beam splitting into three targets at BINP.
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simplified by extension of the aperture. The problem is that
it is always limited in the kickers and the septum magnets,
so there is almost no point in increasing the aperture in
other parts. In any case, o10% loss is acceptable for this
rare pulse machine.

3.3. BINP FEL injection beamline

The beamline Fig. 3 is used to transport an electron
beam from the injector to a set of accelerating RF cavities
of the BINP high-power FEL [4]. It contains four 301
bends and has to conduct a beam of 45mA in continuous
mode. The total length is �8.5m. The regular aperture is
100mm. An additional condition is beam achromatism.

The beamline was originally designed using the un-
charged linear model. It was later analyzed using the code
described. No achromatic regime with acceptable loss was
found, while in the absence of this condition, its acceptance
is greater than that of the KAERI beamline. In situ,
acceptable loss was obtained only by manual adjustment of
all the lenses in the beamline, so the regime is not
achromatic.

However, an achromatic regime with acceptable loss is
possible if four additional quadrupole lenses are added,
and some others are shifted. In this case, the acceptance is
the same as in the original beamline, with no achromatism

condition. This proposed modification is now being
considered.

4. Conclusions

� A novel method for optimization of beamlines carrying
a transient, high-current electron beam was proposed.
� A code implementing this method was developed.
� A number of beamlines were designed and analyzed with

the code.
� Successful operation of the beamline at KAERI with the

predicted regime verifies the reasonableness of the
method.
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Abstract

The problem of non-linear beam dynamics simulations based on the moment method is discussed. A new simulation method allows the

study of non-linear effects, such as increasing emittance, a varying density profile and asymptotic behavior of the beam.
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1. Introduction

At present, the beam space charge problem for low-
energy ion beams is studied using particle-in-cell (PIC)
methods [1] and root-mean squared (RMS) envelope
equation (second-order moment equations) [2,3]. The
second approach involves using an effective linear self-
electric field [3]. In this report we discuss the problem of
non-linear beam simulation based on the method of
moments for a particle distribution function [4,5]. Poly-
nomial approximation of the charge density of a beam with
circular cross-section has been found using time-varying
moments. The self-electric field was reconstructed with the
help of the density approximation and used in the system
of moment equations. Thus, approximate solutions of the
Vlasov self-consistent problem were obtained. The new
simulation method is demonstrated for examples of the free
expansion of beams with non-uniform space charge density
and beam propagation through a smooth non-linear
focusing channel. Non-linear effects such as increasing
emittance, varying density profile and asymptotic behavior
of the beam are discussed.

2. Self-electric field reconstruction using polynomial density

Supposing that a beam with circular cross-section with
radius a has azimuthal symmetry charge density rðrÞ, then
the self-electric field is

Er ¼
4p
r

Z r

0

rðrÞrdr. (1)

The m lower density moments are known and defined asZ a

0

rnrðrÞrdr ¼Mn;0; n ¼ 0; 1; . . . ;m (2)

under the condition
R a

0 rðrÞrdr ¼ 1. The power expansion
of the density is

rðrÞ ¼
Xm

i¼0

air
i. (3)

We use the accuracy measure

ImðamÞ ¼

Z a

0

rðrÞ �
Xm

i¼0

air
i

 !2

rdr. (4)

Using the minimum conditions for this function, we obtain
a system of non-linear algebraic equations for the unknown
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coefficients ai, i ¼ 0; 1; . . . ;m and beam radius a:

Xm

i¼0

ai

aiþjþ2

i þ j þ 2
¼Mj;0; j ¼ 0; 1; . . . ;m. (5)

Thus, we can reconstruct the beam density rðrÞ and find the
strength of the self-electric field using Eq. (1)

Er ¼
4p
r

Z r

0

Xm

i¼0

air
i

 !
rdr ¼ 4p

Xm

i¼0

ai

riþ1

i þ 2

� �
. (6)

The reconstruction procedure used may be demonstrated
for two of the simplest cases. The first is the case of
uniform density rðr; zÞ ¼ a0ðzÞ, i.e. m ¼ 0. Then we have

a0
a2

2
¼M0;0; a0

a4

4
¼M2;0. (7)

Solving these equations gives a0 ¼ ðM0;0Þ
2=M2;0,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2M2;0
p

=M0;0, rðrÞ ¼ a0 ¼ ðM0;0Þ
2=M2;0. In a second

case, we suppose that charge density has the form

rðr; zÞ ¼ a0ðzÞ þ a2ðzÞr2, i.e. m ¼ 2. Eq. (5) transforms to
the following:

a0
a2

2
þ a2

a4

4
¼M0;0; a0

a4

4
þ a2

a6

6
¼M2;0,

a0
a6

6
þ a2

a8

8
¼M4;0. ð8Þ

As a result of the solution of Eq. (8), we obtain

a0 ¼
8M0;0

a2
�

12M2;0

a4
; a1 ¼ �

12M0;0

a4
þ

24M2;0

a6
(9)

and the equation for the change in radius

�
a4M0;0

6
þ a2M2;0 ¼M4;0. (10)

Thus, we only need the first three moments to obtain the
charge density approximation in this case.

3. Self-field polynomial approximation and moment

evolution

The moment evolution during beam propagation is
defined by the following system of equations [4]:

dMpq

dz
¼ pMp�1;qþ1 þ q

X
k

akðzÞM
pþk;q�1 (11)

where akðzÞ ¼ bk þ gk. An external field is represented as
Eext ¼

Pn
k¼0gkrk.

To integrate the system in Eq. (11), we use a symmetric
Euler scheme. The scheme conserves emittance, whereby an
exact solution corresponds to emittance conservation.
Initial values of the problem include a, the beam radius,
and the first m moments of the charge density. Using these
values we can find an approximate charge density and
power expansion of the self-electric field strength. Then we
integrate Eq. (11) to obtain the beam radius and moments

at the next step. Using these values, the charge density is
reconstructed in an iterative manner. Such an approach
provides the numerical solution for a self-consistent
problem of beam dynamics.

4. Solving the self-consistent problem of charge beam-free

expansion in a polynomial density approximation model

Free expansion of a beam of uniform density is defined
by the system in Eq. (7) for charge density and beam radius
a and the following equations:

dM2;0

dz
¼ 2M1;1;

dM1;1

dz
¼M0;2 þ b1M

2;0,

dM0;2

dz
¼ 2b1M

1;1 ð12Þ

where b1 ¼ 4pða0=2Þ, Er ¼ b1r is the strength of the linear
beam self-field. Let the initial conditions correspond to a ¼

1 and M1;1
z¼0 ¼ 0, M0;2

z¼0 ¼ 0:000028. Beam envelope evolu-
tion is defined by the well-known equation [6]:

d2a

dz2
¼

e2

a3
þ

2ZIa

Ab3IA

1

a
(13)

where e is beam emittance, IaðAÞ is the beam current, and
IA ¼ 17 kA, Z and A atomic number of an ion or Z ¼

A ¼ 1 for an electron beam. The numerical results of the
envelope evolution for the current parameters chosen
according to Eqs. (7) and (12) (line D) and to Eq. (13)
(line B) are presented in Fig. 1.
It is evident that the results coincide quite well. The

emittance is conserved with an accuracy of approximately
10�6. The uniform density is also conserved and
M2;0=a2 ¼ 0:5.
The free expansion of a beam with non-uniform density

is defined by the following system of equations:

a0
a2

2
þ a2

a4

4
¼M0;0; a0

a4

4
þ a2

a6

6
¼M2;0 (14)

a0
a6

6
þ a2

a8

8
¼M4;0 (15)

and

dM2;0

dz
¼ 2M1;1;

dM1;1

dz
¼M0;2 þ b1M2;0 þ b3M

4;0 (16)

dM0;2

dz
¼ 2b1M

1;1 þ b3M3;1 (17)

where bk ¼ ak�1=k þ 1 , Er ¼ b1rþ b3r
3 is the strength of a

non-linear beam self-field. Let the initial conditions
correspond to non-uniform initial density rðrÞ ¼ 1�
0:9r2, a ¼ 1 and M1;1

z¼0 ¼ 0, M0;2
z¼0 ¼ 0:000028. To termi-

nate the chain of moment equations we have used an
equality that corresponds to known simulation and
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experimental results [7–10]:

M4;0 ¼ kM � ðM2;0Þ
2,

kM ¼ kM0 þ ðkM1 � kM0Þ � 1� Exp �
kE � z

zmax

� �� �
ð18Þ

where the coefficient kM0 ¼M4;0=ðM2;0Þ
2 contains the

initial moment values. The coefficient kM1 ¼ 1:33 corre-
sponds to the asymptotic value of this ratio (here it
corresponds to uniform density). The parameter kE must
be chosen from the problem conditions; here kE ¼ 10. A
moment M3;1 is defined as M3;1 ¼ dM4;0=dz. The results of
the numerical solution of the problem are presented in
Figs. 1(line F)–3. Beam envelope evolution is shown in Fig.
1 (line F). Increasing emittance is demonstrated in Fig. 2.
In Fig. 3, changes in charge density are shown for a step
Dz ¼ 2:5 cm along the beam propagation (lines B–P).

5. Solution of the problem of beam dynamics in a smooth

focusing channel in a polynomial density approximation

model

Let us consider the dynamics of a beam with a circular
cross-section in a smooth focusing channel. We suppose
that the beam density has the form rðr; zÞ ¼ a0ðzÞ þ a2ðzÞr2

and non-linear focusing force F ext ¼ �rþ 0:2r3. The beam
dynamics is defined by the system of equations (16) and
(17) with b1 ¼ �1; b3 ¼ 0:2 and the system in Eq. (8),
which describes the beam radius and changes in charge
density. The initial conditions correspond to the following:
rðr; zÞ ¼ 3:6ð1� 0:9r2Þ inside a circle with a ¼ 1 and
M1;1

z¼0 ¼ 0, M0;2
z¼0 ¼ 0:000028. To terminate the chain of

equations we use Eq. (18). The main simulation results are
presented in Figs. 4–6. Changes in RMS beam dimension is
shown in Fig. 4. Fig. 5 demonstrates that emittance
increases due to the non-linearity of the external force.
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Fig. 1. The evolution of envelopes.

Fig. 2. Changing beam emittance.
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Fig. 3. Changes in charge density for a beam with non-uniform density.

Fig. 4. Changes in of the RMS dimension of a non-uniform beam in a

smooth non-linear focusing channel.

E.A. Perelstein, L.V. Bobyleva / Nuclear Instruments and Methods in Physics Research A 558 (2006) 131–134 133



In Fig. 6, the changes in charge density are shown with a
step Dz ¼ 2:5 cm along the beam propagation (lines B–V).
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Fig. 5. Increasing emittance of a non-uniform beam in a smooth non-linear focusing channel.
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Abstract

In the US scenario for a Neutrino Factory presented in ‘‘A feasibility study of a neutrino source based on a muon storage ring’’, N.

Holtkamp (Ed.), D. Finley (Ed.), Fermilab, April 15th, 2000), a large percentage of the cost is related to an induction linac for phase-

energy rotation and bunching of the muon beam collected after the production target and decay channel. A more cost-effective adiabatic

buncher and phase-energy rotator has been proposed to replace the induction linac system (D. Neuffer, A. Van Ginneken, High-

frequency bunching and ðf� dEÞ rotation for a muon source, Proceedings of the 2001 Particle Accelerators Conference, Chicago, 2001,

p. 2029). The new method uses consecutive RF cavities with differing frequencies. The frequencies are changed to enable bunching and

phase-energy rotation. In this paper, the theoretical concept is developed and demonstrated with simulation results obtained with the

map code COSY Infinity (http://cosy.pa.msu.edu). An optimization strategy is also explored.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In various scenarios for muon-based accelerator projects
such as a Muon Collider or a Neutrino Factory (Fig. 1),
phase-energy ðf� dEÞ rotation is used in the m beam
exiting the p production and decay channel, because this
beam has not just a relatively small initial phase spread, but
an energy spread that is much larger than the device
acceptance [1–3]. In this process the beam is first allowed to
lengthen and then the radio-frequency (RF) system is used
to reduce the energy spread (by decelerating the high-
energy ‘‘head’’ of the bunch and accelerating the low-

energy ‘‘tail’’, so that the beam ‘‘rotates’’ in phase-energy
space). The resulting beam has the energy spread reduced
to a level where the majority of the beam particles is
captured by a subsequent bunching and/or cooling system.
The phase-energy rotation region is outlined by rectangle
in Fig. 1.
The difficulty with the previously proposed ðf� dEÞ

rotation systems is that they require either very low-
frequency RF, or an induction linac, matched to the
elongated bunch length of the ðf� dEÞ rotated system.
This long-wavelength (or long rise-time) acceleration
system would require new technology development and
considerable expense. In this paper we present an approach
which uses high-frequency RF systems for bunching the
beam and reducing its overall energy spread [4]. With this
approach it is possible to produce a particle distribution
similar to that obtained in the induction linac and RF
buncher system proposed in Study 2 [1–3], except that this
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system simultaneously captures both mþ and m�. The
concept, key parameters, example simulations, and an
optimization strategy based on the control theory ap-
proach are presented.

2. Concept

The initial m beam with a small phase spread and a large
energy spread from a p! m production target is allowed to
drift in a solenoidal field. The drift section is followed by
adiabatic buncher where beam is formed into a string of
bunches and phase-energy rotator where its overall energy
spread is reduced. Both buncher and rotator consists of RF
cavities within a solenoidal (transversely focusing) field
(Fig. 2).
To bunch particles we choose some particle to be the

main central particle of the beam. We set all RF cavities
parameters in such a way that this particle passes every one
of them in the same phase of E field oscillations (0 in a
buncher). By the virtue of the equations of motion in such
a structure, particles close enough to this central one, will
be formed into a stable group called ‘‘bunch’’. Because of
the specific choice of this main central particle’s phase and
cavities parameters, we also have some other particles
passing cavities in the same 0 phase and, by the same
equations of motion, we will have bunching effect around
those particles as well. In the following text we will call
them ‘‘central particles’’ and the one chosen first ‘‘main
central particle’’. Of course, all central particles are not real
particles, they are just an idealization chosen to make
equations of motion simpler.
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Fig. 1. Neutrino Factory schematics as proposed in Study 2 with outlined

phase-energy rotation section.
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Fig. 2. Example simulation plots in (T ,ct) phase space. Beam is shown after drift, buncher, rotator and cooler, respectively.
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Each cavity in the buncher has its frequency set to
maintain the following condition: the time of arrival
difference between two central particles in a place of RF
field application remains equal to a fixed integer number of
RF oscillations periods so this condition holds true as the
beam propagates through the buncher. As we set E field
phase to be 0 for the main central particle, for other central
particles it is also 0 so they gain no energy in each cavity
and their energies stay constant through the buncher. We
keep the final system frequency fixed because of matching
into 201.25MHz cooling and/or accelerating sections, so,
using these two conditions we can find a frequency for each
RF cavity as a function of its position in a buncher.

In the buncher, the RF gradient is increased as length
increases. The goal here is to perform an adiabatic capture,
in which the beam within each bunch is compressed in
phase so as to be concentrated near the central particle.
From these considerations we obtain the following rela-
tions for the lattice parameters and central particles of the
bunches:

Dt ¼ tn � tc ¼ z
1

vn
�

1

vc

� �
¼ nTRF ¼ n

lRF

c
; n 2 Z (1)

d
1

b

� �
¼

1

b1
�

1

bc

� �
¼

l̄
L̄

(2)

from which follows

1

bn
¼

1

bc
þ nd

1

b

� �
) Tn; n 2 Z (3)

lRFðzÞ ¼ z � d
1

b

� �
) nRF ¼

c

z � d 1
b

� � (4)

VRFðzÞ ¼ B
ðz� zDÞ

L
þ C
ðz� zDÞ

2

L
(5)

where n — denote the number of the bunch counted
from the main central particles’s one, TRF — period of RF
field oscillations, z — longitudinal coordinate counted
from the beginning of the drift, bc and bn — normalized
central particle and n-th reference particle’s velocities, tc
and tn — time of arrival of main central and n-th central
particle (main central particle has n ¼ 0); lRF, nRF and
VRF — wavelength, frequency and gradient of the electric
field in the cavity, zD — longitudinal coordinate of the
beginning of the buncher (equals to the drift length); l̄ and
L̄ — wavelength of electric field and the longitudinal
coordinate of the last RF in buncher; c — speed of light, B

and C — positive constants, defining RF gradients in a
buncher. Note that, since each of the bunches is centered at
different energy, they all have different longitudinal
oscillation frequencies, and a simultaneously matched
compression for all bunches is not possible. Instead a
quasi-adiabatic capture resulting in an approximate bunch
length minimization in each bunch is attempted.

Following the buncher is the so-called ðf� dEÞ vernier

rotation system in which the RF frequency is almost fixed
to the matched value at the end of the buncher and the RF
voltage is constant. In this system the energies of the
central particles of the low-energy bunches increase, while
those of the high-energy bunches decrease. So the whole
energy spread reduces to the point where beam is a string
of similar-energy bunches and it could be captured into the
�200MHz ionization cooling system matched to the
central energy of the beam.
Let us describe the rotator parameters calculation in

more detail. At the end of the buncher we choose a second
central particle kept N RF periods from main central one
along the buncher and the vernier offset d. We then keep
this second central particle at ðN þ dÞlRF wavelengths from
the main one through the rotator. So now it passes all RFs
in a constant accelerating phase fN having constant energy
gain DTN, and after jT c � TNj=DTN cavities, energies of
the central particle and the chosen second reference one
will be nearly equal. This process also aligns the energies of
other reference particles and their bunches, hence at the
end we have the beam rotated in ðf� dEÞ space with
significantly reduced energy spread.
Example simulation of this process in 1D was developed

in a Pascal code [5,6]. We take the main central particle’s
energy to be 125MeV, beam’s energy spread to be
�50MeV and ðf� dEÞ coordinates distribution to be
Gaussian. We arbitrarily set the initial drift length to 90m
and define buncher to consist of 60 pillbox cavities 1m long
each. With these numbers we get dð1=bÞ ¼ 1:5=150 ¼ 0:01,
so, by plugging this values into Eq. (4) we obtain the RF
frequency at the beginning of the buncher section
�333MHz, and at the end �200Mhz (we match into a
201.25Mhz cooling system). We choose the RF gradient to
be quadratically increasing from 0 to 4.8MV/m along the
buncher, so, from Eq. (5) it follows that

VRFðzÞ ¼ 4:8
ðz� zDÞ

2

ðL̄� zDÞ
2
MV=m. (6)

In rotator we choose N ¼ 10) TN � 77:28MeV; d ¼
0:1) fN ¼ 36� and the RF gradient to be 10MV/m, so,
after 1

4
synchrotron oscillation ð�8:4mÞ, the central energies

spread becomes nearly 0. Coordinates of the particles in
ðf� dEÞ phase space through the structure are shown in 2.

3. Problem description and key parameters/controls

The concept is defined in the previous section, but there
are many variations in the structure parameters because of
the minimal cost constraint, different possible final RF
frequencies, reduced number of RF frequencies and
gradients, etc., and in the final beam properties: shorter/
longer bunch trains, constraints on the number of muons
captured, desired central energy, etc. Matching into the
accelerating/cooling structures following the buncher-
rotator system and the transverse beam dynamics should
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also be considered. The problem is in finding specific
optimal parameters of the beam and/or the structure under
imposed constraints.

In our example we use 60 RF cavities, each with different
gradient and frequency, which is definitely makes structure
too expensive to be built. Structure consisted of 10 cavities
would be much more satisfactory in a cost sense. We could
also try to combine the buncher and the ðf� dEÞ rotator
into one structure for simultaneous bunching and rotation
to reduce cost of the system. As could be seen from the
concept and the relations given above, the control
parameters of the structure are:

(1) Drift: the length of the section LD. Future studies,
which include transverse motion, must also consider
the apertures and focusing fields (this study uses fixed-
field solenoids for transverse focusing). These focusing
parameters are also critical for system performance.

(2) Buncher: the length of the section LB, RF voltages V i
B,

i ¼ 1; nRFs or initial and final voltage and the law of
voltage increase (linear, quadratic, etc.). Final fre-
quency is usually strictly specified by the cooling/
accelerating subsections of the accelerator, but could
also be varied to find optimum.

(3) ðf� dEÞ Rotator: the length LfR, RF voltage VfR of
the phase-energy rotation section, number N of RF
field oscillation periods between chosen second central
particle and the main central particle (with n ¼ 0), and
the vernier parameter d. Also the kinetic energy T c of
the main central particle could be changed (usually we
take Tc to be the peak of energy distribution of beam’s
particles).

4. Simulations

Advanced particles dynamics simulation program was
written in the COSY Infinity code [7,8] which uses a map-
based approach of beam dynamics calculation. The
dynamics is described in terms of a high-order Taylor
expansion of the flow, i.e. the relationship that connects
final particle coordinates to initial coordinates via

~zf ¼Mð~ziÞ (7)

where the flow (also called ‘‘map’’) M is determined by
either automatic differentiation of numerical integration
algorithms, or by dedicated tools determining the flow of
partial differential equations based on differential algebraic
techniques. Depending on the complexity of the task,
different orders of expansion from 1 to 15 are needed, and
in our case, the necessary order is high ðX7Þ. Apart from
the powerful abilities to calculate high-order dynamics
properties, COSY Infinity has its own programming
language, which allows the construction of complicated
optimization scenarios, it provides user with powerful DA
(differential algebra) framework, and it has large built-in

library of standard accelerator elements, so it fits well to
our needs.
Because the beam has a very large energy spread and

COSY Infinity calculates dynamics with the use of Taylor
expansions on particle coordinates, a division of the initial
coordinates domain into sub-domains with small energy
coordinate range is required before tracking. The natural
way of doing this is to divide the set of coordinates by the
number of bunches in a beam. This division makes relative
coordinates small enough to have Taylor expansions with
acceptably small remainders at a reasonable order (order 7
or 8 is enough). The standard RF kick approximation for a
pillbox RF cavity is used, i.e. we assume particles to pass
the cavity instantly so that field does not change, having
constant energy increment/decrement dependent on the
particle coordinates and cavity parameters. This approx-
imation is suitable for our simulations because our particles
are fast enough (200MeV m has b � 0:94) and cavities are
short enough to neglect any field change during particle
transition. If deemed necessary, in future simulations a
more realistic RF cavity model like the one developed in
Ref. [4] could be used.
In our example structure we use 50 sub-domains for

more realistic purely Gaussian (larger energy spread) and
‘‘almost real’’ distributions from MARS code [9]. Simula-
tion results for these distributions are shown in Figs. 3–5.

5. Optimization problem formulation

The problem of simulation and search for optimal
parameters naturally presents itself as one of the problems
of control theory in beam physics [10]. The exact definition
of the problem depends on what parameters of the
structure lattice and/or the beam at the end of the structure
are critical to achieve. We can consider an impulse effect
model:

~xk ¼Akð~xk�1;~ukÞ (8)

where ~xk is a vector of coordinates in phase space after the
k-th lattice element represented by theAk operator and the
control ~uk. As could be seen from comparison with Eq. (7),
this method is exactly the one used in COSY Infinity to
calculate beam dynamics. We can as well use the
continuous model

_x ¼ f ðt;x; uÞ; t 2 ½0;T �; x 2 O � Rn; u 2 U � Rr (9)

where x; u are coordinate and control vectors, respectively,
t is the time of flight, and f is a continuous function, which
describes particle’s dynamics dependence on control
functions representing the structure’s parameters. On the
trajectories obtained from any of these models, we define a
quality functional as

IðuÞ ¼

Z T

0

Z
Mt;u

fðt;xt; uðtÞÞdxt dtþ

Z
MT ;u

gðxT ÞdxT (10)

where xt, xT are the coordinates of the particle at the time t

and at the terminal time T respectively, Mt;u, MT ;u are the
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sets of coordinates of beam particles at the time t and at the
terminal time T, respectively.

Functionals of the type (10) with problem-defined
functions f and g allow one to evaluate any desired beam
parameters throughout the whole structure with the first
item and the terminal beam parameters with the second
item. In search for optimal structure parameters (optimal

in a sense they make dynamics of the particles and terminal
beam parameters optimal) one then needs to find control
functions that brings minimum/maximum to this func-
tional.
As a variant of such formulation applicable to our

problem we consider the problem of optimal transporta-
tion of the initial coordinates ~x ¼ ðx1;x2Þ

T set M0;u into the
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Fig. 4. COSY Infinity simulations plots in ðT ; tÞ phase space. Initial distribution Gaussian T ¼ 1021000MeV.

Fig. 3. COSY Infinity simulations plots in ðT ; tÞ phase space. Initial distribution Gaussian, T ¼ 125MeV� 50MeVÞ.
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set of final coordinates MT ;u with specified boundaries, i.e.
we will base our evaluation on the terminal beam
parameters. In our case x12f, x22dE. As an initial
coordinate boundary we take a rectangle in phase-energy
phase space, which encloses all or almost all particles of the
beam. For the final boundary we may consider another
rectangle with shorter length along energy coordinate as we
are interested in reducing overall energy spread. But, in
fact, we are also interested in enclosing the particles in each
bunch to a so-called bucket area, because apart from the
small energy spread we have the constraint of capturing,
i.e. particles in each bunch should be in a stable area called
‘‘bucket’’ (in sense of equation of motion in resonant RF
structure which has stable and unstable solutions). So we
might divide this bounding rectangle into sub-rectangles
(Fig. 6), the number of which is equal to the number of
bunches in a beam, and define a penalty function to
evaluate proximity of the terminal particles coordinates
in each bunch to the rectangle corresponding to this

bunch ½a1; a2� 	 ½b1; b2�

f1ð~xÞ ¼

0; x1 2 ½a1; a2�

k1ðx1 � a2Þ
2q1 ; x1Xa2

k1ða1 � x1Þ
2q1 ; x1pa1

8><
>: (11)

f2ð~xÞ ¼

0; x2 2 ½b1; b2�

k2ðx2 � b2Þ
2q2 ; x2Xb2

k2ðb1 � x2Þ
2q2 ; x2pb1

8><
>: (12)

where k1, k2, q1, q2 are arbitrary positive weight constants
for selective optimization. Then, we define the quality
functional as

I ¼

Z
MT ;u

ðC1f1ð~xÞ þ C2f2ð~xÞÞd~x. (13)

With this functional we could perform optimization using
some method of functional minimization (stochastic,
gradient, etc.). This optimization is the main direction of
the future research.
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Abstract

Increasing demands for luminosity in existing and future colliders have made lattice design and error tolerance and correction critical

to achieving performance goals. The current state of the Tevatron collider is an example, with a strong skew quadrupole error present in

the operational lattice. This work studies the high-order performance of the Tevatron and the strong nonlinear behavior introduced when

a significant skew quadrupole error is combined with conventional sextupole correction, a behavior still clearly evident after optimal

tuning of available skew quadrupole circuits. An optimization study is performed using different skew quadrupole families, and,

importantly, local and global correction of the linear skew terms in maps generated by the code COSY INFINITY [M. Berz, COSY

INFINITY version 8.1 user’s guide and reference manual, Department of Physics and Astronomy MSUHEP-20704, Michigan State

University (2002). URL http://cosy.pa.msu.edu/cosymanu/index.html]. Two correction schemes with one family locally

correcting each arc and eight independent correctors in the straight sections for global correction are proposed and shown to

dramatically improve linearity and performance of the baseline Tevatron lattice.

Published by Elsevier B.V.

PACS: 02.60.Pn; 29.20.�c; 29.27.�a; 29.85.+c

Keywords: Tevatron; Optimization; Dipole error; Skew quadrupole correction; COSY INFINITY; Tracking; Transfer map

1. Introduction

Increasing the luminosity reach of existing and future
colliders demand considered and precise optical design and
predictability in operation. Driven by nonlinear fields,
‘‘high-order’’ beam dynamics are generally difficult to
control, calculate, and can severely limit a machine’s region
of stable operation. An approximately linear lattice is
desirable for operational simplicity and understanding; it
also generally exhibits more robust, broader-range perfor-
mance. Nonlinear sources arising from field and alignment
errors, and the required correction elements are unavoid-

able. Successful management of nonlinear sources, how-
ever, depends on the linear lattice. Attributes of the linear
lattice and relative locations of sources generate inter-
ference, constructive or destructive, between the nonlinear
terms depending on their periodicity. In a highly effective
linear lattice design, the strongest nonlinear amplitudes can
be mitigated passively by intelligently exploiting periodi-
city, phase advance and optimal placement of nonlinear
correctors. Such a lattice enhances precision and predict-
ability in the machine optics.
Passive cancellation, however, is generally not sufficient

to address certain systematics or widespread field errors;
active correction in the form of added corrector elements is
usually required. The overall lattice approach must be
evaluated not only by its tolerance of errors, nonlinearities
and natural aberrations, but also by its potential for active
correction. Such correction may be ‘‘global’’ in the sense
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that an error or aberration is corrected over one-turn
optics. Global correction is not always adequate to
maintain sensitive collider optics. Immediate—or ‘‘local’’
correction—of source terms, particularly if such terms
propagate through the delicate optics of the interaction
regions, may be an additional requirement for stability and
linearity. A case addressed in this work is the current state
of the Tevatron collider, where a strong, systematic, skew
quadrupole error is present in the operational lattice as a
result of a coil shift in the superconducting arc dipoles.

With increasing demands for luminosity, optimal per-
formance must be extracted from the existing Tevatron
optics. Local correction of errors and other strong sources
of aberrations is necessary to achieve the desired optical
performance and luminosity. We have, therefore, initiated
a high-order dynamical study of the Tevatron to assess the
performance, functionality and potential of the baseline
lattice. For this study, we are concerned only with the
baseline Tevatron lattice which we consider to be simply
the linear lattice (quadrupoles and dipoles) combined with
the strongest low-order nonlinearities. The strongest
sources of nonlinearities are first, the chromatic correction
and feed-down sextupoles and, second, strong sextupole
and skew quadrupole error fields found in the arc dipoles.
Skew quadrupole errors are very important because they
change the linear lattice. This work describes the nonlinear
performance of the Tevatron lattice with emphasis on the
coupled and increased nonlinear behavior introduced by
the significant skew quadrupole error in combination with
conventional sextupole correction, a behavior still clearly
evident after optimal tuning of available skew quadrupole
circuits. An optimization study is then performed using
available skew quadrupole circuits, and, importantly, local
and global correction of the linear skew terms in maps
generated by the code COSY INFINITY (COSY) [1].

Two correction schemes with one skew quadrupole
family locally correcting each arc and eight independent
correctors in the straight sections for global correction
proved themselves to give the best results and dramatically
improve the linear performance of the baseline Tevatron
lattice. In both schemes, the source of the skew error is
corrected in such a way as to allow the single-family circuit
available to complete the correction and decoupling of the
base lattice, which is technically achieved by fixing the coil
shift in part of the Tevatron dipoles.

2. Tevatron lattice description

The Tevatron lattice [2] is comprised of 6 arcs and 6
straight sections with interaction regions CDF and D0,
occupying two of the straights. The lattice has a simple
periodicity of one, but with no reflective symmetry. Even
the arcs are not perfectly regular, but remain adequately
described by a FODO cell with 72� of phase advance in
each plane. The global tunes are 20.585 and 20.575, in the
horizontal and vertical, respectively, and clearly not split
by an integer as is common in current lattice design.

3. Lattice data and method

First a high-order Taylor series one-turn map of the
Tevatron is generated using the differential algebra code
COSY with the baseline lattice described above. The
different baseline components of the lattice: the chromatic
correction and feed-down families of sextupoles, the skew
quadrupole correctors, the strong skew and sextupole
systematic errors are implemented in such a way that they
could be turned on and off to study individual and
correlated effects on performance and effectively trouble-
shoot the lattice. Initial and updated Tevatron lattice data
plus component strengths were obtained from the input
deck for the code OptiM [3]. An automated converter has
been written to transcribe the OptiM input format to the
language of COSY [4]. The converter itself is written in
PHP [5], so that it is straightforward to perform online
updates or entire conversions of lattices from OptiM to
COSY. For now a conversion exists for the following sets
of elements: dipoles, dipole kicks, pure and skew quadru-
poles, quadrupole kicks, pure and skew sextupoles,
sextupole kicks, solenoids and electric separators. The
generated code is ready-to-use by COSY.

4. Checks of the linear lattice

Linear maps without the skew quadrupole correctors
and errors and linear parameters such as tunes have been
verified and cross-checked with both OptiM and an
independent COSY implementation [6]. The checks on
the proper conversion of the lattice are as follows. First,
beta functions [7] for closed orbit were compared with
OptiM. Quantitative comparison showed less than the
percent level difference. Slight differences are due to a more
realistic implementation of the detector solenoids in
COSY.

5. Simulation details and tracking results

Typically an 11th to 15th order map was required for
complete convergence of nonlinear effects, but lower orders
(7th, for example) provided a quicker check on the
direction of results and optimizations. Particles were
launched at the CDF interaction point in steps of one
sigma (for normalized emittance of 10p at injection
s ¼ 1:2� 10�4 m). Particles were tracked in COSY by
applying the map repetitively for typically 10,000 turns.
Only the injection optics was being studied. It is important
to note that the study is not, per se, a dynamic aperture one
for which particles are launched along phase space vectors
scaled to the linear injection ellipse and the transmitted
transverse phase is mapped. Dynamic aperture studies are
not always informative as to beam dynamics. In a
predominately linear lattice, tracking along a single vector
in one plane of phase space and then the other is sufficient
to trace out the matched ellipse. Particles can be simply
launched along the x- or y-axis, for example. We are
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looking for degradation of linear motion as evidenced by
dissolution or distortion of the linear invariant ellipses.
Since the current study is directed at optimizing linear
performance, this is the approach used for tracking and the
criterion for improvement.

The tracking results presented in this and subsequent
sections are obtained for 10,000 turns with points plotted
every 10th turn, and the scales are 2:4� 10�3 m for x; y axis
and 4:0� 10�3 for a; b axis ða ¼ px=p0, b ¼ py=p0Þ. Track-
ing is performed with a symplectification algorithm written
by Bela Erdélyi [8–11] and calculation order 7. All the
particles are launched either along x- or y-axis, which is
explicitly mentioned in each figure caption. To start
comparing the impacts of different sets of nonlinear
elements, in Fig. 1 phase portraits for linear motion are
shown. This includes only pure dipoles and pure quadru-
poles.

According to the status of the Tevatron before August
2004, With 15% of the skew quadrupole errors removed in
selected dipoles, the otherwise unchanged lattice shows
significantly reduced stability (Fig. 2). The regular struc-
tures disappear and most of the particles can be considered
lost in just 10,000 turns. These phase portraits can be
considered a starting point of the study of different
schemes of the skew quadrupole correction.

6. Skew quadrupole circuits optimization proposals

Each of the Tevatron arcs has 15 FODO cells with skew
quadrupole correctors in every odd-numbered cell, which
means one corrector every two FODO cells. The skew
correctors are placed next to horizontally focusing quad-
rupoles only.

One family of skew quadrupole correctors is not
sufficient to correct all the skew quadrupole errors in
dipoles along the ring. But during the next shutdown
approximately 50% of the coil shift errors in dipoles can be
fixed and in this case one circuit of skew quadrupole
correctors is capable of removing the coupling in the arcs.
The problem here is to discover both the optimal dipole
pattern for error correction and the new strength for the
skew quadrupole correctors.
An optimization where all the strengths of the skew

correctors are different is not practical. All the correctors in
each arc have the same power supply, so it is more realistic
to use one strength for all the correctors arc-wise or even
ring-wise.
The optimization process itself consists of two steps.

First, the optimization of each arc is performed using skew
quadrupole corrector strengths as control parameters. This
optimization would be close to optimal if no skew
quadrupole components existed in the straight sections of
the Tevatron, but there are skew errors and correctors for
the interaction regions. Because of these components and
the residual skew terms from the arcs since the arcs are not
perfectly regular, the skew terms of the one-turn transfer
map has nonzero skew quadrupole terms which require
correction also. To remove this smaller, final stage of
coupling requires a second step to the optimization. In four
of the six straight sections there exist eight skew quadru-
pole correctors and the strengths of these correctors were
used to finish the skew-quadrupole term cancellation in the
one-turn map.
Two optimization schemes were considered which

differed in the dipole pattern used for correcting the skew
quadrupole error. The first scheme, proposed by us,
attempts the elimination of the skew quadrupole error
source predominately in the vertical plane by fixing the two
dipoles flanking each vertically focusing arc quadrupole.
With one degree of freedom corrected, the remaining
predominately horizontal sources can be corrected with
the existing single family of skew quadrupole correctors.
The layout for scheme I is shown in Fig. 3. One arc of the
Tevatron is shown and the others are similar. The dipoles
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Fig. 1. x- and y-plane phase portraits, only dipoles and pure quadrupoles

active, particles launched along x- and y-axis respectively.

Fig. 2. x- and y-plane phase portraits before the optimization, particles

launched along x- and y-axis, respectively. The phase portraits include all

sextupole and skew quadrupole fields (correctors plus errors) in addition

to quadrupoles and dipoles where 15% of the skew quadrupole errors

have been removed in specific dipoles.

Fig. 3. Correction scheme I, the skew quadrupole error is removed in

dipoles in each cell surrounding the defocusing quadrupole.

P. Snopok et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 142–146144



with skew quadrupole errors are marked with the ‘‘D � 2’’
symbol, fixed dipoles—with the ‘‘D � 2 FIX’’ symbol. The
vertically focusing main quadrupole is marked with ‘‘DQ’’
as it is defocusing in the horizontal plane.

The results of the two-stage optimization are shown in
Fig. 4. Phase portraits show much more stability, though
this scheme is not perfect due to the deviation from
completely periodicity in the arcs. However, this scheme
was also found to be the most robust to any lattice
alterations than the second one which is described next.

The second approach proposed by Michael Syphers [12]
is to correct the skew quadrupole errors in each FODO cell
missing a skew quadrupole corrector. This scheme was
further improved upon by removing specific correctors
from the single family to provide more consistent correc-
tion in each arc as a function of fractional phase advance.
The underlying idea is to correct the error locally at the

source and remove it from cells without local correction.
This scheme gives improved performance, particularly
using one corrector strength across all arcs. Phase portraits
for scheme II are shown in Fig. 5. The layout for the
scheme is given in Fig. 6. Skew quadrupole errors reside in
odd cells with skew quadrupole correctors marked with
‘‘SQC’’. Removing part of the correctors improved
performance further and these removed correctors are
marked with ‘‘SQC RMV’’.

7. Conclusions

With all the skew quadrupole errors in dipoles, one
circuit of skew quadrupole correctors is not sufficient or
requires moving correctors, which is disruptive and
expensive. With half of the errors fixed in the dipoles,
one set is sufficient to achieve far reaching correction, and
with all correctors in the ring set to equal strengths. One of
these two schemes is to be implemented during the
Tevatron shutdown in August 2004.
The code used, COSY INFINITY allowed tracking to be

performed for a very large number of revolutions in a very
short time. For example, the whole cycle of calculations,
including one-turn transfer map calculation, skew quadru-
pole correctors circuits optimization and 10,000 revolution
high-order (7th order) tracking, runs for 5–10min on Intel
Celeron 1.5GHz with 256Mb of RAM. For 11th order, the
same task requires 8–12 h. However, 7th order was
sufficient to judge improvements and optimization in
preparation for the longer, final simulations.
With the skew quadrupole corrector circuits optimized

and the dynamics uncoupled, the next study step might be
to address the sextupole families and optimization of
conflicts between the chromaticity and feed-down sextu-
poles which was also observed in this study.
Further study should also address possible effects of

fringe fields. At this point, such simulations are not easily
possible since detailed shapes of fringe field fall-off are not
readily available.
Also, in the future normal form methods [13] and

methods of control theory [14] might be employed for
solving such problems. Normal form methods are effective
for long-term stability study, and variational methods
along with automatic differentiation algorithms implemen-
ted in COSY make it easy to study the behavior of the sets
of trajectories of the perturbed motion with respect to the
reference particle dynamics. This perturbed motion is then
minimized using control theory techniques.
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Abstract

In this paper is represented the results of beam profile measurements of 3He+ beam delivered from ECR ion source at KVI. The beam

emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations

along the transport beam line shows that beam emittance in the both, horizontal and vertical planes is not conserved. That means there is

a strong-coupling effect and/or the beam is losing through the transport line.

r 2005 Published by Elsevier B.V.
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1. Introduction

The beam current of 3He+ beam at the beginning of the
transport injection line is about 20 mA but at its ending
(after matching section) is only 4 mA. To improve the
transmission of the beam through the injection beam line
the beam emittance should be known. Beam profile is
measured at the three different positions along the beam
transport line and in the both planes, horizontal and
vertical, by using profile grids. At each position of the
profile grids the beam profile is measured as a function of
the strength of an upstream quadrupole. First, horizontal/
vertical profile grid (marked by letters HH1/HV1 in Fig. 1)
is located 7:17=7:27m downstream from the ion source,
second profile grid (HH2/HV2) is located 10:20=10:30m
and the third one (HH4/HV4) is located 15:40=15:41m
downstream from the ion source.

Data from the profile grids are digitized, acquired and
processed by Control System. For the each m setting of the
strength of an upstream quadrupole the profile data are
fitted to the Gauss distribution [1,2].

2. Results

The characteristics of the 3He+ beam are: kinetic energy;
Tk ¼ 8:33 keV=n, magnetic rigidity; Br ¼ 0:0394Tm, elec-
trostatic rigidity; wE ¼ 0:05MV.
The length of each electrostatic quadrupole is 12 cm and

half of their aperture is 5 cm.
For each settings of the corresponding quadrupole it is

measured the beam profile in the horizontal or vertical
planes. Then each beam profile is fitted as the Gauss
distribution. The estimated values for the emittance and its
corresponding error at different profile grid position along
the transport beam line are presented in Table 1. We
consider the case when the half beam profile is equal
2:35sST, where sST is the standard deviations of the Gauss
distribution. Due to the space limited we will here
presented dependence, on the quadrupole strength, of the
3He+ beam profile at the profile grid HH2 and HV2 (see
Figs. 2 and 3).
In the case of the horizontal plane it is noticed slightly

increasing of the beam emittance along the transport line.
In the case of the vertical plane there is a suddenly take-off
at the HV4 profile grid position. We can see from the
Table 1 that the beam emittance in the vertical plane is
slightly bigger than the beam emittance in the horizontal
plane ey4ex.
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The estimated values for the beam emittances at the
different profile grid locations along the transport beam
line shows that the beam emittance in the both planes is not
conserved. The fact that the beam current decreases
through the transport beam line means that the beam
emittance is not conserved not only due to of a strong
coupling effect but also due to the losing of the beam
through the transport line.

The expression for the emittance’s error is given by

Dey ¼
1

2ey

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds233s

2
44 þ Ds244s

2
33 þ 4Ds234s

2
34 þ dy

q
(1)

where dy is the coefficient of interrelation between s33, s34
and s44 given by

dy ¼ � 4s33s34r3444Ds34Ds44
þ 2s33s44r3344Ds33Ds44
� 4s34s44r3334Ds33Ds34. ð2Þ

In the upper equations rij kl are the corresponding
correlation coefficients between the elements of the beam
matrix sij and skl .
Similar equations as Eqs. (1) and (2) are valued for ex

and Dex.
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Fig. 1. Layout of the low-energy beam line at KVI.

Table 1

3He+ V ex ¼ 25kV

Profile’s grid position ex ½pmmmrad� ey ½pmmmrad�

HH1 & HV1 2872 4275

HH2 & HV2 3771 5471

HH4 & HV4 5271 190710

Fig. 2. Square of the horizontal beam size versus strength of the

quadrupole 10.20m upstream from the measurement point. The points

are experimental data and the full line is the best fit curvature. r and rij kl

are the corresponding correlation coefficients.

Fig. 3. Square of the vertical beam size versus strength of the quadrupole

10.30m upstream from the measurement point. The points are experi-

mental data and the full line is the best fit curvature. r and rij kl are the

corresponding correlation coefficients.
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3. Conclusion

By beam profile measurements and prediction of
the beam emittance at the different position along the
transport beam line it is shown that the reason for
the beam current dropping can be the over-focusing in
the vertical plane produced by bending magnet M72. To
eliminated this suspicious more diagnostic elements before
and after M72 magnet should be placed.
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Abstract

In this paper, we present an algebraic approach for beam dynamics simulation in linear and circular accelerators. A two- and three-

dimensional distribution function approach is employed within the matrix formalism for Lie algebraic methods and computer algebra

codes. Implementing software design provides the code rather good maintainability, reusability, and extensibility. This approach is an

alternative to well-known Particle-in-Cell approach. But it can be easily applied to the PIC-approach and thus to make better their

effectiveness. As a required demand, the code also include symplectic integration methods (based on a correcting procedure for

aberration matrices) up to an approximation order.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Increasing interest in high intensity beams leads us to
necessity more accurate selection of a mathematical back-
ground for created programming tools. This remark
becomes actual especially for studying high intensity
beams. The most popular method for similar problems is
particle-in-cell (PIC) simulation method. But, as it is
known, that parallelization procedure for the forces acting
on particles due to the inter-particle Coulomb field is very
intricate and complex (see, for example, Ref. [1]). In this
approach the corresponding computing process is based on
the well known architecture Single Instruction Multiple
Date (SIMD). Indeed current phase data play a role of
multiple date and methods of evolution equation solution
(including evaluation of space charge forces) play a role of
a single instruction. The main load on computational
resources is defined by larger number of numerical particles
and used grid resolution for realization of the PIC-scheme.
It is obviously that the number of numerical particles is
restricted by grid resolution, which for its part is restricted
by number of downloaded processors. The main problems

of similar approach concern first of all with used methods
for numerical integration of motion equations. Besides the
pointwise presentation of a beam phase portrait leads to
difficulties of parallelization procedure realization.
In this report, we suggest an approach for beam

evolution simulation based on Lie algebraic tools on the
one hand and model distribution function for beam phase
portrait description on the other hand. This approach
allows us to use powerful mathematical tools—algebraic
and group-theoretical methods. In particular, this permits
to build any kind of special construction for the beam
propagator M—beam evolution operator. In the second,
we are permitted to apply the algebra and group
representation theories, first of all for Lie algebras and
Lie groups. In particular this leads to a possibility of usage
of the matrix formalism for Lie algebraic tools [2]. Here we
note that the matrix formalism, based on usual matrix
algebra, should be supplemented by Kronecker operations
(product, sum and others). Just this allows us to realize
parallel and distributed computing without difficulty.

2. Mathematical background

Let us describe some main features of the mathematical
tools underlying in the suggested approach. This tools is
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based on the priority of map idea, which originate (at least
in beam physics) in works of A.J. Dragt [3].

2.1. The lie algebraic tools for a beam propagator

Let

dX

ds
¼ FðX;U; sÞ (1)

be a motion equation for beam particles in external and
space–charge fields, s—a length measured along some
reference orbit. Here the vector UðsÞ describes control
functions corresponding to guiding and focusing fields.
According to the map technique any solution of Eq. (1) can
be written in the form

XðsÞ ¼MFðU; sjs0Þ � X0; X0 2M0

where M ¼MFðU; sjs0Þ is so-called Lie map (transforma-
tion), associated with the vector function F from Eq. (1)—a
beam propagator. This map satisfies the following operator
equation:

dMFðU; sjs0Þ

ds
¼LFðsÞ �MFðU; sjs0Þ

MFðU; s0js0Þ ¼ Id

where LFðU; sÞ is a Lie operator. In general case this map
can be written in the form of so-called time chronological
exponent operator (according to the chronological Volter-
rá series)

MFðU; sjs0Þ ¼ T exp

Z s

e0

LFðU;tÞ dt
� �

.

For non-autonomous systems the so-called Magnus’s
representation [4] can be used. This approach allows to
pass to a routine exponential operator.

MFðU; sjs0Þ ¼ exp

Z s

e0

LGðU;sjtÞ dt
� �

where G is a new vector function, generated by the initial
function F. The connection between these function can be
evaluated using the techniques presented in Refs. [4,2]. In
particular, the expansion of the function FðX; sÞ

FðX; sÞ ¼
X1
k¼0

P1kðsÞX½k�

generates an expansion of the function

GðX; sjs0Þ ¼
X1
k¼0

Gkðsjs0ÞX
½k�,

which appears in the Magnus’s representation and one can
write

Mðsjs0Þ ¼ exp
X1
k¼0

LGkðX;U;sjs0Þ

( )
(2)

where GkðX;U; sjs0Þ ¼ GkðU; sjs0ÞX
½k�. The similar to the

Dragt–Finn factorization for the Lie transformations

allows to rewrite the exponential operator Eq. (2) as an
infinite product of exponential operators of Lie operators

M ¼ . . . � expfLH2
g � expfLH1

g

¼ expfLV1
g � expfLV2

g � . . .

where Hk ¼ HkX
½k�, Vk ¼ VkX

½k� are homogeneous poly-
nomials of kth order. The matrices Hk or Vk can be
calculated with the help of the continuous analogue of the
CBH and Zassenhauss formulae and by using the
Kronecker product and Kronecker sum technique for
matrices [2]. Moreover, using the matrix representation for
the Lie operators one can write a matrix representation for
the Lie map generated by these Lie maps (transformations)

M � X ¼M X1

¼ ðM10M11M12 . . .M1k . . .ÞX1

¼
X1
k¼0

M1kX½k�

where X1 ¼ ð1XX½2� . . .X½k� . . . Þ�, and matrices M1k (aber-

ration matrices) can be calculated according to a recurrent
sequence of formulae of the following types:

Mk � X
½l� ¼ expfLGk

g � X½l�

¼ X½l� þ
X1
m¼1

1

m!

Ym
j¼1

G�ððj�1Þðk�1ÞþlÞ
m X½mðk�1Þþl�.

Here G�l
¼ G�ðl�1Þ � Eþ E½l�1� �G denotes the Kroneck-

er sum of the lth order.
It is well known that Lie algebraic method preserves

qualitative symplectic property residing to any Hamilto-
nian system. But in practice we have to truncate series
presenting Lie maps. This procedure leads to symplectic
property loss, and as a consequence to loss of occurrence
one or another effect. The used matrix formalism allows to
correct aberration matrices M1k, 8kp 2 [5]. This procedure
adds up to some linear algebraic equations with a simple
structure. As a result we obtain a truncated beam
propagator, which guarantees symplecticity up to some
desired approximation order N (desired precision). More-
over, corresponding solutions can be easy solved using
computer algebra codes, such as Maple or Mathematica.

2.2. Particle beam distribution function

For the distribution function describing the beam
particle at some moment one can use different kinds of
presentation types. One of them is based on a symbolic
form for distribution function (phenomenological function
type), generated from experimental data or some another
information. As an example we can use the following
pseudo-normal distribution (in the case of a symmetric
character of particle distribution):

f 0ðXÞ ¼ Q2mðXÞe
�P2nðXÞ (3)

where Q2mðXÞ, P2nðXÞ are polynomials of the 2mth and
2nth order correspondingly. Coefficients of these poly-
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nomials are determined from experimental data fully or
partly. In the last case the remainder coefficients can be
determined from other information or used as control
parameters.

The other function type uses two types of following
Taylor series expansions. Here we have two forms of such
presentation. In general case one can write

f 0ðXÞ ¼ f 0
0 þ

X1
k¼1

F�0kX
½k�, (4)

with f 0
0 and F0 k as a scalar coefficient and vector

coefficients. In the case of elliptical symmetry of the beam
phase portrait has the form

f 0ðXÞ ¼ f 0
0 þ

X1
k¼1

akK2k
0 ðXÞ (5)

where K2ðXÞ is a quadratic form, describing the phase
ellipsoid (in 4D- or 6D-phase space). According to the
algebraic Lie methods (see, for example, Ref. [3]) one can
write for the current distribution function

f ðX; sÞ ¼ f 0ðM
�1 F; sjs0ð Þ � XÞ. (6)

For the inverse map M�1: X! X0 ¼M�1 � X one can
compute the corresponding block-matrices Tik using the
generalized Gauss’s algorithm. Here it is necessary to note
that only M11 should be inverted. The rest block matrices
are evaluated using usual matrix operations: multiplication
and summation. So one can write the following matrix
presentation for Eq. (6):

f ðX; sÞ ¼ f 0

X1
k¼0

T1kðF; sjs0ÞX
½k�

 !
.

So, similar formulae allow us to evaluate current distribu-
tion function for any moment s. In the case, when the space
charge forces may be neglected, this approach provides
effective tools for practically all problems of beam physics.

2.3. The case of space–charge dominated beam

The physical system for beam dynamics investigations
consists of the beam (the subject of control) and the control
system (the object of control), which in turn consists of
accelerating and focusing elements (in our terms—control
elements). So all types of forces acting on particles can be
separated in externally applied fields and the inter-particle
Coulomb field.

In the case, when the second type of forces have an
influence upon the beam dynamics the described approach
should be added by some procedures, see, for example,
Refs. [2,6]. In this paper, we suggest to combine the matrix
formalism for Lie algebraic methods with the well-proved
PIC tools, which has the form of 2D- and 3D-dimensional
versions.

Usually the particles dynamics is written with the help
the Poisson-Vlasov system of equations. Let us remember
that in our case the longitudinal independent variable s is

used rather than the time t. The Vlasov equation for the
distribution function f ðX; sÞ ¼ f ðQ;P; sÞ can be written as

q
qs
þ V

q
qQ
þ F

q
qP

� �
f ðQ;P; sÞ ¼ 0

where X ¼ fQ;Pgn and F ¼ FðE;B; sÞ is the Lorentz force,
written in the chosen coordinates system [2]. For space
charge fields we use the Poisson equation, written in the
form

rfðQÞ ¼ �
rðQÞ
e

,

rðQÞ ¼
Z

MðsÞ

f ðQ;PÞdP (7)

where M ¼MðsÞ is a current manifold occupied beam
particles at the moment s. We suppose that for a current
distribution function f ðX; sÞ we can apply one of the
presentations Eqs. (3)–(5) (in the case of Eq. (3) we also use
series presentation like Eqs. (4) or (5) up to some
approximation order N). This presentation allows us to
find solution of Eq. (7) also in the form of series on Q (see,
for example, Ref. [6]). We suppose that the beam size is
much smaller than the inside wall radius of the machine.
This permits to treat the beam as an isolated system. In
such a case, the necessary concatenation procedure leads us
to an algebraic equations for determination of the above
mentioned indeterminate coefficients of corresponding
truncated series.
Similar approach leads us to a polynomial presentation

in a symbolic mode for self-fields with some indeterminate
coefficients, which have to determine using boundary
conditions for every cell of our particle grid. A two-
dimensional schema of beam particle decomposition in the
transverse configuration subspace is shown in Fig. 1. The
solid lines define the domain boundaries. Each processor
contains one rectangular block domain which contain
equal number of particles. This domain separation allows
us providing each processor with an equal computational
load. If a particle drops out of the local current domain, the
necessary information is sent to the corresponding
processor where the particle is located. The transfer of
this information is managed using corresponding MPI
commands.
In this paper, we calculate the self-beam-field in a

different way, using numerical procedure for a variant for
the PIC method. But such computing has a special form
meant for the matrix presentation of the beam propaga-
tors. In other words the aberration matrices M1k

ext

corresponding to external (control) fields are evaluated
up to some approximation order N using symbolic
formulae (see above), while the M1k

self are computed on
the base of the PIC codes. We keep the matrix form for the
beam propagator M: MN ¼ ðM11; . . . ;M1N Þ as this allows
us to use all advantages of the matrix algebra in parallel
computing. Here we should note that the PIC codes admit
enough simple parallelization procedure, which can be
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come to an agreement about matrix form for the beam
propagator.

3. Computer model generation

The described approach of the problem solution are
based on some linear algebra operations, which applied to
any kind of objects having a vector or matrix nature. These
operations form a mathematical core of our computer
codes (which are adequate to using computer architecture),
and just these operations are parallelized in the first place.
Here one can use usual parallel tools employed for parallel
computers.

3.1. Computer algebra and knowledge bases

The desired solutions are created in the form of power
series up to an approximation order N. For most practical
problems it is enough to evaluate the matrices P1k, Gk, Hk,
Vk and M1k up to third order in symbolic forms using the
computer algebra codes (in our case Reduce and Maple).
For some other types of ion-particle machines these
matrices are computed up to fifth order, in particular for
the nuclear microprobe (see, for example, Ref. [7]). These
tools have algebraic character and can be easily realized on
parallel computers.

3.2. The map creation

Knowledge of the Lie map Mðsjs0Þ in the matrix form
(see Eq. (2)) allows to create necessary criteria for beam

line working and current images MðsÞ ¼Mðsjs0Þ �M0,
where M0 is an initial beam phase portrait. We should note
that the approximation order N has to make consistent
with the order of approximation for the external and
certainly for space charge fields. In this approach one
follows current phase beam portraits. These portraits allow
to calculate additional criteria of beam evolution. From
computing point of view this approach has two levels of
realization too. The map computing is based on a set of
ready matrices M1k

extðsjs0Þ for different accelerator elements
calculated in symbolic forms (using computer algebra
codes Reduce and Maple). These matrices are the fulfil-
ment of the corresponding database. The self-field matrices
are calculated numerically.
As the matrix algebra admits the parallelization in a

natural way, then one can calculate necessary criteria using
only matrix elements of current matrices M1k, kpN (see,
for example, Ref. [8]).

3.3. Additional modules

The above described approach has an intermediated
character. Indeed the block matrices for external and self-
consistent fields (M1k

extðsjs0Þ and M1k
self ðsjs0Þ) are calculated

using sufficient different approaches. Here we waste an
advantages of the matrix formalism. Therefore it will be
very useful to constraint an approach permitting to
evaluate M1k

self ðsjs0Þ using the matrix formalism too, for
example based on the approach suggested in Refs. [2,6].
For this purpose the PIC codes are suggested for a
distribution function approximation in some class of model
distribution function. This allows us in future to pass to
matrix presentation for all block matrices, which corre-
spond both self and external fields. This approach was
approved for some test problems [7].
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Available online 29 November 2005

Abstract

For the realistic simulation of electron sources using field emitter arrays, the sub-micron resolution required for the emitters leads to

simulation models not suitable for current serial codes. Thus, a parallel high-performance 3D Particle-In-Cell code, called Capone, has

been implemented in C++ using the POOMA II framework on the Linux platform. Sophisticated C++ expression templates

techniques deliver Fortran performance combined with high-level programming and development comfort. For the computation of

external fields, matching parallel field solvers are in development with the electrostatic one being completed.

The Maxwell field solver is based on the Finite Integration Algorithm on a non-uniform rectilinear grid. Anisotropic � and m constants

and perfect electric/magnetic materials stored in triangulated grid cells are supported as well as open, electric and magnetic boundary

conditions. Self-consistent macro-particle pushing is accomplished by integrating the classical relativistic equations of motion in

combination with charge-conserving current scattering onto the computational grid.

Parallelization is performed by partitioning the calculation domain into patches associated to individual processors. Fields are

statically distributed while Particles are concurrently distributed to processors according to their position to allow fast local

interpolation.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Physical background

After the successful completion of the synchrotron light
source project SLS at the Paul Scherrer Institut (PSI), PSI
is looking forward at options for a Free Electron Laser
(FEL) used as a complementary research tool to the SLS.

Our focus is on compact Angstrom wavelength FEL
sources with a modest beam energy and a short saturation

length of the undulator. The challenge is the required
quality of the generating e� beam, mainly determined by
the electron source. The upper limit for the required
transverse emittance scales with the beam energy. A
compact FEL working at reduced beam energies needs
emittances orders of magnitudes below current designs.
Our design goal is in the order of a few times
10�2 mmmrad.
The current approach towards a suitable electron source

consists of using field emitter arrays (FEA) as a cold, high
intensity electron cathode [1]. This cathode is used in a DC
gun, driven by a 1MV, 200 ns FWHM pulse [2], which is
currently under development.
An example for a field emitter structure suited to our

application is shown in Fig. 1. Here, the required field is
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applied via a conducting gate layer at a distance in the mm
range from the substrate. The small distance yields
relatively small turn on voltages in the order of 100V,
which in turn allows the use of fast pulse electronics to
create short pulses. Having only a gate would lead to a
divergent beamlet. In order to combine an array of these
beamlets minimizing the emittance of the total beam, an
additional focusing layer is mandatory, acting as a set of
electrostatic lenses, thus creating an array of parallel
beamlets.

1.2. Simulation strategy

Given the complexity of the problem, the dynamics of
the emitted electrons in a given setup can only be simulated
with a self-consistent, parallel 3D Maxwell Particle-In-Cell
(PIC) code consisting of a Maxwell field dynamics solver, a
static field solver and a relativistic particle pusher.
Currently, a reasonable spatial resolution in 3D cannot
be accomplished without parallelization due to high
memory needs. Existing available codes like MAFIA [3]
are either not fully 3D, not self-consistent, restricted to
special cases or are only serial, and therefore not suited to
our problem.

Over the last two years, a massively parallel high-
performance 3D Maxwell PIC code has been implemented
in C++ using the POOMA II framework for parallel
computing on the Linux platform. Sophisticated C++
expression templates techniques deliver Fortran perfor-
mance combined with high-level programming and devel-
opment comfort. The simulation code is compatible to
MAFIA’s PIC modules TS2/TS3 which are used as
reference. The code is called Capone, which stands for
Charged Accelerated Particles Outta Next-generation
Emitters.

2. Methods

2.1. Dynamic field solver

The numerical simulation of the electromagnetic field
dynamics uses the Finite Integration Technique (FIT) [4].

A complete discretization of the calculation volume on
two dual rectilinear grids G, ~G is done, described by cells
with volumes Vi, ~Vi, cell faces Ai, ~Ai and grid lines Li, ~Li.
Integrated field components ej ¼

R
Lj

~E d~s etc. are stored at
positions indicated in Fig. 2.
Maxwell’s equations are mapped to this topological

space, using discrete curl and divergence operators C, ~C, S,
~S as well as discrete material operators D�, Dm, resulting in
the following set of discrete Maxwell’s equations:

Ce ¼ �
qb

qt
(1)

~Ch ¼
qd

qt
þ j (2)

~Sd ¼ q (3)

Sb ¼ 0 (4)

d ¼ D�e (5)

b ¼ Dmh. (6)

Non-homogeneous distributions of � and m are permitted,
with material boundaries given by cell boundaries and cell
diagonals. In addition to Dirichlet and Neumann bound-
ary conditions, open boundaries have been implemented.
The system is solved in the time domain by integrating

the two curl equations using the leap frog algorithm [13].
Due to the orthogonality of the discrete curl and div
operators, the continuity equations remain fulfilled
throughout the iteration process. There is no systematic
accumulation of spurious space charges [5].
The discrete electric current density j in (2) is obtained

with a Nearest-Grid-Point (NGP) scatter interpolation in
combination with a scheme fulfilling the continuity
equation in discrete space [6]. A spatial filter is used to
smoothen the electric current density at every time step.

2.2. Static field solver

For the generation of a consistent initial electrostatic
field solution, exactly the same grid and the same
material distribution as for the FIT solver are used. In
our parallel approach, we are using an iterative conjugate
gradient solver together with an incomplete Cholesky
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Ãi

Li

hi bi

L̃i

ei diji

Fig. 2. Topological structure of the Finite Integration Algorithm.

A.E. Candel et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 154–158 155



preconditioner IC(0) with additional red/black checker-
board type domain decomposition. For details on these
techniques, see e.g. Ref. [7].

2.3. Particle dynamics

Like in MAFIA, electron macro-particles are created
inside of designated source materials and drift towards the
emission surface with their initial velocity where they start
to interact with the fields. Time distribution as well as the
various initial position and momentum distributions are
given by user input and are independent of local field
strengths.

Adapting a leap-frog scheme for the numerical integra-
tion of the classical relativistic collisionless equations of
motion, the following equations are obtained [8]:

~rnþ1
¼~rn
þ Dt

c

gnþ1
~unþ1 (7)

~unþ1
¼ ~un
þ Dt

q

m0c
~E

nþ1=2
þ

c

gnþ1=2
~unþ1=2

^ ~B
n

� �
(8)

where ~u is the normalized momentum, time steps are
indicated by superscripts and ~E; ~B are interpolated super-
positions of static and dynamic fields at the particle
positions using a first-order cloud-in-cell scheme.

The implicit momentum Eq. (8) is solved by using an
explicit scheme [9], splitting the momentum update into an
electric acceleration of error OðDt2Þ and a magnetic
rotation of error OðDt3Þ.

3. Implementation and parallelization

3.1. Program structure

Capone is based on the C++ POOMA II framework on
the Linux platform and uses LAM MPI for parallelization
[10,11]. A schematic of the program structure is shown in
Fig. 3.

Efficient parallelization is performed by partitioning the
calculation domain into patches associated to individual
processors. Fields are statically distributed with an over-
lapping guard layer to optimize communication. Particles
are concurrently distributed to processors according to
their positions. The disadvantages of this approach are a
strong dependency of the parallelization efficiency on the
particle distribution and communication overhead. The
advantage is having fast local interpolations for one of the
most CPU intensive parts of the code.

3.2. Parallel scaling

One a single CPU, needed computational resources are
comparable to MAFIA. With 64 CPUs, the Maxwell solver
has a parallel scaling performance of about 70% and shows
no saturation. The scaling performance of the PIC module

is slightly less, depending strongly on domain partitioning,
particle distribution and relative network speed.

4. Results

4.1. DC gun parameters

The DC gun geometry used in the simulations is shown
in Fig. 4. It is a simple diode configuration with a gap of
2mm and a gap voltage of 1MV. For reduced surface
fields, the iris opening has an elliptical rounding. The beam
at the 0.5mm diameter cathode surface is assumed to
correspond to a parallel beam at the exit of the FEA
focusing layer. The initial transverse momentum spread,
which we would expect to be of an order of 200–300meV,
is assumed to be zero. Initial longitudinal electron
momentum is set to about 100 eV, which is the value we
expect at the exit of the focusing layer. In all simulations,
the longitudinal distribution is assumed to be Gaussian
with FWHM pulse durations of either 20 or 2 ps. The total
charge is chosen such that the peak current was 5A in all
cases. Transversal distributions are assumed to be uniform
and circular.

4.2. 3D PIC simulations

4.2.1. Validation with MAFIA TS3

Validation of Capone against the MAFIA TS3 3D PIC
module is presented in the following. A discretization of the
full (‘‘4/4’’) DC gun with 4.4M grid points ð127� 127�
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273Þ is used for both codes. 90k macro-particles are used to
simulate a bunch of 20 ps (FWHM) duration. This problem
size is near the limit of MAFIAs current capabilities, with a
highest spatial resolution in the beam region of 30mm.

A detailed comparison of the particle phase space
distributions at a fixed point in time is done, as shown in
Fig. 5 and Table 1.
For the given temporal snapshot, the bunch spans

almost the entire longitudinal calculation domain and the
first particles have already left the upper boundary at
z ¼ 14mm. For a given MAFIA TS3 particle dump, the
selected time step in the Capone calculation is chosen such
that the corresponding mean longitudinal positions are as
equal as possible (hzi ’ 7:671mm). The difference is less
than the change in one time step. Excellent agreement is
found.

4.2.2. Simulation of FEAs

One motivation for the simulations presented in the
following is to compute the effect of the granularity in the
current density distribution due to an emitter array, as
compared to a smooth density expected from e.g. a photo-
cathode. A second question is the influence of imperfec-
tions in the homogeneity of real-life FEAs on the beam
quality.

The performance of FEAs is typically degraded by
several effects. First are variations in the emission of
individual tips due to production and aging. Typically only
a part of the emission sites contributes to the beam, with
some global, highly correlated variation over the whole
region.
Another effect inherent even in perfect field emitters is

noise in the emission current due to adsorbate diffusion
and adsorbates switching between emission states [12]. For
low current emission at room temperature, the switching
adsorbates jumping between emission sites leading to
current variations is the dominant process. The resulting
current fluctuations are in the millisecond range. Talking
about the whole array, the noise effects from individual tips
are uncorrelated.
In the following, we present simulation results showing

the effect of uncorrelated tip-to-tip failure, where indivi-
dual field emitters are switched off with a given probability.
A discretization of one symmetrical quarter of the gun

with 8M ð158� 158� 310Þ grid points with focus on good
transverse resolution of 4mm in the beam region is used.
Up to 2000 beamlets with FWHM pulse durations of 2 ps
are emitted from a circular emitter array of r ¼ 0:25mm
with a pitch of 10mm and local emitter radii of 1mm.
Failure probabilities of the individual emitters are varied
from 0% to 80%. Total peak current of 5A and number of
macro-particles of 200k are kept constant in all cases.
Fig. 6 shows the effect on transverse particle distribu-

tion. Some minor differences in transverse phase space can
be observed, leading to an rms emittance growth as shown
in Fig. 7. Growth of the normalized slice emittance at the
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Fig. 5. Comparison of Capone (left) to MAFIA TS3 v4.106 (right)

calculations. Shown here are transverse phase space plots, ux is normalized

momentum, x-positions are indicated in mm.

Table 1

Diagnostics of particle phase space snapshots at mean longitudinal

position hzi ’ 7:671mm

Capone MAFIA TS3

# of macro-particles 89734 89735

hzi=mm 7.6712 7.6717

hEi=keV 996.6 996.5

sE=keV 31.84 31.84

sr=mm 0.3906 0.3908

sr0=mrad 35.733 35.760

�nx=mmmrad 3.9180 3.9236

Both Capone and MAFIA TS3 calculations are done with the same

discretization of 4.4M grid points and 90k macro-particles and show

excellent agreement within statistical errors.

Fig. 6. Effect on transversal particle distribution and phase space for FEA

simulations with 0% and 80% failure probability, at z ¼ 9mm. Positions

are indicated in mm.
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center of the bunch from 2:5� 10�2 mmmrad (0% failure
probability) to 4:1� 10�2 mmmrad (50%) and 7:7�
10�2 mmmrad (80%) is shown in Fig. 8.

5. Conclusion

A self-consistent, parallel high-performance 3D Maxwell
PIC code, called Capone, has been implemented using the
C++ POOMA II/MPI framework on Linux. The code
has been designed for the simulation of DC guns and is
validated with MAFIA. First results on simulations of field
emitter arrays show the feasibility of detailed studies where
high resolution accuracy is required to resolve highly non-
linear space-charge effects.
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Abstract

We previously developed an adaptive semi-Lagrangian solver using a multiresolution analysis based on interpolets which are a kind of

interpolating wavelets introduced by Deslauriers and Dubuc. This paper introduces a new multiresolution approximation for this solver

which allows to conserve moments up to any order in the thresholding step by using the lifting method introduced by Sweldens.

r 2006 Published by Elsevier B.V.
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1. Introduction

The model we consider throughout this paper is the
nonrelativistic Vlasov equation

qf

qt
þ v � rxf þ

q

m
ðEþ v� BÞ � rvf ¼ 0 (1)

where the self-electric field E is computed from Poisson’s
equations. The magnetic field is external and considered to
be known.

The numerical solution of the Vlasov equation is usually
performed by particle-in-cell (PIC) methods, which are
known to suffer from numerical noise. To remedy this
problem and obtain a more accurate description of the
distribution function, methods discretizing the Vlasov
equation on a mesh of phase-space have been proposed
[1–3]. In order to avoid the high numerical cost of such
methods using a uniform and fixed mesh, we develop
adaptive methods.

Our adaptive method is overlaid on a classical semi-
Lagrangian method. Adaptivity, that is refinement or
derefinement of the mesh, is based on a multiresolution
analysis (Section 2, see Ref. [4] for more details). In the
present work, we focus on moment conservation for the
Vlasov equation during the thresholding step. This ensures

in particular that the total number of particles is conserved.
We explain (Section 3) how to use the lifting procedure
introduced by Sweldens [5] in order to ensure this
conservation of moments. Relevant numerical results are
presented in Section 4.

2. Multiresolution analysis

The semi-Lagrangian method consists in computing
point values of the distribution function on a grid of
phase-space. It consist of two steps, an advection step
needed to determine the origin of the characteristics ending
at the grid points and an interpolation step which is used to
compute the value of the distribution function at these
points. The multiresolution approximation will be used to
minimize the number of interpolation points for a given
approximation error.
First, we define an infinite sequence of nested grids
ðGjÞj2Z, where j is called the level of the grid, the grid points
being located at x

j
k ¼ k2�j. In order to define an adaptive

grid, we want to compare a function f defined by its values

ðc
jþ1
k ¼ f ðx

jþ1
k ÞÞk2Z on a finer grid Gjþ1 to its restriction

ðc
j
k ¼ f ðx

j
kÞ ¼ f ðx

jþ1
2k Þ ¼ c

jþ1
2k Þk2Z on a coarser grid Gj. For

this purpose, we need a prediction operator to define an
approximation of f ðx

jþ1
2kþ1Þ ¼ c

jþ1
2kþ1 from the ðc

j
kÞ. Using

an odd degree Lagrange interpolation polynomial P2N�1,
this approximation is given by P2N�1ðx

jþ1
2kþ1Þ and the
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approximation errors, called details in wavelet terminol-
ogy, are given by

d
j
k ¼ c

jþ1
2kþ1 � P2N�1ðx

jþ1
2kþ1Þ ¼ c

jþ1
2kþ1 �

XN

n¼1�N

anc
jþ1
2kþ2;. (2)

This can be formulated in the framework of biorthogonal
wavelets introduces by Cohen et al. [6]. The above
decomposition of f can also be expressed using basis
functions j, named scaling function, and c, named
wavelet, such that cðxÞ ¼ fð2x� 1Þ:

f ðxÞ ¼
X

k

c
jþ1
k jjþ1

k ðxÞ ¼
X

k

c
j
kj

j
kðxÞ þ

X
k

d
j
k c

j
kðxÞ (3)

where jj
kðxÞ ¼ jð2jx� kÞ and cj

kðxÞ ¼ cð2jx� kÞ. For
interpolating polynomials P2N�1, the values an defined in
Eq. (2) are a0 ¼ a1 ¼

1
2
and else an ¼ 0 for degree 1, and

a�1 ¼ a2 ¼ �
1
16, a0 ¼ a1 ¼

9
16 and else an ¼ 0 for degree 3.

The scaling function j and wavelet c for the corresponding
values of N are displayed in Figs. 1 and 2.

We now consider the thresholding. From Eq. (2), we
note that the improvement of approximation is locally
important around grid point 2�jð2k þ 1Þ when the detail d

j
k

is large, and conversely small when the detail is small.
Hence the representation of a function at level j þ 1 can be
compressed with a controlled approximation loss by setting
to 0 the details with an absolute value less than some given
threshold �j40 depending on the level j.

Thus, in the decomposition formula (3), we eliminate
terms d

j
kc

j
k such that jd

j
kjo�j and we can bound the error

committed because of this thresholding process as follows:

kes
jþ1kLp ¼

X
kjd

j

k
o�j

d
j
kc

j
k

������
������

Lp

p
X

kj jd
j

k
jo�j

jd
j
kjkc

j
kkLp

p�j

X
kj jd

j

k
jo�j

2�j=pkckLp ð4Þ

p�j2
�j=pkckLp#ðfkj jdj

kjo�jgÞ (5)

since, assuming that f jþ1 has compact support, the number
of removed terms is finite. In Eqs. (4)–(5), kckLp ¼

ð
R
R
jcðxÞjp dxÞ1=p for pX1 is the norm in which the error

is measured.

3. Conservation of moments

When numerically solving the Vlasov equation, it is
often essential to conserve the density of particles. More-
over, in order to get a better accuracy for the thresholded
distribution function, it can be helpful to conserve higher
order moments while performing adaptivity. Since the
thresholding procedure consists in removing linear combi-
nations of the cj

k, this procedure conserves moments if the
corresponding moments of c that are

R
xpcðxÞdx vanish.

We saw that the wavelet associated to the interpolating
scaling function is cðxÞ ¼ jð2x� 1Þ. Hence, as the
moments of j do not vanish, the moments of c do not
vanish. However, the lifting procedure introduced by
Sweldens [5] can be used to define a new set of
biorthogonal scaling functions and wavelets from a given
one so that some desired properties are satisfied.
Consider the decomposition formula (3). Following

Swelden’s construction, we can modify the basis ðck
j Þ

without modifying the multiresolution approximation by
taking a new wavelet c̄ of the following form:

c̄ðxÞ ¼ cðxÞ �
X

k

skjðx� kÞ (6)

where the coefficients ðskÞk define the new wavelet.
To conserve density, one needs

R
c̄ðxÞdx ¼ 0 which

yields

0 ¼

Z
jð2x� 1Þdx�

X
k

sk

Z
jðx� kÞdx

¼
1

2
�
X

k

sk

 !Z
jðxÞdx. ð7Þ

Thus, we need to ensure that
P

k sk ¼
1
2
. To keep the

symmetry of c̄, we also impose that sk ¼ s1�k. Then the
simplest choice for ðskÞk is s0 ¼ s1 ¼

1
4
and sk ¼ 0 else. With

this choice of s0 and s1, c̄ is an even function so that the
first order moment is also conserved.
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More generally, we can compute the sk in order to
conserve the moment of any even order, always keeping the
symmetry ensuring sk ¼ s1�k. Then if all the moments of

even order are conserved up to some even n, all the
moments of any odd order are also conserved up to nþ 1.
In Fig. 3 and Table 1, we respectively construct the

corrected wavelet in order to ensure density conservation
and give the simplest choice of sk in order to ensure the
conservation of the second order moment.

4. Adaptive algorithm and numerical result

The wavelet decomposition we introduced yields an
adaptive algorithm consisting of the following step:
starting from a compressed distribution function f n defined
on an adaptive grid, we predict the set of grid points that
will contain the next adaptive grid by advecting the grid
points along the characteristics. Then, we perform the
semi-Lagrangian algorithm on the predicted points and
finally compute the wavelet decomposition of f nþ1 to get
the new set of important details and the corresponding
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Fig. 3. Correction of linear wavelet in order to conserve density.

Table 1

Simplest choice of sk for second order moment conservation

Linear wavelets s0 ¼ s1 ¼
19
64

s�1 ¼ s2 ¼
�3
64

Cubic wavelets s0 ¼ s1 ¼
149
512

s�1 ¼ s2 ¼
�21
512
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adaptive grid (see Ref. [4] for more details on the
algorithm).

In order to assess the benefits of the adaptive solver, we
computed the transverse evolution of a semi-Gaussian
beam in a periodic focusing field of the form að1þ
cos 2pz=SÞ for a tune depression s=s0 of 0:17. The initial
distribution function reads

f ðr; vÞ ¼
I

pa2
ffiffiffiffiffiffi
2p
p

b
e�1=2ðv

2=b2Þ if roa and f ðr; vÞ ¼ 0 else.

(8)

In order to show the importance of the moments conserv-
ation, we computed the evolution of a two-stream
instability. The initial function is given by

f 0 ¼
1ffiffiffiffiffiffi
2p
p v2 expð�v2=2Þð1þ a cosðkxÞÞ (9)

with a ¼ 0:05 and k ¼ 0:5. The physical mesh is
x� periodic: ½0; 4p½�½�6; 6½.

We notice in Fig. 4 that the adaptive grid follows
very well the evolution of the fine structures. In Fig. 5,
we notice that ensuring density conservation avoided
unstability problems at the expense of a slightly higher
diffusion and computational cost when we use the lifting
procedure.
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Commun. 164 (2004) 214.

[5] W. Sweldens, SIAM J. Math. Anal. 29 (2) (1998) 511.

[6] A. Cohen, I. Daubechies, J.-C. Fauveau, Comm. Pure Appl. Math. 45

(5) (1992) 485.

ARTICLE IN PRESS
M. Gutnic et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 159–162162



Nuclear Instruments and Methods in Physics Research A 558 (2006) 163–167

Applications of parallel computational methods to charged-particle
beam dynamics$

A. Kabela,�,1, Y. Caia,1, M. Dohlusb, T. Senc, R. Uplenchwara,1,2

aStanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
bDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg, Germany

cFermi National Accelerator Laboratory, Batavia, IL, USA

Available online 1 December 2005

Abstract

The availability of parallel computation hardware and the advent of standardized programming interfaces has made a new class of

beam dynamics problems accessible to numerical simulations. We describe recent progress in code development for simulations of

coherent synchrotron radiation and the weak–strong and strong–strong beam–beam interaction. Parallelization schemes will be

discussed, and typical results will be presented.

r 2005 Elsevier B.V. All rights reserved.
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Keywords: Beam dynamics; Numerical simulation; Beam–beam effect; Coherent synchrotron radiation

1. Coherent Synchrotron Radiation: TraFiC4

Coherent Synchrotron Radiation (CSR) occurs when
short bunches travel along strongly bent trajectories,
leading to a tail-head interaction of the bunch with itself
due to retardation effects. Such configurations typically
occur in the bunch compression sections of Free Electron
Laser Facilities; its impact can be macroscopic, leading to
growth of the transverse projected or slice emittance, thus
degrading FEL performance, or microscopic, leading to
induced longitudinal short-wavelength density modula-
tions in the beam, which may get amplified by the
subsequent compression and transport mechanism.

The code TraFiC4 was developed to handle the first
class of problems; it models the bunch by a collection of
spatially extended, non-compressible weighted macro-
particles. These particles are tracked through the magnetic
lattice in the laboratory frame of reference; CSR fields are
calculated from first principles by storing the history of
every macro-particle and using a retardation method on
these histories. The fields of all particles are calculated for
each particle applied at a single location for each time step,
using a split-operator approach. Obviously, this algorithm
is OðN2

particlesÞ; in practice, in all but the simplest setups,
parallelization is required to get manageable running times
for simulations.
Among other things, TraFiC4 has been used in the

design of bunch compression sections for the DESY
TESLA Test Facility [1], the LCLS [2], and for the
simulation of a dedicated CSR experiment at the CERN
CLIC Test Facility [3]. It has been benchmarked against
other codes, using different approaches and/or simplified
models for CSR.
Recent improvements of the code include a complete re-

write of the tracking part in Cþþ; extensive documenta-
tion and class structure documentation; a very flexible
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mechanism of creating bunch populations by means of
applying functional operators to pre-defined distributions
or distributions read from files; MPI ‘stub’ libraries to
allow for compilation and running of TraFiC4 on single
processor machines; more efficient storage of trajectory
histories; dynamic load-balancing; and a basic checkpoint/
restart mechanism.

Parallelization, so far, has been relying on a crude, but
effective mechanism: the nth of N nodes would run a
complete replica of a single-node TraFiC4 instance,
reading the same input file. It would, however, only
calculate the fields, due to all particles P, onto a subset
of particles Pn;P ¼

S
i Pi;Pi \ Pk ¼ fg. It would then

gather the fields onto PnPn from the other nodes in a
collective synchronization step, apply them to the trajec-
tories of P, and go to the next time step. This method,
however, required storing the history of all particles on
every node.

In our new approach, we only store the trajectories of
particles Pn on node n. For a given lab time t, it will
broadcast a field calculation request for their positions ~xiðtÞ

to the other nodes, gather calculation requests for fields
due to Pn from the other nodes, process the requests, and
then scatter its results and aggregate the other nodes’
results, thus obtaining the total field. Most of these
operations can be done asynchronously. This scheme
involves more administrative overhead, however, there is
no need to store any trajectories besides those of Pn. For
typical problem and cluster sizes, the required memory per
node could thus be reduced from 1GB to some tens of MB.

An application of the improved TraFiC4 code is a
parameter study for the bunch compression section of the
LCLS facility. In this study, more details of which can be
found in Ref. [4], we vary the compression ratio of the
bunch compressor to include bunch lengths well below the
design values, while using nominal LCLS parameters for
the other parameters. As the non-gaussian character of the
initial distribution and the non-linear part of the initial
energy distribution are of crucial importance, the new
bunch population capabilities of TraFiC4 were essential in
this study.

The resulting final macro-particle distribution of each
run was sorted into longitudinal bins; further post-
processing removed the correlated energy spread. The
resulting binned distributions are evaluated with respect to
FEL figures of merit (namely, saturation length and
saturation powers). The results show a gain in FEL
performance with decreasing bunch length; even at
9:6mm, the last bunch length investigated, we do not reach
a break-even point.

The study was run on 512 processors per run on the
NERSC facility. As the required longitudinal resolution
was very high due to the high compression ratio and low
natural energy spread, the number of macro-particles used
was 7000, the highest number of macro-particles used so
far in any TraFiC4 run. A synopsis of resulting FEL
figures of merit is shown in Figs. 1 and 2.

2. The weak–strong beam–beam effect: DUMBBB

The beam–beam interaction plays a crucial role in design
and operation of colliding storage rings. It will limit
luminosity, determine equilibrium emittance, and can
affect beam lifetimes due to diffusion processes. For lack
of an effective damping mechanism, the last item is
especially important for hadron machines such as the
Tevatron or the LHC. We can distinguish two realms of
the beam–beam effect: strong–strong and weak–strong. In
the former case, both beams’ transverse fields affect each
other significantly, while in the latter case the beams’
charges differ strongly, so one (‘strong’) beam can be
assumed to be unaffected by the other (‘weak’) beam. If the
equilibrium distribution of the strong beam (as determined
by the lattice and initial conditions) is known, the problem
reduces to a single-particle dynamics problem in the
presence of a highly non-linear force.
With current Tevatron operation parameters, there are

72 weak–strong beam–beam interactions affecting the
dynamics of the weak (anti-proton) beam. It can be
expected that the resulting, highly non-linear one-turn
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map affects beam lifetime due to incoherent resonances or
diffusion processes. To study these effects, we have
developed a Cþþ code DUMBBB for fast tracking of
single particles in the presence of weak–strong beam–beam
interactions (for both parasitic and design interactions, i.e.
off- or on-center). Being a single-particle code, paralleliza-
tion reduces to the task of running many instances of the
same code acting on different parts of a huge particle
ensemble; communications is only required for calculation
of collective quantities such as particle loss rates or
emittances.

The code models the beam–beam interactions as a
synchro-betatron mapping [5], the beam–beam kick itself is
calculated from the Bassetti–Erskine [6] formula, using the
Chiarella–Matta–Reichel approximation [7] for the evalua-
tion of the complex error function. In a hadron machine, it
is important to avoid all sources of numerical noise; the
Chiarella algorithm is implemented as a templated Cþþ
function with accuracy selectable at compile time. We find
a 10�6 relative accuracy sufficient for turn numbers in the
105 range.

The weak-beam part of the machine is modeled by a
concatenation of beam–beam elements, linear 6� 6 trans-
fer maps between non-linear elements (obtained by having
a Perl script run MAD8 on a optics description file), a
noise-inducing element to model emittance growth due to
scattering processes, and a energy-dependent tune advance
element to introduce total ring chromaticity.

The code allows for full coupling. All element transfer
functions are templated with respect to the type of phase-
space variables; in particular, they can operate on
differential-algebraic quantities. This allows for finding
exact solutions for the linear part of the one-turn map at
start-up and constructing invariant initial weak and strong
6� 6 distributions, matched to measured emittances.
Beam–beam elements have specialized functions depending
on whether or not the strong beam shows hourglass effect,
tilting, or position-depending tilting during an interaction.
Also, they are templatized with respect to the number of
slices used in the synchro-betatron mapping.

The aggregated lattice is repeatedly applied to real-value
phase-space vectors of the initial weak distribution, which
can be ‘‘de-cored’’ to remove particles from the core of the
distribution, which are not expected to contribute to
diffusive or resonant particle losses. Care must be taken
to keep this operation invariant with respect to the one-
turn map. The particles’ excursions in action-angle space
are recorded; once every few thousand turns, the Jx; Jy

space is swept and particles beyond a certain action
aperture are counted. This way, we obtain a plot of
particle loss vs. time for different assumptions about the
limiting aperture of the machine. We typically run 1010

particle turns. The resulting dependencies are fitted with
respect to t against expð�t=tÞ and expð�

ffiffiffiffiffiffiffi
t=t

p
Þ particle loss

behaviors, which are the limiting cases of solutions of the
diffusion equation with absorbing boundary conditions for
small and large-aperture boundaries. Due to the uncertain-

ties of the diffusion model, the real aperture, and the
simplifications in the model, the resulting lifetime should
not be viewed as an absolute prediction, but as a figure of
merit establishing signatures of the real lifetime of the
machine.
We have done a series of parameter studies for the

Tevatron at injection (150GeV, 72 parasitic crossings,
modeled as single-slice interactions). A typical result for
varying chromaticity is shown in Fig. 3. Other parameter
studies included sweeps of helix separations; weak-beam
emittances, strong-beam charges, and two different bunch
train schemes for 18 bunches on each of the bunch trains,
resulting in lifetime differences of factors of two depending
on deleting the odd- or even-numbered interactions; the
latter result was checked independently with resonance
strength studies.
To model non-linear effects due to the lattice, we have

implemented a method for high-speed evaluation of
multivariate polynomials. The method relies on the
recursive definition of Pn

n, a n-variate homogeneous
polynomial of degree n, as a direct sum Pn

n ¼ Pn
n�1 � Pn�1

n

and a recursive evaluation algorithm Pn
nðx1; . . . ;xnÞ ¼

x1P
n
n�1ðx1; . . . ;xnÞ þ Pn�1

n ðx2; . . . ;xnÞ. Using Cþþ’s tem-
plated data structure mechanisms for the definition of P

and inlining for the definition of the polynomial evalua-
tion, the method effectively generates explicit expressions
for Horner’s scheme for any order at compile time. The
method is easily generalized to inhomogeneous polyno-
mials. We observe floating point efficiencies of 40:85 on
Intel hardware and a speed gain of a factor of 4 as
compared to standard implementations; still, we would
need to gain another factor of 10 in speed to use 10th
order polynomial transfer maps between beam–beam
interactions.

3. The strong–strong beam–beam effect: NIMZOVICH

In the strong–strong realm, the colliding bunches
influence each other substantially. Little is known analy-
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tically about the resulting equilibrium distributions.
Numerical methods used to determine them have con-
verged on using PIC methods, modeling the collision
process as a series of synchro-betatron mappings of test
particles in the presence of two-dimensional field distribu-
tions (Ref. [8] and references therein). We have developed a
code using this principle adapted to high longitudinal
resolution, extreme aspect ratios, and the presence of
parasitic crossings resulting in multi-bunch effects.

3.1. Parallelization

NIMZOVICH uses parallelization according to the SPMD
(Single Program, Multiple Data) scheme. A cluster of
processors is divided in two sections, called Rings. Each
Ring is subdivided into several Bunches. Bunches within a
Ring are completely independent. Bunches in opposing
Rings are independent, except if they have a design or
parasitic interaction point in common, i.e., if one of their
two geometric interaction points falls into a section of the
ring (the Window) shared by both beams.

Each Bunch is divided longitudinally into several Slices.
For reasons of load balancing, the slicing scheme is chosen
in such a way as to have the same number of particles
within each slice, assuming an initial gaussian distribution
of given length. Slice borders are, however, not dynami-
cally adapted to changed longitudinal distributions.

Given enough available processors, each Slice’s portion
of particles can be further subdivided. Portions of a Bunch
with the same subdivision index in each slice are called a
Slab. They do not represent any geometric subdivision.

Each processor on each Ring runs through the following
sequence of steps for each Turn:

(1) For each Bunch in the sequence of opposing Bunches:
� For each Slice in the opposing Bunch:
� Deposit particles onto grid in the center of gravity
of my slice.
� Solve Poisson’s equation on that grid.
� Calculate electric field.
� Exchange electric field with opposing.
� Slice in opposing Bunch.
� Kick particles.
� Advance particles to the next Slice.

� Advance particles to next opposing Bunch.
(2) Advance particles according to one-turn map, possibly

redistributing longitudinally.

We assume that the bunch is longitudinally frozen
during interactions, so the slice-to-slice interactions are
independent and can be done in parallel. Also, bunches in
the same ring are independent, their mutual interaction can
be handled in parallel. Synchronization is automatic, i.e., a
Bunch will see the opposing Ring’s bunches in the right
order, as the slice-to-slice operation constitutes a barrier
synchronizing the two Rings.

When a Slice has passed the last opposing Slice of its last
opposing Bunch within a Window, it is transported back to
the design IP, and the one-turn map is applied to its
particles. After that, a particle may fall out of its current
Slice. All particles with changed Slice numbers are moved
to one out of a set of send queues, and an asynchronous
send operation to its new Slice initiated. The leftover
particles are deposited on the Grid. Then, the process
opens a receive queue for particles from backward Slices,
which might be moved onto this Slice by the action of the
one-turn map. The process does not have to wait for all
backward slices, as the synchrotron tune is usually small
and a particle is extremely unlikely to pass distances of the
order of a bunch length within a single turn. The actual
number of backward slices a process will wait is
dynamically adapted at run time; if the number of particles
received after a Slice’s first interaction with the next Bunch
crosses a threshold (of the order of a few particles), the
waiting period is increased.
A complication arises from the fact that the longitudinal

resolution required is very different for parasitic and design
interactions. Thus, a Bunch will have different slicing
schemes, with NSlabsNSlices constant, for different interac-
tion points. It is easy to see that communications due to re-
assignment of slices by a change of resolution can be kept
at its minimum by (1) letting the numbers of slices in
adjacent IPs be integer multiples (provided the bunch
length does not change between IPs) and (2) have formerly
neighboring slices end up in the same new slice for a
resolution decrease.

3.2. Field calculation

Point charges are deposited on a cartesian grid with
typical dimensions of Nx ¼ 64 . . . 512�Ny ¼ 64 . . . 512,
using a 9-site stencil. As the beam pipe is usually far away,
Poisson’s equation on the grid can be solved using free
boundary conditions. This is done by convolving with an
appropriately discretized and regularized version Ĝik of the
free Green’s function GðrÞ ¼ 1=4p log r2. The convolution
is done by multiplication in momentum space; the
transformation into momentum space is done by a two-
dimensional Fast Fourier Transformation using the FFTW
[9] package. Free boundary conditions are implemented by
using the Hockney trick [10] of padding the array with
zeroes to 2Nx � 2Ny.
The transformation is done by two sequences of one-

dimensional transformations with a matrix transposition in
between. In its parallel version, the transposition involves
an expensive all-to-all communication, which might cancel
the speed gains of parallelizing the transformation. In
NIMZOVICH, the user has the choice of how finely to
parallelize the solver. In our calculations, we find that the
time spent in the solver equals the kick-deposit time at
around 104 particles.
Note that this is not the optimal solution; the fact that

the array was zero-padded initially allows one to get rid of
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2Nx of 2Nx þ 2Ny FFT’s right away. 2Nx other transfor-
mations can be done out-of-place. Also, the parallel
transposition becomes simpler, as the padding space can
serve as a scratch space, so send and receive operations can
be done simultaneously and asynchronously, decreasing
latency. We have implemented this scheme for the special
case of symmetric G functions and observe a speed gain of
almost a factor of 2.

3.3. Slice-to-slice interaction and adaptive slices

The longitudinal domain decomposition makes use of
Hirata slicing [5]. For field calculation, we make use of a
convex interpolation method proposed by Ohmi [11] to
avoid field discontinuities close to slice boundaries (at the
cost of having to do two field calculations for each
timestop). We use the same scheme to calculate the
luminosity with high accuracy by sampling the opposing
bunch’s charge density with the macroparticles.

Using this scheme, each slice will execute grid operations
(sampling fields or depositing particles) on four different
temporal positions. In a beam with a pronounced
hourglass effect, the transverse dimensions of the beam
might vary substantially for these times. We adapt the
transverse extensions of the grids to the expected exten-
sions of the beam, calculated from the unperturbed Twiss
functions. This way, we achieve constant effective resolu-
tion across the interaction process and can use a lower-
resolution grid than codes with grids of constant absolute
resolution. For each slice, we have to pre-calculate two Ĝ

matrices for each opposing slice, as Ĝ does not follow a

simple scaling law under temporal displacement for bxaby.
We are currently testing a dynamic scheme in which the
grid sizes are adapted to the beam dimensions as measured
during the course of the simulation, which would relieve
the user of having to have an estimate of beam size
increase.

3.4. Results

We present a typical result, a single-bunch luminosity
simulation for Super-KEKB with parameters as given by
Ohmi et al. [8]. We observe good agreement with the results
in Ref. [8], obtained by other codes (Figs. 4 and 5).

References

[1] TESLA Technical Design Report, 2001.

[2] Linac Coherent Light Source (LCLS) conceptual design report,

SLAC-R-593.

[3] H.H. Braun, et al., Phys. Rev. ST Accel. Beams 3 (2000) 124402.

[4] A.C. Kabel, P. Emma, Peak current optimization for LCLS Bunch

Compressor 2. Proceedings of the 9th European Particle Accelerator

Conference (EPAC 2004).

[5] K. Hirata, H. Moshammer, F. Ruggiero, Part. Accel. 40 (1993) 205.

[6] M. Bassetti, G. Erskine, CERN ISR TH/80-06, 1980.

[7] F. Matta, A. Reichel, Math. Comp. 25 (1971) 339.

[8] K. Ohmi, M. Tawada, Y. Cai, S. Kamada, K. Oide, J. Qiang, Phys.

Rev. Lett. 92 (2004) 214801-1.

[9] M. Frigo, S.G. Johnson, FFTW 2.15 User’s Manual, hhttp://

www.fftw.org/fftw2_doc/i

[10] R.W. Hockney, J.W. Eastwood, Computer Simulation Using

Particles, Bristol and Philadelphia, 1988.

[11] K. Ohmi, in: Proceedings of the 2003 IEEE Particle Accelerator

Conference.

ARTICLE IN PRESS

 0

 2e+30

 4e+30

 6e+30

 8e+30

 1e+31

 1.2e+31

 1.4e+31

 1.6e+31

 0 5000 10000 15000 20000 25000  30000

Lu
m

in
os

ity
 [m

-2
]

Turns

Luminosity Development for Super-KEKB Nominal Parameters

Fig. 4. Luminosity vs. time for NIMZOVICH SuperKEKB benchmark

example.

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 0 5000 10000 15000 20000  25000  30000

σ y
;lo

,h
i [

m
]

Turns

Beam  Blow-up for Super-KEKB Nominal Parameters

Low Energy Ring
High Energy Ring

Fig. 5. Beam size vs. time for NIMZOVICH SuperKEKB benchmark

example.

A. Kabel et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 163–167 167



Nuclear Instruments and Methods in Physics Research A 558 (2006) 168–174

High-performance computing in accelerating structure
design and analysis

Zenghai Lia,�, Nathan Folwella, Lixin Gea, Adam Guetza, Valentin Ivanova, Marc Kowalskia,
Lie-Quan Leea, Cho-Kuen Nga, Greg Schussmana, Lukas Stingelinb, Ravindra Uplenchwara,

Michael Wolfc, Liling Xiaoa, Kwok Koa

aStanford Linear Accelerator Center, Stanford University, USA
bPaul Scherer Institute, Switzerland

cUniversity of Illinois, Urbana-Champaign, USA

Available online 1 December 2005

Abstract

Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low

emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability.

While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new

simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing

initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured

grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously

not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable

eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges

posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance

computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level

(single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields).

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.17.+w; 94.20.ws; 03.50.De; 07.05.Tp; 01.50.hv; 02.70.-c

Keywords: Acceleration; Linear collider; Cavity design; Wakefield; Parallel electromagnetic codes; Unstructured grid; High-performance computing;

Large-scale simulation

1. Introduction

Particle accelerators are among the most important and
most complex scientific instruments in use, and are critical
to research in fields such as high-energy physics, nuclear
physics, materials science, chemistry, and the biosciences.
As new and existing facilities continually strive towards
higher energy, higher beam current, and greater efficiency,
accelerator physicists and engineers are faced with increas-
ingly demanding specifications on the RF system to
improve performance and reduce cost. As a result, the

emphasis of designing the accelerating structures for these
machines has been placed heavily on numerical modeling
as the cost-saving approach to their R&D. This means the
accuracy and reliability of the modeling software are
becoming of paramount importance in order that the
structures can meet the stringent design requirements.
The Damped, Detuned Structure (DDS) shown in Fig. 1

is the baseline linac design for the warm Linear Collider
(NLC) [1] scheme. In the DDS, the frequency of the
accelerating field must be accurate to within 1 part in
10,000 to maintain acceleration efficiency. This require-
ment has to be met in a complex cavity geometry that
optimizes the accelerating field gradient while suppresses
the long-range dipole wakefields. To provide the desired
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accuracy in the DDS cell frequency and to verify the
wakefield suppression by damping and detuning over the
entire structure are modeling challenges that are beyond
the capabilities of standard electromagnetic (EM) codes
(e.g. MAFIA [2] and HFSS [3]) running on limited
computing resources like desktop computers.

2. High-performance computing

Besides the NLC DDS design, the PEP-II [4] Interaction
Region (IR), the RIA [5] RFQ cavity and the PSI [6] ring
cyclotron are additional examples for which more ad-
vanced simulation tools other than available software are
needed. In the PEP-II, beam heating in the IR due to
trapped modes is an obstacle to high current operation,
and thus high luminosity. Fig. 2 shows the IR beamline
complex which consists of a central vacuum chamber of
complicated, varying cross-sections (due to the synchrotron
masks) that connects to the positron and electron
beamlines via a crotch junction at both ends. Modeling
the entire geometry is necessary to fully account for the
beam heating effect. The proposed RIA plans to employ
RFQ structures such as those shown in Fig. 3 in its low-
energy linacs. Presently, provisions have to be made for
tuners to compensate for frequency errors of about 1%
from using existing design software. New modeling tools
that can improve the accuracy by an order of magnitude
would lead to a significant reduction in tuners required and
a much simplified operation as well.

To address these modeling challenges, SLAC has em-
barked on a code development effort that was first initiated in
1997 under the support of the DOE Grand Challenge on
Accelerator Physics, with the goal to implement high-
performance computing (HPC) capabilities in accelerating
modeling tools. This work has expanded with the follow-up
DOE SciDAC Accelerator Simulation project in which
SLAC leads the team that specifically targets high accuracy,
large-scale electromagnetic applications.

3. Parallel electromagnetic codes on unstructured grids

The suite of 3D, parallel electromagnetic codes that are
finite element based consists of:

(1) Omega3P—eigenmode solver for finding normal modes
in lossless and lossy cavities.

(2) S3P—solver in frequency domain to calculate S
parameters of open structures.

(3) T3P—time-domain solver for modeling response due to
beam, dipole and waveguide excitation, and it also
includes:

(4) Tau3P—time-domain solver following the Discrete
Surface Integral (DSI) formulation with same func-
tionalities as T3P.

(5) Track3P—module for dark current simulation with
surface physics using fields from solvers above.

(6) Viz3D—analysis and graphics package.

The finite element codes employ tetrahedral mesh elements
while the DSI-based Tau3P uses hexahedral cells (Fig. 4),
both unstructured grids able to conform to curved surfaces
for very high accuracy modeling. The set of codes is
developed under C++ with a unified data structure to
facilitate geometry input and partitioning, and uses MPI
for communication on distributed memory architectures.
The code development at SLAC is supported by an

extensive and coordinated R&D program in computer
science and applied mathematics that is sponsored by
SciDAC and carried out in designated national labora-
tories and universities. Among these efforts include parallel
meshing at Sandia and University of Wisconsin, partition-
ing at Sandia and Lawrence Berkeley Lab (LBL), linear
solvers and eigensolvers at Stanford and LBL, adaptive
refinement at RPI, and visualization at UC Davis. They
contribute to the success of the large-scale simulations
required for the challenging accelerator applications
described above. We will next present two examples of
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Fig. 1. Model of the 55-cell NLC DDS design.
Fig. 2. Beamline complex of the PEP-II Interaction Region (IR).

Fig. 3. The RIA RFQ and the PSI ring cyclotron.
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Fig. 4. Tetrahedral mesh for Omega3P/S3P/T3P and hexahedral mesh for

Tau3P.
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high resolution modeling and three examples of system
scale simulations using the new HPC tools.

4. High-resolution design

The DDS cell is one of 206 cavities in the NLC first
accelerating structure design whose cavity shape is
optimized for high shunt impedance while connected to
four damping manifolds that run the length of the structure
for long-range dipole wakefield suppression. The wake is
further reduced by a cavity-to-cavity variation that detunes
the dipole modes in a Gaussian manner. As previously
indicated, the fundamental mode frequency of the DDS cell
has to be accurate to 0.01% to maintain acceleration
efficiency. Applying Omega3P to the distributed model
shown in Fig. 5 on NERSC’s IBM/SP, a table of
dimensions for all 206 different cavities along the DDS
was generated for computerized machining based on
calculations that met this accuracy requirement. Cold tests
on fabricated cells based on this table indeed showed that
their measured frequencies are within the targeted value
(Fig. 5). This result demonstrates that high-resolution
modeling utilizing unstructured grids and parallel comput-
ing is a powerful tool for designing the NLC structures
which potentially could have saved the project more than
$100 million in machine cost alone. Furthermore, the
resolution and speedup provided by HPC together with
high-precision machining have enabled simulation-based
design to become a cheaper, faster alternative to the
traditional expensive and time-consuming R&D process of
repeated fabrication and testing.

4.1. Adaptive mesh refinement

Under SciDAC, SLAC and RPI are collaborating on
developing an adaptive mesh refinement (AMR) capability
in Omega3P to improve the accuracy and convergence of
frequency and quality factor calculations for cavities of

complex shapes. Accurate wall loss determinations are
difficult when the wall currents are localized in narrow
regions of the cavity, such as around the coupling iris. The
increased wall loss reduces the cavity’s quality factor, thus
the shunt impedance, and can also lead to RF surface
heating at high power. An adaptive mesh control loop
based on error indication procedures has been implemen-
ted in Omega3P to provide increasingly refined meshes
until a converged result is obtained. The adaptive
procedure has been applied to the RIA RFQ cavity with
the following results. Using measurement [7] as bench-
mark, the percentage deviations in frequency and Q from a
standard code are 1.5 and 30, respectively, while the results
from Omega3P using uniform refinement are 0.05 and 16.1
and with AMR the numbers are 0.11 and 16.2. The AMR
case uses 0.4 million DOFs, 10 times less than the uniform
refinement case to reach the same accuracy. We conclude
that combining unstructured grid, third order elements and
AMR, Omega3P’s improvements over standard codes are
an order of magnitude better in frequency and about a
factor of two better in Q (Fig. 6).

5. System scale modeling (DDS)

The h60vg3 [8] X-band structure is a 55-cell DDS that is
considered to be the baseline design for the NLC linac. Due
to the complicated geometry, the long-range dipole
wakefields in this structure have thus far been analyzed
by an approximate equivalent circuit model representing
only the lowest two dipole bands. It is of both theoretical
and practical interests to be able to simulate the entire,
realistic structure so that the effect of the higher bands and
that due to the input/output couplers can be included.
Modeling a problem of such size and complexity has not
been tried before because the computational resources
required were considered prohibitive. Using the parallel
tools developed under SciDAC and the computing
resources it provides on NERSC’s IBM SP2 machine, such
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a system-scale simulation is within reach. We will next
present the computations of the wakefields in the h60vg3
structure via time and frequency domain methods.

5.1. Time-domain simulation

The parallel time-domain solver Tau3P has been used to
simulate the h60vg3 structure with a transit beam so that
the wakefield can be found directly for the first time. Fig. 7
shows the beam-excited electric fields in the structure at
two instances in time. The top snapshot shows the field
excitation as the beam traverses the structure. The bottom
one is the field distribution after the beam left the structure,
clearly showing the coupling of the wakefield out to the
manifold and subsequently out of the structure through the
HOM coupler at the downstream end. The evolution of the
wakefield from the Tau3P simulation provides insight into
the HOM damping via the manifold.

The wakefield is plotted in Fig. 8 together with the
results from the same structure but without the manifolds.
The difference between the DS (Detuned Structure) and
DDS wakefields due to manifold damping at long distances
is clearly evident. Fig. 9 is the impedance spectrum showing
the contributions from the higher bands up to 30GHz
which are absent from the two-band equivalent circuit
model.

5.2. Frequency-domain calculation

The wakefield in the h60vg3 structure can also be found
by summing the eigenmodes in the frequency domain.
Because of the power loss through the fundamental and
HOM couplers, a complex solver has been developed in
Omega3P to calculate damped modes. In the computa-
tional model, lossy materials are used as matched termina-
tions for the fundamental and HOM couplers in the
frequency range of interest. About 400 complex eigen-

modes covering the spectrum up to 30GHz have been
calculated to form the sum for the wakefield. In Fig. 10 are
shown two typical modes in the DDS structure. The top
plot is a mode that couples to the backward wave in the
manifold, suggesting the need for a HOM load at the input
end. The bottom plot shows a mode that couples to a
forward wave in the manifold that is damped by the HOM
load downstream. This is the first time these modes have
been seen in a long, realistic structure.
The mode spectrum from Omega3P as depicted in

Fig. 11 shows good agreement when compared with the
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Tau3P result of Fig. 9. The agreement is even closer on the
wakefields as shown in Fig. 12 which is remarkable
considering the results have been obtained from two
different methods each with its mesh model of the
structure. This serves not only to validate the two codes
but to also verify the effectiveness of the detuning and
damping scheme for wakefield suppression. Furthermore,

it points out the importance of high-performance comput-
ing and the SciDAC support in computational science
research, without which such calculations would not have
been possible.

5.3. Advances in eigenmode solvers

The success of the large-scale simulations just presented
relies heavily on the accuracy, convergence and scalability
of the solvers used. SciDAC supports a strong effort
consisting of SLAC, Stanford and LBL to develop new,
efficient algorithms for solving the most challenging
applications. They include a linear solver framework that
interfaces Omega3P/S3P to direct solvers such as SuperLU
and WSMP, leading to an improvement in speed by a
factor of 50–100. Implementation of the AV FEM
formulation adds a gain of 5–10 for using iterative solvers.
In addition, higher-order hierarchical bases (up to p ¼ 6)
and preconditioners have been developed to increase
accuracy and convergence. With these advances we have
been able to solve the h60vg3 structure using up to 93
million DOFs, requiring about 800GB of memory (Fig. 13
left), and they helped in reaching higher accuracy in AMR
calculations. Furthermore, work on complex solvers has
enabled the mode analysis of the h60vg3 and the PEP-II IR
absorber design to be discussed later.

5.4. Research in domain decomposition

The scalability of parallel time-domain codes such as
Tau3P is hampered by communication costs since the fields
have to be updated at every time step, leading to poor
parallel efficiency. Under SciDAC SLAC is working with
SNL and LBL to improve Tau3P performance by
exploring alternate schemes within the Zoltan partitioning
library. For the Tau3P simulation of the h60vg3 55-cell
structure, Fig. 13 (right) shows that the RCB1D partition-
ing provides better speedup over the existing partitioning
using ParMETIS by reducing the number of neighboring
MPI processes.
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6. Simulating the PEP-II IR

A distributed model of the PEP-II IR shown in Fig. 14 is
used in Tau3P simulation of two colliding beams traversing
the beamline complex near the interaction point. Two
snapshots of the simulation before and after the beams pass
each other are shown in Fig. 15. The beam-excited fields
are analyzed to find the trapped modes that contribute to
local heating effects. These heating calculations were
factored into the upgrade of the IR and the machine now
is able to operate at 15% higher beam current without
overheating.

In preparation for further increase in beam current a new
IR design is under consideration that uses absorbers to
damp trapped modes and reduce beam heating. The
absorbers are located at the crotch region on both ends

of the central beam pipe (see Fig. 16). Their effectiveness is
studied using the complex eigensolver in Omega3P. Fig. 17
compares the quality factor of the trapped modes between
the crotches with and without the absorbers. It is seen that
most of the modes have been damped by two orders of
magnitude. This simulation capability provides a powerful
tool for optimizing the absorber design without extensive
prototyping and testing.

7. Modeling entire ring cyclotron

The availability of new parallel codes such as Omega3P
has generated interests in finding the HOM modes that
exist in an entire ring cyclotron for better understanding of
their effect on the beam dynamics in such a machine. PSI
and SLAC are collaborating on modeling the PSI ring
cyclotron with Omega3P and determining the HOM effects
through an eigenmode analysis. The calculations have been
performed using the 32 CPU IBM/SP4 at PSI. Using the
ESIL solver in Omega3P, 280 modes with frequency close
to a beam harmonic have been computed. They can be
classified into three types. Forty four of them are cavity
modes with low frequency and high gap voltage. There are
18 vacuum chamber modes having medium frequency and
low gap voltage. The rest of the modes are hybrid modes
that occupy both the cavity and the vacuum chamber, and
these have high frequency and low gap voltage. In Fig 18,
sample field pattern of the three types of modes in an entire
ring cyclotron is shown for the first time.

8. Summary

A new suite of parallel electromagnetic codes based on
unstructured grids has been developed under the DOE
SciDAC project to model large, complex accelerator
cavities and RF structures that have not been possible
with standard software. It is demonstrated that the high
performance computing capability in these codes has
enabled the large-scale simulations that are necessary for
high resolution cavity design and system-scale structure
analysis. R&D in computer science and applied mathe-
matics through SciDAC collaborations have shown to
further improve their accuracy and efficiency. The codes
have been applied to optimize existing accelerators and
design planned facilities with considerable success.
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Fig. 14. Distributed model of PEP-II IR for Tau3P simulation of beam

heating.

Fig. 15. Beam-excited fields in PEP-II IR from Tau3P simulation before

and after two beams passing each other at the collision point.

Fig. 16. Omega3P model of the PEP-II IR including placement of

absorbers at the crotches.

Fig. 17. Complex Omega3P calculation of damping effect on trapped

modes in PEP-II IR using absorbers at the crotches (undamped modes in

red; damped modes in blue).

Fig. 18. Eigenmodes in the PSI Ring Cyclotron: cavity mode (left),

vacuum chamber mode (middle), and hybrid mode (right).
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Abstract

This paper provides a computational method to model a three-dimensional static electromagnetic field within a finite source free

volume starting from discrete field information on its surface. The method uses the Helmholtz vector decomposition theorem and the

differential algebraic framework of COSY INFINITY to determine a solution to the Laplace equation. The solution is locally expressed

as a Taylor expansion of the field which can be computed to arbitrary order. It provides a natural multipole decomposition of the field

which is required for the computation of transfer maps, and also allows to obtain very accurate finite element representations with very

small numbers of cells.
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1. Introduction

The detailed simulation of particle trajectories through
magnets in spectrographs and other large acceptance
devices requires the use of detailed field information
obtained from measurements. Likewise, for high-energy
accelerators like the LHC, higher order description of the
beam dynamic via one-turn maps is required to study the
long-term beam stability [1,2]. The construction of such
high-order one-turn truncated Taylor maps [3] requires the
precise information of the electromagnetic field in the
individual electromagnetic components (quadrupoles, di-
pole, sextupoles, etc.) of the lattice.

It is commonly known that for a device that satisfies
mid-plane symmetry, the entire field information can be
extracted from the data in the mid-plane of the device [3].
However, it is well known that this method has limitations
in accurately predicting nonlinear field information outside
the immediate vicinity of the mid-plane because the
extrapolation requires the computation of higher order

derivatives of in-mid-plane data, which is difficult to do
with accuracy if the data is based on measurements. Thus,
it is particularly useful to employ techniques that rely on
field measurements outside the mid-plane. In particular, in
modern particle spectrographs it is common to measure the
fields on a fine mesh on 2–4 planes outside the mid-plane.
These data have frequently been used to model the overall
field as a superposition of point-charge fields of so-called
image charges [4,5]. However, the computational effort
required for this approach is large, as it requires the
inversion of a matrix with a dimension equal to that of the
number of image charges.
However, the out-of-plane field measurements in essence

provide field data on the top and bottom surfaces of a box
containing the region of interest through which the beam
passes. If the planes extend outward far enough to a region
where the fringe field becomes very small, or can easily be
modeled, and inwards far enough that the field becomes
rather homogenous, field data are known on an entire
surface enclosing the region of interest. The method we
present in this paper can extract the field information as a
multipole expansion in the volume of interest if a discrete
set of field measurements are provided on a closed surface
enclosing the volume of interest.
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Thus, the field computation problem can be viewed as
solving a boundary value problem for the three-dimen-
sional ð3DÞ Laplace equation for the field, i.e. to obtain the
solution of the PDE

r2cð r!Þ ¼ 0 in the volume O � R3

where rcð r!Þ ¼ f
!
ð r!Þ is specified on the surface qO.

The existence and uniqueness of the solution for the 3D
case can easily be shown through the application of
Green’s formulae. In particular, it is well known that the
component of ~rc normal to the surface is sufficient to
specify the solution; however, in the following we will also
make use of the additional field components available from
measurements. It is well known that the analytic closed-
form solution for the 3D case can be found for problems
with certain regular geometries where a separation of
variables can be performed. However, in most practical 3D
cases, numerical methods are the only way to proceed.
Usually the finite difference or finite element approach are
used to find the numerical solution as data set in the region
of interest. But because of their relatively low approxima-
tion order, for the problem of precise solution of PDEs, the
methods have limited success because of the prohibitively
large number of mesh points required. The method we
present in this paper can determine local finite elements of
in principle unlimited order.

In Section 2 we discuss the benefits of using the
boundary data and present the analytic closed form
solution for the 2D case that can be easily found by
application of Cauchy’s integral formula. We then use a 2D
example to highlight the advantages of the methods that
use the boundary data to compute the solution. In Section
3 we present the theory and the implementation of the new
scheme to find the solution of the 3D Laplace equation
when the gradient of the solution is specified on the surface
enclosing the volume of interest . This scheme is based on
the Helmholtz theorem and the tools of the code COSY
Infinity [3,6,7]. In Section 4 we present an application of
this new scheme to a theoretical bar magnet problem. We
also address the results of an application to the study of a
dipole magnet of the MAGNEX spectrograph.

2. Methods using boundary data

Boundary data methods such as those utilized below are
based on a description of the interior field in terms of
particular surface integrals involving the surface data.
These approaches have various advantages. Firstly, the
solution is analytic in terms of the interior variables, even if
the boundary data fail to be differentiable or are even
piecewise discontinuous; all such non-smoothness is
removed after the integration is executed. Hence a Taylor
polynomial approximation in terms of interior variables
can be performed; and we expect that a Taylor approxima-
tion of a certain order will provide an accurate approxima-
tion over suitable domains.

Secondly, since for the PDEs under consideration here
the solution functions are known to assume their extrema
on the boundary because of analyticity or harmonicity, a
method that uses boundary data is expected to be robust
against errors in those boundary data with errors in the
interior not exceeding the errors on the surface. Thirdly, if
the boundary data given have statistical errors, such errors
have a tendency to even average out in the integration
process as long as the contributions of individual pieces of
integration are of similar significance. Thus, we expect the
error in the computed field in the interior to be generally
much smaller than the error in the boundary data. This
ensures that the methods using boundary data are
computationally stable.

2.1. The 2D case

As an introduction to the general approach, we begin
with the discussion of the 2D case, the theory of which can
be fully developed in the framework of elementary complex
analysis, and which also describes the situation of static
electric or magnetic fields as long as no longitudinal field
dependence is present. It is based on the use of Cauchy’s
integral formula stating that if the function f is analytic in a
region containing the closed path C, and if a is a point
within C, then

f ðaÞ ¼
1

2pi

I
C

f ðzÞ

z� a
dz (1)

where the integral denotes the path integral over C.
Cauchy’s formula is an integral representation of f which
permits us to compute f anywhere in the interior of C,
knowing only the value of f on C. This integral
representation of f is also the solution of the 2D Laplace
equation for the primitive of ðReðf Þ;�Imðf ÞÞ with the
function f specified on the path C.
Now, suppose a random error of dðzÞ is introduced in the

measured data around the path C. Then by Eq. (1) we can
compute the error EðaÞ introduced in the computation of
f ðaÞ at some point a inside C as

EðaÞ ¼
1

2pi

I
C

f ðzÞ þ dðzÞ
z� a

dz� f ðaÞ

¼
1

2pi

I
C

dðzÞ
z� a

dz ð2Þ

We note that while EðaÞ is given by a Cauchy integral, E

need not be analytic since dðzÞ need not assume the
function values of an analytic function. In fact, if it would,
then it already would be uniquely specified on any dense
subset S of C, which removes the freedom for all values of
E on points on C that are not in S.
While the error E itself may be bounded in magnitude, if

the integral is approximated by one of the conventional
numerical quadrature methods, the result can become
singular as the point a approaches the boundary C. This
case may limit the practical use of the method and needs to
be studied carefully. As an example, we consider the case of

ARTICLE IN PRESS
S. Manikonda, M. Berz / Nuclear Instruments and Methods in Physics Research A 558 (2006) 175–183176



quadrature based on adding the terms of a Riemann sum,
i.e. the approximation

1

2pi

I
C

dðzÞ
z� a

dz �
1

2pi

XNz

j¼1

dðzjÞ

ðzj � aðrÞÞ
ðzj � zj�1Þ

¼ ~EðaÞ ð3Þ

where the Nz points zj are spaced equidistantly around C;
since C is closed, z0 ¼ zNz

. By studying the approximation
~EðaÞ as the point a approaches the boundary C, we can
analyze the stability of the method with respect to the
discretization of the path C.

As an example, we choose the path C as a circle of radius
R enclosing the region of interest. We assume a random
error of dðzÞð�10�2Þ is introduced in the measured data
around C. The point a is given by r expðifÞ and the points
zj are given by R expði2pj=NzÞ for j ¼ 0; . . . ;Nz. Letting
dmðzjÞ denote the error assigned to point zj in error set m,
for each of these error sets we express the Riemann sum
zmðaÞ for point a by

zmðaÞ ¼
1

2pi

XNz

j¼1

izjdmðzjÞ

ðzj � aðrÞÞ
2p
Nz

.

We then form the average of the magnitude of the error
over Ne error sets to obtain

ZðrÞ ¼
1

Ne

XNe

m¼1

jzmðaÞj.

Note that ZðrÞ still depends on the phase f. However, in the
statistical limit there is apparently invariance under
rotation by expði2p=NzÞ; and one quickly sees that there
are two limiting cases for the choice of the phase. These are
the case f ¼ 0, where the a will eventually collide with the
zj for j ¼ Nz as r! R and thus a ‘‘worst case’’ divergence
will appear, and the case f ¼ 2p=2Nz, in which case the a
will approach the mid-point between zj for j ¼ Nz and zj

for j ¼ 1 as r! R. Choosing sufficiently fine discretization
of the path and sufficiently many error sets dm, the quantity
ZðrÞ for these two cases will be a good measure for the
accuracy that can be achieved with the surface integral
method.

For our specific example, we choose random errors of
maximum magnitude 10�2 at Nz ¼ 10; 000 points on the
circle of radius R ¼ 2. For each value of r, we perform the
computation for a total of Ne ¼ 10; 000 error sets. The
results of this analysis are shown as plots in Figs. 1 and 2
for the two phases that represent the ‘‘worst case’’ and the
‘‘best case’’ situation.

We first observe that sufficiently away from the surface,
the expected smoothing effect is happening, and the errors
in the function values are indeed well below the errors
assumed on the surface. A rough quantitative analysis
shows that this error is about two orders of magnitude
below the surface data error, corresponding well with the
statistically expected decrease of the error by 1=

ffiffiffiffiffiffi
Nz

p
. As a

approaches the curve closer than 10�3, in the ‘‘best case’’

situation, the error rises to about 10�2, which is because
now only nearby grid points contribute to the sum and thus
the smoothing effect disappears. In the ‘‘worst case’’
scenario, divergence actually happens; but the average
error is still at the level of the original random error of 10�2

for values of r that are only about 10�4 away from the
radius 2.
So overall we see that the method performs significant

smoothing, and even with the simplest discretization as a
Riemann sum, good accuracy is maintained even as we
approach C. We note in passing that with more sophisti-
cated quadrature methods, for example, those based on
Gaussian methods [3], the divergence effect can be
significantly controlled.
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3. The 3D case

The scheme we use for the 3D case is based on the
Helmholtz vector decomposition theorem [8–14]. We begin
by representing the solution of the PDE via Helmholtz’
theorem, which states that any vector field B

!
which

vanishes at infinity can be written as the sum of two terms,
one of which is irrotational and the other solenoidal as

B
!
ð~xÞ ¼ ~r � ~Atð~xÞ þ ~rfnð~xÞ (4)

fnð~xÞ ¼
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds

�
1

4p

Z
O

~r � B
!
ð~xvÞ

j~x� ~xvj
dV

~Atð~xÞ ¼ �
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds

þ
1

4p

Z
O

~r � B
!
ð~xvÞ

j~x� ~xvj
dV .

Here qO is the surface which bounds the volume O. ~xs

denotes a point on the surface qO, and ~xv denotes a point
within O. ~n is the unit vector perpendicular to qO that
points away from O. ~r denotes the gradient with respect to
~xv.

For the special case that ~B ¼ ~rV , we have ~r � ~B ¼ 0;
furthermore, if V is a solution of the Laplace equation
~r
2
V ¼ 0, we have ~r � B

!
¼ 0. Thus in this case, all the

volume integral terms vanish, and fnð~xÞ and ~Atð~xÞ are
completely determined from the normal and the tangential
components of ~B on the surface qO via

fnð~xÞ ¼
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds (5)

~Atð~xÞ ¼ �
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds. (6)

For static electric or magnetic fields without sources in O,
which are characterized by the Laplace problem that we are
studying, the divergence and the curl of the field vanish and
hence these fields can be decomposed into irrotational and
solenoidal parts. For any point within the volume O, the
scalar and vector potentials depend only on the field on
the surface qO. And due to the smoothing properties of the
integral kernel, the interior fields will be analytic even if the
field on the surface data fails to be differentiable.

It is worth noting that there are also various higher
dimensional extensions to the Helmholtz theorem [15,16]
which may be useful to also solve certain 4D boundary
value problems.

3.1. Surface integration and finite elements via DA

Since the expressions (5) and (6) are analytic, they can be
expanded at least locally. The idea is now to expand them
to higher orders in BOTH the two components of
the surface variables ~xs and the three components of the
volume variables ~x. The polynomial dependence on the
surface variables will be integrated over surface sub-cells,
which results in a highly accurate integration formula with
an error order equal to that of the expansion. The
dependence on the volume variables will be retained, which
leads to a high-order finite element method. By using
sufficiently high order, high accuracy can be achieved with
a small number of surface elements, and more importantly,
a small number of volume elements. We describe the details
of the implementation in the following.
The volume O is subdivided into volume elements. Using

the prescription for the surface field, the Taylor expansion
of the field is computed at the center of each volume
element. The final solution inside the overall volume is
given as local expansions of the field in different volume
elements.
To find the local expansions for each volume element, we

first split the domain of integration qO into smaller
elements Gi. From the surface field formula we extract an
approximate Taylor expansion in the surface variables ~xs

about the center of the surface element. Then the integral
kernel 1=j~r�~rsj and the field ~B on the surface are Taylor
expanded in the surface variables ~rs about the center of
each surface element. We also Taylor expand the kernel in
the volume variables ~r about the center of the volume
element. The final step is to integrate and sum the resulting
Taylor expansions for all surface elements. Depending on
the accuracy of the computation needed we choose step
sizes, order of expansion in rðx; y; zÞ, and order of
expansion in rsðx; y; zÞ.
All the mathematical operations to perform the

expansion, surface integration, curl and divergence
were implemented using the high-order multivariate
differential algebraic tools available in the code COSY
Infinity [3,6,7] which automatically leads to the respective
field representation to any order without any manual
computations.

4. Applications

4.1. An analytical example: the bar magnet

As a reference problem we consider the magnetic field of
an arrangement of the two rectangular iron bars with inner
surfaces ðy ¼ �y0Þ parallel to the mid-plane ðy ¼ 0Þ as
shown in Fig. 3. The interior of these uniformly magnetized
bars, which are assumed to be infinitely extended in the �y-
directions is defined by: x1pxpx2, jyjpy0, and z1pzpz2.
From this bar magnet one can obtain an analytic solu-
tion for the magnetic field ~Bðx; y; zÞ—see for example
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Ref. [17]—and the result is given by

Byðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj

� arctan
X iZj

YþRþij

 !
þ arctan

X iZj

Y�R�ij

 !" #

Bxðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj ln
Zj þ R�ij

Zj þ Rþij

 !" #

Bzðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj ln
X j þ R�ij

X j þ Rþij

 !" #

where X i ¼ x� xi, Y� ¼ y0 � y, Zi ¼ z� zi, and
R�ij ¼ ðX

2
i þ Y 2

j þ Z2
�Þ

1=2. We note that because of the
symmetry of the field around the mid-plane, only even
order terms exist in the Taylor expansion of this field about
the origin. The mid-plane field of such a magnet is shown in
Fig. 4.

4.1.1. Results and analysis

As a first step, we study the performance of the surface
integration method. To this end, the six surfaces are each
subdivided into a 44� 44 mesh. The entire volume is
considered as one volume element, which is characteristic
of the situation in which the entire system has to be
represented by merely a single multipole expansion. On
each of the surface mesh cells, the contribution from
the Helmholtz integral is Taylor expanded [3,18], and the
resulting polynomial is integrated. Fig. 5 shows the
accuracy of the predicted field, compared with the exact
solution, as a function of the order of expansion within the
surface mesh cells. Results are shown for the points ð0; 0; 0Þ
and ð0:1; 0:1; 0:1Þ. It can be seen that at order six, an

accuracy of approximately 10�12 is reached, which is very
high compared to conventional numerical field solvers.
We note that the change from order 2 to 3, 4 to 5 and 6 to

7 do not produce significant change in the error. This is due
to the fact that odd order terms do not exist in the Taylor
expansion of the field around the reference point ð0; 0; 0Þ.
For the next example, we split the volume inside the bar

magnet into 5� 5� 5 finite elements of width �0:2. Within
each of the elements, a Taylor expansion in the three
volume variables is carried out, resulting in a polynomial
representation of the field within the finite element cell. The
polynomial representation is used to evaluate the field at
1000 randomly chosen points within the cell, and compar-
ing the result with the analytical answer. Fig. 6 shows the
resulting RMS error for finite elements centered around
ð0; 0; 0Þ and ð0:1; 0:1; 0:1Þ. It can be seen that at order 7, an
accuracy of approximately 10�6 is reached.
Overall, the method of simultaneous surface and volume

expansion that can be carried out automatically with the

ARTICLE IN PRESS

Fig. 3. Geometric layout of the bar magnet, consisting of two bars of

magnetized material.
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Fig. 4. Magnetic field By on the center plane of the bar magnet. B0 ¼ 1T
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tools in the code COSY Infinity [3,6,7,18] leads to
accuracies that are significantly higher than those of
conventional finite element tools, even when unusually
large finite elements are used.

For purposes of illustration, we now show the Taylor
expansion of the field given by Eq. (5) and calculated using
the DA tools of COSY over one surface element for a
particular point frozen inside the volume of interest. The
center of the surface element is at ð�0:39;�0:39; 0:5Þ and
the point is at ð0:1; 0:1; 0:1Þ. The surface element is
described by ð�0:39þ 0:5lxxs;�0:39þ 0:5lyys; 0:5Þ, where
lx; ly represent the length and width of the surface element
and xs; ys 2 ½�1; 1�. In the representation of the Taylor

expansion in xs and ys below, the entries in the first column
provide the number assigned to each of the coefficients in
the Taylor expansion to easily identify them. The entries in
the second column provide the numerical value of the
coefficients. The entries in the fourth, fifth and the sixth
columns provide the expansion orders with respect to the
volume variables ðx; y; zÞ. And the entries in the seventh
and eighth column provide the expansion orders with
respect to the surface variables ðxs; ysÞ. The total order for
each coefficient is the sum of all the orders in columns four
through eight, which is given in the third column. Since we
compute the Taylor expansion about a particular point
ð0:1; 0:1; 0:1Þ frozen in the volume of interest in two surface
variables ðxs; ysÞ, we notice that the entries in column four,
five, six are all zero. It can be seen that in this expansion,
the contributions of higher order terms depending on the
surface variables decrease rapidly, and thus the expansion
shown would lead to a result of very high accuracy.

We now present the Taylor expansion of the contribution
of (5) for one surface element and over one volume element
inside the volume of interest. The center of the surface
element is at ð�0:39;�0:39; 0:5Þ and the center of the
volume element is at ð0:1; 0:1; 0:1Þ. The surface element and
the volume element can be fully described by ð�0:39þ
0:5lxxs;�0:39þ 0:5lyys; 0:5Þ and ð0:1þ 0:5rxx; 0:1þ
0:5ryy; 0:1þ 0:5rzzÞ, respectively, where lx; ly represent
the length and width of the surface element, and rx;ry;rz

represent the length, width and height of the volume
element, and xs; ys; x; y; z 2 ½�1; 1�. In this case the coeffi-
cients of the Taylor expansion depend on both the surface
ðxs; ysÞ and the volume variables ðx; y; zÞ. The coefficients
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Sample eighth order Taylor expansion in two surface variables

I Coefficient Order Exponents

1 0.1430015055365947E-01 0 0 0 0 0 0
2 0.6922600731781813E-03 1 0 0 0 1 0
3 -0.9437452710153340E-03 1 0 0 0 0 1
4 -0.1561210105220474E-04 2 0 0 0 2 0
5 -0.4471499751575185E-04 2 0 0 0 1 1

^
20 -0.3232493054085583E-07 5 0 0 0 1 4
21 0.6156849473575023E-07 5 0 0 0 0 5
22 0.8960505971632865E-10 6 0 0 0 6 0
23 0.1890553337467643E-08 6 0 0 0 5 1
24 -0.9792219471281489E-09 6 0 0 0 4 2

^
41 -0.2417698920592542E-10 8 0 0 0 4 4
42 0.7717865536738434E-10 8 0 0 0 3 5
43 -0.2649803372019223E-11 8 0 0 0 2 6
44 -0.2561415687161454E-10 8 0 0 0 1 7
45 0.8506329051477273E-10 8 0 0 0 0 8
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depending only on the surface variables and the coefficient
of the zeroth order term are same as in the previous
example of the expansion in just the surface variables. Once
again we notice that the contributions of higher order
terms decrease rapidly for higher order, showing that also
the expansion in volume variables leads to a very accurate
representation.

We now study the error dependency on the size (length) of
the volume element, or equivalently the number of volume
elements chosen for the computation. For the order of
computation 3,5,7 and 9, Figs. 7 and 8 provide the

dependence of the average error on the length of the
volume element and the total number of volume elements.
As an example, for cell lengths of 0:1, which leads to a total
number of only 550 finite elements, an accuracy of 10�10

can be reached with a ninth order method. Similarly, for a
seventh order method with a cell length of 0.2, correspond-
ing to 125 boxes, accuracies of about 10�6 can be reached.

Compared to conventional 3D Laplace solvers which
typically utilize in the order of 106 cells to achieve
accuracies in the order of 10�3, these results are quite
promising.
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Sample eighth order Taylor expansion in two surface variable and three volume variables

I Coefficient Order Exponents

1 0.1430015055365947E-01 0 0 0 0 0 0
2 -0.9590481459719686E-02 1 1 0 0 0 0
3 -0.9590481459719686E-02 1 0 1 0 0 0
4 -0.9768082968233012E-02 1 0 0 1 0 0
5 0.6922600731781813E-03 1 0 0 0 1 0
6 -0.9437452710153340E-03 1 0 0 0 0 1

^
454 -0.4509222359486833E-07 6 0 1 0 0 5
455 -0.3067430813781439E-07 6 0 0 1 0 5
456 0.8960505971632865E-10 6 0 0 0 6 0
457 0.1890553337467643E-08 6 0 0 0 5 1
458 -0.9792219471281489E-09 6 0 0 0 4 2

^
1283 -0.2417698920592547E-10 8 0 0 0 4 4
1284 0.7717865536738462E-10 8 0 0 0 3 5
1285 -0.2649803372019148E-11 8 0 0 0 2 6
1286 -0.2561415687161455E-10 8 0 0 0 1 7
1287 0.8506329051477271E-10 8 0 0 0 0 8
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4.2. The dipole magnet of the MAGNEX spectrometer

We now address a practical application of this method to
magnetic spectrometers. The trajectory reconstruction
method [19] is one of the important tools to study magnetic
spectrometers. Good computational modeling of the dipole
magnet is very important for this tool to work, and this is
particularly so for modern large-aperture devices such as
MAGNEX at INFN, Catania, Italy [20–22]. Fig. 9 shows
the MAGNEX spectrometer configuration.

As mentioned above, for purposes of measurement
economy, magnet builders usually provide the magnetic
field only on few separate horizontal planes within the
dipole, while the computational treatment of the device
requires the knowledge of the field in all of space. The
MAGNEX dipole was divided into a number of volumes
defined by areas and planes as shown in Fig. 10. Four areas
were mapped as indicated in Table 1; areas 1 and 4
comprise the effective field boundary regions of the magnet
at the entrance and at the exit where the field undergoes a
sudden variation due to the fringe field effects, whereas

regions 2 and 3 represent the central region of the magnet.
This subdivision is the result of the need of different grid
sizes over the mapped area in order to limit the
measurement time. For each of the regions, the measure-
ments were taken on seven different planes as shown in
Table 2.
The magnetic measurement were organized so that the

RMS error hDBi=Bi i ¼ x; y; z at any mesh point inside the
working volume of the magnet was not greater than
5� 10�4. The field measurement error due to the error of
measuring the Hall probe voltage was DB ¼ �5� 10�5 G.
The main source of the B measurement error were assumed
to be the errors of positioning the Hall probe [23–25].
Utilizing that sufficiently outside the dipole the fields will

vanish, it is thus possible to provide field data over the
surface of a finite box enclosing the region of interest, and
thus to apply the methods described above to obtain a field
representation everywhere. We use this method to compute
the fields in region 1 and plane A of the dipole magnet. The
contour plot of the resulting relative errors is plotted over
region 1 in Fig. 11. The region where the sharp valley is
observed coincides with the physical boundary of the
dipole magnet.

5. Conclusion

A new technique for finding the multipole expansion
solution of the 3D Laplace equation using surface data has
been developed. Since this new technique uses the field
information on the surface enclosing the volume of interest
and is implemented using the high-order multivariate
differential algebraic tools available in the code COSY
Infinity [3,6,7], the accuracy achieved is much higher than
that of conventional field solvers. If the data on the surface
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Table 1

Areas mapped in the dipole

Area

1 EFB area at entrance

2 Central area entrance end

3 Central area exit end

4 EFB area at exit

Table 2

Planes mapped in the dipole

Planes Z (cm)

a 0 Mid-plane

b 1.6 Above mid-plane

c 3.2 Above mid-plane

d 4.8 Above mid-plane

e 6.4 Above mid-plane

f 8.0 Above mid-plane

g �4.8 Below mid-plane

Fig. 9. The dipole magnet of the MAGNEX spectrometer; courtesy A.

Cunsolo.

Fig. 10. Layout of the measurement grids in different regions of the dipole

magnet. Courtesy A. Lazzaro.
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enclosing the volume of interest can be given exactly, then
in principle arbitrarily high accuracy limited only by the
computational resources available can be achieved by this
new technique. In practical situations where the field data
on the surface enclosing the volume of interest is
experimentally measured, the discretization of the surface
and the errors in the experimentally measured field data
may limit the accuracy achieved, but because the method is
naturally smoothing, the accuracy is expected to exceed
that of the measurements. The use of this new technique
has been tested rather successfully for an analytic example
of the bar magnet. The result from a preliminary analysis
of the data from the MAGNEX spectrograph dipole
magnet is also presented.
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Abstract

The concept of a linear accelerator (linac) without a synchronous wave from an RF field has previously been suggested. This concept

has been implemented in an innovative type of linac called a linear undulator accelerator. Comprehensive analytical and numerical

studies of the beam dynamics resulted in the complete structure design for two versions of the undulator accelerator. The key results of

these investigations are discussed in this paper.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In a conventional radio frequency (RF) linear accel-
erator (linac) the beam is accelerated by a synchronous
wave from an RF field. An alternative method of
acceleration in fields without a synchronous wave has been
suggested and analytically studied [1,2]. The physical
acceleration mechanism is similar to that in an inverse free
electron laser [3,4]. In our case, the accelerating force is
driven by a combination of two non-synchronous waves
provided by two undulators. We define an undulator as
any structure producing a periodic-distribution electro-
magnetic field for which the phase velocity differs
significantly from that of the beam. A new linac based on
this approach has been termed a undulator linear accel-
erator (UNDULAC). There are three different types of
undulator that can be used to design the required
configuration of the accelerating fields—a magnetic,
electrostatic or RF undulator. It has been shown that
one of the undulators must be an RF type and the
second can be a magnetic (UNDULAC-M), electrostatic

(UNDULAC-E) or radio frequency (UNDULAC-RF)
type [5]. The approach developed can be applied to the
acceleration of axisymmetric beams. However, a more
attractive application of the UNDULAC concept is
ribbon beam acceleration. In this case, the total beam
current significantly increases. UNDULAC-E (Fig. 1) and
UNDULAC-RF (Fig. 2) devices can be used for ribbon
ion-beam bunching and acceleration in the low-energy
range. Acceleration and transverse focusing of the ribbon
beam are realized in the longitudinal or transverse undu-
lator field. The results of investigation of low-beta ribbon
beam dynamics in UNDULAC-E and UNDULAC-RF
accelerator are described.

2. Beam dynamics studies in the UNDULAC

UNDULAC-E and UNDULAC-RF accelerators can be
designed as shown in Figs. 1 and 2. In the UNDULAC-E
device, the RF field has a phase advance per period of
m ¼ 0 (zero mode) and the electrostatic field has m ¼ p
(p mode). In the UNDULAC-RF device, zero or p modes
of the electromagnetic field can be used. The beam parti-
cles interact with the zero RF field harmonic and the
basic space harmonic of the electrostatic field in the
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UNDULAC-E, or with two fundamental space RF field
harmonics in the periodic RF structure in the UNDULAC-
RF. For any UNDULAC, consideration of the beam
dynamics within the scope of traditional theory is a
challenging task due to absence of an accelerating wave
synchronous with the beam. This difficulty can be over-
come using the averaging technique. Beam acceleration is
realized by a combined wave if the phase velocity of the
combined wave is close to the beam velocity. In such an
acceleration system, the momentum and coordinate of each

particle can be presented as a sum of slow varying and fast
oscillating components. Averaging over the rapid oscilla-
tions allows the motion equation to be obtained in
Hamilton form. The results of analytical research of this
equation are discussed elsewhere [1,5].
In an UNDULAC the ion bunch can lose particles due

to a large phase and transverse non-linear oscillations. The
choice of the undulator field amplitude is not arbitrary
because, simultaneously to acceleration, it must ensure
transverse beam focusing. Hamiltonian analysis of the
motion equation was used for a complete 3D description of
the beam dynamics in an UNDULAC. The optimal ratio
of the amplitude of the zero (E0) and first (E1) harmonics of
the RF field, w ¼ E1=E0, must be equal to 0.3–0.4 in the
UNDULAC-RF. Particle losses due to longitudinal sliding
will be small in this case. Transverse beam focusing can be
realized in the UNDULAC-RF for all values of w if the p
mode is used and for w41 if the zero mode is used.
Hamiltonian analysis in a smooth approximation

showed that the amplitude of the electrostatic Eo
0 and RF

fields E0 must be close ðwo ¼ E0=Eo
0 � 1Þ for effective

transverse beam focusing in the UNDULAC-E. The
current transmission coefficient for the ion beam is
90–95% in this case [6,7].

3. BEAMDULAC code

The beam dynamics cannot be investigated completely
using analytical methods only. Numerical simulation is
necessary to verify the results of any analytical study. A
space charge field can also be accurately treated by
numerical simulation. The new BEAMDULAC code was
developed especially for beam dynamics simulations in
linear accelerators.
The BEAMDULAC code utilizes the cloud-in-cell (CIC)

method for accurate treatment of the space charge effects
that are especially important in the case of a high-intensity
beam. The motion equation for each particle is solved in
the external fields and the inter-particle Coulomb field. The
charge density is deposited on the grid points using the CIC
technique. To determine the potential of the Coulomb field,
the Poisson equation is solved on the grid with periodic
boundary conditions at both ends of the domain in the
longitudinal direction. The aperture of the channel is
represented as an ideally conducting surface of rectangular
or circular cross-section. This allows consideration of the
shielding effect, which is sufficiently important for trans-
verse focusing of ribbon beams. The fast Fourier transform
(FFT) algorithm is used to solve the Poisson equation on a
3D grid. The Fourier series for the space charge potential
obtained can be analytically differentiated, and thus each
component of the Coulomb electrical field can be found as
a series with known coefficients. The Coulomb repulsion
force is the main factor limiting the beam current in high-
intensity linacs. In our code, the space charge field can be
calculated with the same precision as the Coulomb
potential without numerical differentiation. The external
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fields are represented as a series of space harmonics. Time
is used as an independent variable and standard methods
are applied for integration of the motion equation in the
BEAMDULAC code.

4. Ribbon ion beam dynamics in UNDULAC-RF

The BEAMDULAC code was used for a deuterium ion-
beam dynamics study in an UNDULAC-RF accelerator.
Optimal linac parameters and the limit beam current were
found for zero and p modes of the RF field. Calculation
showed that transverse focusing is not effective for the zero
mode. The current transmission coefficient KT is smaller
than 30–35%, and this linac version is not promising for
practical use. The main parameters of the UNDULAC-RF
for the p mode are presented in Table 1, with output beam
energy of W ¼ 1:321:5MeV for accelerator length
L ¼ 2:5m. The optimal bunching sub-section length must
be Lb ¼ 0:5L approximately. The rate of energy gain in the
accelerating sub-section is 700–800 keV/m. The current
transmission coefficient calculated will be smaller than in
the smooth approximation. It is equal to 75–80% for low
initial emittance and beam size of 2l� 2t ¼ 1� 0.04 cm2.
Particle losses are connected with fast oscillations of the
particle phases and longitudinal velocities in the UNDU-
LAC-RF using a longitudinal field. Transverse oscillations
of the particles cause enlargement of the beam envelope in
an undulator with a transverse field. This effect increases
particle losses in the transverse direction. Calculation
showed that the optimum value for the amplitude ratio
of the RF field harmonics is w ¼ 0:320:4 (Fig. 3). This
coincides with the result calculated analytically. The
current transmission coefficient is smaller if the initial

emittance is 0.7pmmmrad. In this case the transmission
coefficient is 65–70%.
The limit beam current is related to Coulomb repulsion

in high-intensity ion linacs. Its value was found for a
longitudinal and transverse UNDULAC-RF. The limit
current is Imax ¼ 0:220:25A for a linac using a long-
itudinal RF field and Imax ¼ 0:320:35A for a transverse
field.

5. UNDULAC-E beam dynamics

Numerical simulation of deuterium ion-beam dynamics
shows that the limit current and current transmission
coefficient for the UNDULAC-E are higher and the rate
of energy gain is smaller than for the UNDULAC-RF.
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Table 1

UNDULAC-RF UNDULAC-E

lg. tr. lg. tr.

Accelerator length L (m) 2.5

Deuterium ion injection energy Win (keV) 100 (0.01) 100–150

Injection velocity bin (0.01–0.013)

Amplitude of zero RF field harmonic E0 (kV/cm) 200 210 175

Amplitude of first RF field harmonic E1 (kV/cm) 80 70 —

Amplitude of electrostatic field Eo
0 (kV/cm) — — 175

Bunching sub-section length Lb=L 0.5 0.3

Accelerator channel cross-section 2a� 2b (cm2) 10� 0.7 20� 0.8

Optimal initial beam size 2l� 2t (cm2) — — 12� 0.4 12� 0.4

Limit initial beam size 2l� 2t (cm2) 5� 0.3 7� 0.3 16� 0.4 16� 0.5

Initial emittance

Ex (pmmmrad) 30 30 20 20

Ey (pmmmrad) 0.7 0.06 0.8 0.9

Ej (keVmrad) 25 40 50 55

Acceptance of accelerator channel

Ax (pmmmrad) 60 60 20 20

Ay (pmmmrad) 2 2.5 1.5 1.5

Aj (keVmrad) 40 40 100–200 100–200

Limit beam current Imax (A) 0.2–0.25 0.3–0.35 0.8–1.0 0.9–1.6

Output beam energy Wmax (MeV) 1.2–1.5 1.0–1.2

Output velocity bmax (0.034–0.04) (0.03–0.034)

80

60

40

20

0

KT

0.80.60.40.2 x

Fig. 3. Current transmission coefficient versus ratio of RF field harmonic

amplitudes in the UNDULAC-RF.
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The rate of energy gain in the accelerating sub-section of
the UNDULAC-E is 500 keV/m. The main parameters of
the UNDULAC are presented in Table 1. The optimal
values of the undulator field amplitude and the RF field are
Eo

0 ¼ 120� 180 kV=cm and E0 ¼ 1502200 kV=cm. In this
case the output beam energy is W ¼ 1MeV for accelerator
length L ¼ 2:5m. The bunching sub-section length is Lb ¼

0:3L (see Fig. 4). The current transmission coefficient is
KT ¼ 80% for zero current beam. The limit beam current
for the UNDULAC-E can be very high. In a transverse
undulator field, the limit current is Imax ¼ 1:0A (initial
beam size l� t ¼ 6� 0.2 cm2). The current transmission
coefficient is KT ¼ 75% in this case. The current transmis-
sion coefficient versus the initial beam current is shown in
Fig. 5. The particle loss coefficient KL versus the long-
itudinal coordinate z is represented in Fig. 6. Curve 1
shows the total losses, curve 2, losses due to transverse
motion, and curve 3, losses due to phase sliding. The major
proportion of particle losses is observed in the bunching
sub-section. The influence of the Coulomb field is the basic
reason for ion losses in the accelerating part if the initial
beam size is l� t ¼ 8� 0.25 cm2. The current transmission
coefficient reduces to KT ¼ 65270% in this case. The limit
beam current in the UNDULAC-E device using a long-
itudinal field is 0:821:0A, but KT is smaller than 65%.

6. Conclusion

Deuterium ion-beam dynamics was studied in two types
of undulator linac. The new BEAMDULAC code has been
used especially for optimization and calculation of the
beam dynamics in UNDULAC devices. The numerical
simulation results coincide with the analytical investiga-
tion. The limit beam current was also calculated in the
UNDULAC. Its value can be increased up to 1.6A. The
numerical simulation shows that the current transmission
coefficient and the limit current are larger in the
UNDULAC-E, but the rate of energy gain is higher in

the UNDULAC-RF when the p mode of the RF field is
used. All the results will be used for further design of the
accelerator structure developed.
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Abstract

We present a parallel adaptive scheme for the Vlasov equation. Our method is based on a way of reducing dependencies between data,

thanks to a hierarchical finite element interpolation approach. A specific data distribution pattern yields an efficient implementation.

Numerical results are exhibited for a classical beam simulation in the 1D phase space.

r 2005 Published by Elsevier B.V.
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1. Introduction

Thanks to the rapid increase of computing power in
recent years, simulations of plasmas and particle beams
based on direct solution of the Vlasov equation on a multi-
dimensional phase-space grid are becoming attractive as an
alternative to Particle-In-Cell (PIC) simulations. Their
strength lies essentially in the fact that they are noiseless
and that all parts of phase space, including the tail of the
distribution, are equally well resolved. Their major draw-
back is that, for inhomogeneous systems, many of the grid
points (where no particles are present) are wasted. This is
especially the case for beam simulations where the beam
moves rapidly through the phase space (due to varying
alternating-gradient focusing forces, for example). In order
to overcome this problem, adaptive methods can be used
[1,2,6].

In this paper, we present an adaptive method based on
bi-quadratic finite element interpolation as was first
introduced in Ref. [2] and describe a new efficient parallel
version of an adaptive Vlasov solver, which is also

described in Ref. [3]. It turns out that adaptive numerical
methods are often difficult to parallelize, because they
introduce dependancies between data at different grid
levels and it is then difficult to manage data locality. We
have designed here a numerical method well fitted for
parallelization where the underlying partitions of dyadic
tensor-product cells offer a simple way to distribute data.
In fact, with such a strategy, each data essentially depends
on the neighbor data of the same level. After describing the
numerical method in the adaptive context, we present its
parallelization and exhibit an application to a classical
beam simulation.

2. An adaptive resolution scheme for the Vlasov equation

Here is a brief description of the numerical method of
resolution. We refer the reader to Ref. [2] for a more
detailed presentation. For sake of conciseness, we give the
scheme for a 2D phase space, but it generalizes to higher
dimensions.
The adaptive method is based on a classical semi-

Lagrangian method which takes benefit of the conservation
of the distribution function along particle trajectories.
This method requires to be able to localize a point in the
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phase-space and uses an interpolation operator. Therefore,
we use a dyadic cutting of the phase space together with a
finite stencil for the interpolation.

We represent our solution in a hierarchical way. Each
mesh cell can be recursively subdivided into four subcells of
same size. A function is approximated at a given level by a
biquadratic interpolation using its value at nine nodes: the
four vertices of the cell, the four midpoints of the edges and
the midpoint of the cell. The biquadratic interpolation is a
tensor product of quadratic 1D interpolation. Hence the
interpolation procedure in 2D (or more dimensions) can be
derived easily from the 1D procedure. When dealing, with
the fine grid, instead of interpolating directly using the
basis functions on the fine grid, we consider the three basis
functions at the coarse grid and we add two others of the
fine level. The basis functions for one coarse cell and its two
subcells are represented in Fig. 1.

The solution at time tn is given by an adaptive mesh Mn

consisting of a dyadic partition of cells and the level j of a
given cell will vary from a coarser level j0 to a finer level J.
Going from time step tn to tnþ1 consists in three steps:

(1) Prediction of Mnþ1 : For each cell a 2Mn, denoting j its
level, compute its center ca and the forward advected
point AðcaÞ by following the characteristics of the
Vlasov equation (see [2] for more details about
characteristics and advection operator A). Then add
to Mnþ1 the unique cell ā of level j which fits at that
place inMnþ1 and all the necessary cells so thatMnþ1 is
a dyadic adaptive mesh. Last, if joJ, refine ā of one
level, that is, replace it by the four cells of level j þ 1
which cover the same surface.

(2) Evaluation: For each node a of Mnþ1, compute the
backward advected point A�1ðaÞ and set f nþ1

ðaÞ to
f n
ðA�1ðaÞÞ: the evaluation f n

ðcÞ of the solution at any
point c 2 ½0; 1�2 is obtained by searching the unique cell
a of the adaptive mesh Mn where the point is located,
using the values at the nodes of that cell and computing
the local biquadratic interpolation on that cell, say
Iðc; a; f n

ðcÞÞ.
(3) Compression of Mnþ1: From j ¼ J � 1 to j0, replace

four cells of level j þ 1 by a cell a of level j (do the
converse of refining a) when the norm of the differences
f nþ1
ðaÞ � Iða; a; f n

ðaÞÞ, for all node a of a, is small
enough.

3. Parallel implementation

The computational domain is subdivided into regions. A
region is a surface of the computational domain which is
defined by an union of mesh cells. Regions are allocated to
processors so that each processor owns and computes the
mesh cells and nodes which are included in its own region.
As the mesh adapts to the evolution in time of the physics,
the number of cells within a region change and it is then
necessary to include a load balancing mechanism which
then consists in redefining regions for each processor. In
order to minimize communications, we apply compression
within the region limit only. So the compression phase does
not require any communication in our implementation.
This is an approximation of the numerical method since we
eliminate fewer cells than in the original method, but it
does not hazard convergence. Each processor owns a local
representation of the mesh. The mesh is represented by two
hash tables: the cell hash table stores a set of cells which
forms a partition of the whole computational domain and
associates each cell with its owner identity. The node hash
table stores the value at each node within the region. This
representation allows cells and nodes to be accessed in
constant time while minimizing the memory usage.
As said previously, our load balancing mechanism

consists in redefining regions for each processor, the
number of cells in each region should be approximatively
the same and each region should have a ‘‘good shape’’ to
improve the compression. Moreover, every region should
be connex in order to reduce the volume of communica-
tions. We use the Hilbert’s curve [4] to achieve this last
requirement.
We model the global load and its localization onto the

computational domain by a quad-tree [5] whose nodes are
weighted by the number of leaves in the subtree. Each leaf
of this quad-tree identifies one cell of the mesh and the level
of a leaf in the tree is the level of the corresponding cell in
the mesh.
We then build the new regions by partitioning the quad-

tree. Each region is the union of the cells corresponding to
the leaves of each part of the quad-tree.
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To obtain a good partition, we browse the quad-tree
starting from its root to its leaves, and try to make a cut as
soon as possible. A part, say P, of the partition is such that
ð1� lÞ � IpkPkpð1þ lÞ � I , where kPk is the number of
leaves of the part, I equals to the total number of cells
divided by the number of processors, and l 2 ½0; 1� is an
error factor that permits a certain degree of liberty for
finding good parts.

We use this method at initialization, and a less expensive
version to update regions at runtime without penalizing
performance.

4. Numerical results

In order to assess the benefits of the adaptive solver we
computed the transverse evolution of a semi-Gaussian
beam in a uniform focusing channel. For such a beam, the
initial distribution function reads

f ðr; vÞ ¼
1

pa2
ffiffiffiffiffiffi
2p
p

b
e�1=2ðv

2=b2Þ if roa,

and f ðr; vÞ ¼ 0 else. Here, a ¼ 4=
ffiffiffiffiffi
15
p

; b ¼ 1=ð2 �
ffiffiffiffiffi
15
p
Þ and

the time step is 1=32nd of period, that is Dt ¼ 2p=32.
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We have made a simulation of five periods (160
iterations). Our parallel code has been written in C++/
MPI and tested (1) on a HP cluster, formed by 30 identical
Itanium bi-processors nodes cadenced at 1.3Ghz with
8GB of main memory and interconnected through a
switched 200MB/s and (2) on a SGI Origin 3800,
composed of R14k running at 500Mhz with 512MB per
node. The results are reported in Figs. 2 and 3. In Fig. 2,
the finest level is J ¼ 8, which corresponds to an underlying
fine grid of 512� 512 points. We observe that the adaptive
grid follows very well the evolution of the fine structures.
Fig. 3(left) shows the graphical representation of the speed-
up on a logarithmic scale. We observe that the speed-up is
approximatively constant as the level of details increases.
Fig. 3(right) shows that the wall-clock time keeps decreas-
ing as the number of processors increases up to 64
processors.

5. Conclusion and future work

In this paper, we have presented a Vlasov solver based
on a hierarchical finite element interpolation. The inherent
good localization of the cells has permitted to give an

efficient parallel implementation. We have also shown
numerical results which prove that our code works very
well in the 2D phase space case. A 4D parallel code is being
developed.
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Abstract

Dark current generation and capture are of great importance in high gradient accelerating structure R&D especially for the NLC

which aims to operate at 65MV/m with specific limits on dark current and RF breakdown rates. Although considerable effort has been

devoted to building and testing various types of structures to meet these requirements, few theoretical studies have been done to

understand these effects in actual structures. This paper focuses on the simulation of dark current in a NLC test structure for which

experimental data are available. The parallel time-domain field solver Tau3P and the parallel particle tracking code Track3P are used

together to simulate, for the first time, a dark current pulse to compare with the data measured downstream. Results from SLAC X-band

30-cell constant impedance structure for RF drive pulses with different rise times are presented and discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Next generation linear colliders strive to operate at high
gradients to achieve greater efficiency. One limiting factor
that prevents the accelerator from reaching high gradients
is the generation of dark current. Dark current may lead to
beam loading of the accelerator structure and, if captured,
may also produce undesirable backgrounds downstream in
the detector at the interaction point. Therefore, under-
standing the mechanism of dark current generation and
capture is essential to the successful development of high
gradient structures for future colliders. Thus far, dark
current has been studied mostly through experiments in
which measurements were made during high-power tests.
There is growing interest in understanding the measured
data using simulation in order to gain insight into the
conditions and structure properties that lead to dark
current generation.

Previous efforts in dark current simulation have focused
on cylindrically symmetric structures and treated the
accelerating fields in steady state. These assumptions
ignore the 3D effects of the fundamental power couplers
and the transient effects due to the finite pulse length of the
accelerating fields. However, they greatly simplify the
simulation and many results have been obtained with this
approach [1–4]. This paper describes the simulation of dark
current in a fully 3D model of the accelerating structure
and includes the transient response to a realistic drive
pulse. Specifically, we chose the SLAC X-band 30-cell
constant impedance structure [5] for our end-to-end
simulation which has been made possible by new parallel
tools from the DOE SciDAC Accelerator Simulation
Project.
Under SciDAC, SLAC has developed a new suite of 3D

parallel electromagnetic codes based on unstructured grids
for modeling large, complex accelerating cavities and RF
structures to high accuracy using high-performance com-
puters. The codes for use in dark current simulation
include the parallel time-domain field solver, Tau3P [6],
and the parallel particle-tracking module, Track3P [7].
Coupling Tau3P to Track3P provides the transient fields
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needed for simulating the structure surface response to an
RF drive pulse. Applying this simulation model to the 30-
cell constant impedance structure allows us to study, for
the first time, the dependence of dark current on pulse rise
times so that comparison with available data can be made.
At the same time, the transient fields from Tau3P are
analyzed to understand the increase in peak surface fields
due to shorter rise time and the correlation with enhance-
ment in the dark current pulse.

2. Dark current simulation model

The simulation of dark current requires three compo-
nents: a field solver for determining the electromagnetic
fields in the accelerator structure, a physics model to
govern the particle emission process when the fields interact
with the structure surface, and a particle tracker that
computes the trajectory of emitted particles under the
influence of imposed fields.

(a) Calculation of electromagnetic fields using Tau3P:
Tau3P is a 3D parallel time-domain solver which uses the
discrete surface integrals method for unstructured grids to
simulate large, complex accelerator structures. The use of
unstructured grids allows for conformal meshing of curved
surfaces which is particularly important for determining
the peak surface fields to a high degree of accuracy.
Parallelization provides the ability to handle large problem
size and to speed up long simulation. Both capabilities are
needed for modeling an entire structure over the duration
of a finite RF pulse.

(b) Particle tracking and surface physics in Track3P:
Track3P is a 3D parallel particle tracking code that
computes particle motion through the Lorentz force
equation using the Boris scheme [8] and with fields input
from SLAC’s parallel solvers such as Tau3P and Omega3P.
On an unstructured grid, the localization of particle
position and the interpolation of fields onto it require
special treatment for good accuracy and computational
efficiency. For example, we have implemented a uniform
spatial subdivision scheme to facilitate the particle search-
ing and work is in progress on developing a binned binary
space partitioning scheme that can be an order of
magnitude faster. The surface physics model in Track3P
follows closely the emission processes described in the
paper by Yamaguchi [1]. Field emitted or primary
emissions are treated according to the standard Fowler–
Nordheim formula [9] where the emission current is
determined by the strength of the surface electric field.

Secondary emissions are governed by the Lye and Dekker
formula [10] which provides the yield of elastically as well
as inelastically scattered electrons, and also true second-
aries depending on the energy of the incident electron.
(c) Coupling of Track3P to Tau3P: In order that Track3P

receives the instantaneous fields from Tau3P at each time
step, the two codes have to be coupled directly. Although,
in principle, one can compute and store the Tau3P fields
(over a pulse length) beforehand, the data size would be
too large for practical purposes. Our approach is to treat
the computation like a PIC method but the fields are
computed without charges and currents due to the emitted
current, so the scheme is not self-consistent. With all
parallel particle codes, the main computational issue is load
balancing so that work is evenly divided among the
processors at all times. Presently static load balancing is
used based on the partitioning of the mesh. As the dark
current evolves over time, the workload distribution
between particles and fields can vary widely which reduces
the parallel efficiency. Methods for improvement using
dynamic load balancing schemes are under consideration.

3. Application to 30-cell constant impedance structure

(a) Peak surface field increase during pulse rise time: The
SLAC X-band 30-cell constant impedance structure shown
in Fig. 1 (iris opening same for all cavities) is a test
structure for the NLC and suffered RF damage at the edge
of the cell disks during high-power tests. It was suspected
that RF breakdown was the cause for the damage and is
due to extraordinarily high fields sustained at the disk
surface. In an effort to understand the origin of these high
fields, we drive a pulse with a given rise time and RF power
through the structure using Tau3P and monitor the surface
electric field around the iris edge of each cell. Fig. 2 (left)
shows two instances in time of the pulse propagation
through the structure. All surface emissions have been
turned off. Fig. 2 (right) plots the surface electric field at a
chosen disk location as a function of time for all 30 cells
when excited by a pulse with a 10 ns rise time. It can be seen
that, at each cell disk, the field overshoots during the pulse
transient before settling down to its expected steady-state
value. This overshoot is a dispersive effect due to the high-
frequency content in the rise pulse. When adjusted for the
wall loss (which is absent in this simulation) the maximum
overshoot is about 17% over the steady state which is quite
a significant increase. Simulation indicates that the increase
gets smaller as the rise time gets longer. Since field emission
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depends on the surface field, this suggests some correlation
with experimental data that the peak dark current also
decreases with longer rise times.

(b) Generation of dark current pulse: To study dark
current, the Tau3P simulation is now coupled to the
particle tracking code Track3P which turns on the surface
emission processes and tracks the emitted particles (as
macro-particles) through the Tau3P fields. These fields are
now adjusted by an attenuation factor to account for wall
loss and Fig. 3 (left) shows the transmitted RF pulse (for
three different rise times) monitored at the output
waveguide. In Track3P’s field emission model, the field
enhancement factor b is set to 40. The field emitted (or
primary) particles, under the imposed fields, either hit the
structure surface generating secondary particles or are
captured and accelerated downstream. The simulated dark
current is found by collecting all of the particles that exit
the downstream beam pipe. A typical simulation using 30
Pentium-4 processors of a Linux cluster takes 12.6 h to
advance 64,000 time steps for a mesh with about 500,000
hexahedral elements, and the average number of particles
at each time step is about 150,000. Meeting the computa-
tional requirements and obtaining a fast turnaround time
would not have been possible without parallel computing.

4. Comparison between simulations and experiments

One of the goals of high-power tests is the study of dark
current generation because it is recognized that dark

current may be the precursor to RF breakdown. In the
high-power experiment, the dark current pulse is measured
downstream of the structure for a range of pulse conditions
that include different rise times, various field gradients and
pulse lengths [5]. In this work, we focus on a set of data
measured in the 30-cell structure that describes the dark
current pulse as a function of three pulse rise times of 10,
15 and 20 ns, at a field gradient of 85MV/m. The data
plotted in Fig. 4b shows the input, output, and dark
current pulses for each case. The same experiment is
repeated using Tau3P and Track3P, and the results are
summarized in Fig. 4a. It shows the computed dark current
pulse from the 10 ns case in black, the 15 ns case in red, and
the 20 ns case in blue, and that they are in reasonably good
agreement with measurement.

5. Summary

This paper reports the first ever dark current simu-
lation of an entire 3D realistic structure, with an actual
RF pulse and including secondary emission, using newly
developed parallel tools. Good agreement is found bet-
ween numerical results and measured data on the dark
current pulses generated for different rise times in a test
structure. The shape of the dark current pulse is
corroborated with the RF pulse shape which shows
overshoot as a result of dispersive field effects during
the rising pulse.
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Abstract

Optimized high-energy systems for introscopic examination of large-scale objects are considered. Advanced methods of mathematical

data treatment for non-linear detector correction, image reconstruction and noise suppression based on the synthetic point spread

function and continuous wavelet transformation are given. Experimental results for real, full-scale complexes are shown.
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1. Introduction

Data processing for high-energy introscopy and tomo-
graphy (with photon boundary energy of 6–15MeV) of
large-scale objects (with integral absorption of approx. 104)
can be considered as three stages of data treatment.
Routine operations in the first stage involve detector
response leveling, dark current subtraction and dynamic
range correction. This results in a so-called refined image
suitable for the next processing step. In the second stage
more powerful methods are used, in particular, detector
response linearization, image reconstruction with point
spread function (deconvolution), two-dimensional linear
and non-linear trend elimination (global heterogeneity
removal). In the third stage the most powerful mathema-
tical methods are used—continuous wavelet transforma-
tion for effective noise suppression, cluster analysis for
structure recognition and so called bio-correction (biolo-
gical eyesight simulation). In this stage the primary image
is intentionally changed according to our strategy for
intellectual result reception (non-uniformity, emptiness,
inclusions, suspicious substance identification).

2. Data correction

Two types of irregularity are apparent on the image, as
vertical and horizontal stripes. Vertical stripes are due to
photon flow non-stability; horizontal ones are the result of
detector non-uniformity. There are also low-frequency
variations due to the angular distribution of the photon
beam and its temporal drift. Since the two aforementioned
types of irregularity are statistically independent, they can
easily be removed if found as vertical and horizontal stripes
on an image without any objects (white field). In this case a
two-dimensional corrected image f*(x,y) can be directly
calculated from the primary image f(x,y):

f �ðx; yÞ ¼ C1
f ðx; yÞR x2

x1
f ðx; yÞdx

R y2
y1

f ðx; yÞdy
,

where x1 and x2 define the two abscissa values and y1 and
y2 the two ordinate values for image strips in which there
are no objects (white field in the form of a cross with finite
quantity of a surface).
In the corrected image, fast and slow fluctuations of the

photon flow, the spread of the detector response, photon
angular distribution and collimation system defects are
eliminated. On the other hand, detector non-linearity is
retained and cannot be corrected with a linear model. To
eliminate image stripes at high absorption requires the use
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of a moving ladder sample along the detector line to
measure the detector response at each position along the
sample thickness. Using this non-linearity matrix, the real
image can be corrected.

The next problem is the elimination of two-dimensional
non-linear brightness trends. Let us suppose that defects
are found on a part of the image with a high local
brightness gradient and thus cannot be seen. In this case
leveling of the local averaged brightness can be achieved
using wavelet theory. Decomposition of a two-dimensional
image into a three-dimensional array of wavelet coefficients
using continuous wavelet transformation allows realization
of the image layer localization along a spatial frequency
(see below). By removing layers with low spatial frequen-

cies, the non-linear two-dimensional trend can be elimi-
nated. The result is shown in Fig. 1.

3. Data reconstruction

X-ray images for object scanning are distorted due to the
finite quantity of the linear accelerator focal spot, photon
scattering and other factors. A direct method of true image
revelation using Fourier transformation [1] has been used,
but with the point spread function represented by an
artificial synthetic function:

Fðx; yÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

x0

� �2

þ
y

y0

� �2
s8<

:
9=
;

N

,

where x0;y0 denote the size of kernels along the x and y

coordinates, and the exponent N defines the shape of the
kernel slopes (usually 8–16). The aforementioned para-
meters are experimentally defined according to the real
point spread function of the linear accelerator. The sharp
peak of the function leads to non-null Fourier coefficients
and thus stability of the reconstruction process. A fragment
of scanned container with hidden illegal objects in Fig. 1
has been reconstructed using a synthetic kernel.

4. Noise suppression

For noise filtration in introscopic images, the less
popular continuous wavelet transformation (in contrast
to discrete wavelet transformation) has been used. The
main reason is its superfluity of image information, which
is very useful for accurate processing of noisy objects.
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Fig. 1. Non-linear two-dimensional trend elimination.

Fig. 2. (a) Primary image of wire samples. (b) CWT processed image.
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Two-dimensional decomposition and subsequent image
reconstruction are realized using the following expressions:

Sðb; c; aÞ ¼
1ffiffiffi
a
p

Z 1
�1

Z 1
�1

f ðx; yÞC
x� b

a
;
y� c

a

� �
dxdy,

f ðx; yÞ ¼
1

ca

Z 1
0

Sðx; y; aÞ
da

a2
ffiffiffi
a
p ,

where C is the wavelet function, a is a scale variable, the
inverse value of which is spatial frequency, b and c are shift
variables, f is the primary two-dimensional image, and S is
the three-dimensional wavelet decomposition. It should be
noted that in our case decomposition is performed by
second derivation of a Gaussian function (Mexican hat),
but reconstruction is by a d function [2]. Flexibility of the
continuous wavelet transformation can also be achieved
using arbitrary non-integral or dyadic fractional scale
variables:

aj ¼ a02
ðj=jmaxÞln2ðan=a0Þ,

where a0 and an are the minimum and maximum values of
a, and j and jmax are the current and maximum layer
numbers. Proper choice of these parameters provides good
accuracy of the decomposition–reconstruction cycle.

Further inquiry of the above-mentioned strategy shows
the possibility of renormalization of the decomposition and
reconstruction cycle. In other words, the weight
function 1=a2

ffiffiffi
a
p

can be eliminated from reconstruction
formulae. In this case, the decomposition formulae should

also be changed:

Sðb; c; aÞ ¼
1

a3

Z 1
�1

Z 1
�1

f ðx; yÞC
x� b

a
;
y� c

a

� �
dxdy,

f ðx; yÞ ¼
1

ca

Z 1
0

Sðx; y; aÞda.

The amplitude of the wavelet coefficients decreases much
sooner and reconstruction is a simple summation. At the
same time the accuracy of the decomposition and
reconstruction cycle is retained. An example using this
strategy for a noisy image is shown in Fig. 2(a),(b).

5. Conclusion

Introscopic examination of large-scale objects with
photon boundary energy of 15MeV using the methods
discussed above achieved highest resolution of 1-1T
(according to the ASTM standard [3]) for a steel barrier
of up to 400mm in thickness.
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Abstract

The possibility of producing linac-based high-intensity sources of high-energy bremsstrahlung ð41015 photons=cm2 sÞ and photoneutrons

(up to 1014 neutrons=cm2 s) holds much promise for the use of these sources in various branches of applied nuclear physics (medical isotope

production, transmutation studies of nuclear-cycle long-lived by-products, testing materials for long-term immobilization of radioactive

waste, etc.). An accelerator with an energy of X30MeV, beam power of 410 kW and the highest possible beam-current density appears

appropriate for the generation of secondary radiation with the required parameters. However, the electron beam handling presents some

thermophysical problems on account of high power absorption in the accelerator exit window, the bremsstrahlung converter and the target.

Therefore, each of the technologies mentioned demands optimization of both the geometry and design of the exit systems and the accelerator

beam parameters. This report offers some solutions to the problems mentioned by means of computer simulation based on GEANT and

PENELOPE systems. The codes developed are supplemented with data on excitation functions of the corresponding photonuclear reactions.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The advantages of electron accelerators are their relative
cheapness, the possibility of wide-range adjustment of particle
energy and intensity, and control within certain limits over
the spectral and geometrical parameters of secondary
radiation (bremsstrahlung photons and photoneutrons).
Therefore, in recent years increasing interest has been shown
in the use of these facilities in different areas of nuclear
technologies traditionally based on the use of reactors and
heavy-particle accelerators. For instance, in a number of
cases it appears possible to achieve the production of isotopes
(e.g., the radionuclide 99Mo, popular in nuclear medicine) via
the photonuclear channel with higher efficiency [1].

2. Photonuclear production of isotopes

To develop programs for isotope production in the
photonuclear channel, a high-current linear accelerator was
created, KUT-20 [2]. Its exit window and target station
were investigated and optimized using the GEANT code in
the geometry shown in Fig. 1 for 99Mo production.
Optimization was carried out for the following parameters:

� Total yield of the 100Moðg; nÞ99Mo reaction per day of
accelerator operation.
� Specific activity of the target.
� Thermal load at the exit window of the accelerator and
at the target station elements.

Three versions of the target device were considered:

� A molybdenum metal cylinder, 10mm in diameter and
18mm in height (target 10-1).
� A Mo target as a truncated cone with a developed
surface for efficient cooling (10-2).
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� An Al capsule containing MoO3 powder (10-3).

Choice of the target version is determined by the conditions
for particular isotope production and by the target
treatment procedures after irradiation.

Considering that a divergent photon beam emerges from
the converter, two more versions of the target as truncated
cones (10-2 and 10-3) were studied. Table 1 gives data on
100Mo yield per accelerated electron for targets enriched in
the 100Mo isotope. In the last line, the asterisk indicates
data obtained for the real spectrum of the beam from the
KUT-20 accelerator.

3. Transmutation

It is known that the nuclear energy cycle is accompanied
by accumulation of a considerable amount of radioactive
waste (RAW). In the initial stage of RAW disposal, the
main dose load is mainly determined by the isotopes 137Cs
and 90Sr.

Table 2 gives the calculations for transmutation of these
isotopes in the irradiation geometry shown in Fig. 1 and
with the version 10-1 target, 2 cm in diameter and 1 cm in
height, at different electron energies. The simulation was
performed based on the PENELOPE system.

4. Conclusion

The software packages developed allow computation
and optimization of the radiation and thermophysical

parameters for electron-accelerator exit systems to solve
various problems in applied nuclear physics. Thus, for
production of the medical isotope 99Mo, version 10-3 of the
target (Fig. 1) appears to be the most acceptable.
Experiments have corroborated the correctness of the
simulation. Calculated data were also obtained for the
production of some other isotopes [3].
The results of computer simulation of nuclear-cycle

product transmutation make it possible to optimize the
conditions for realization of this technology and to
estimate its economic efficiency. In particular, computa-
tions show that the partition of elements is a necessary
preliminary procedure for nuclear waste treatment.

Appendix

Compared to reactors, electron accelerators are con-
siderably cheaper, safer in service, and do not produce
long-lived radioactive waste. Accelerator operation is not
associated with the use or production of fissile substances.
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Fig. 1. Geometry of the exit devices. 1–3, exit window of the KUT-20

accelerator (two water-cooled Ti foils); 4, input foil of the target station; 6,

Bremsstrahlung converter (tungsten); 5 and 7, water layers cooling the

converter; 8, foil separating the converter chamber from the target device

chamber; 9, water flow cooling the target; and 10, target.

Table 1

Yield of 99Mo for diverse target geometries ð10�4 nuclei=electronÞ

Target Energy (MeV)

25 30 40

Solid 100Mo (10-2) 4.60 7.99 13.93

Powder 100Mo (10-3) 3.70 5.75 10.95

Oxide 100MoO3 (10-3) 2.51 4.24 7.28
*Oxide 100MoO3 (10-3) 2.80 4.23 7.39

Table 2

Yield from photonuclear transmutation of nuclear cycle products (10-1)

Energy (MeV) Isotope (nuclear transmutation coefficient, 10�4

nuclei/electron)

137Cs 90Sr

30 2:16� 0:44 2:73� 0:35
40 3:78� 0:58 4:42� 0:63
70 7:39� 0:82 9:14� 0:91
100 9:63� 0:93 12:47� 1:1

Table 3

Simulation data for exit systems

DW

(cm)

E0

(MeV)

DH2O� 7 ¼ 3mm

�beam ¼ 5mm

P (kW/10 kW) AMo99,

Ci=day� 10 kW

Ti-1

(103)

W Target

10-1

25 10.4 1.26 2.3 3.0

0.1 30 8.66 1.02 2.64 3.87

35 7.42 0.87 2.89 4.44

40 6.5 0.76 3.06 4.98

25 10.4 2.98 1.18 2.84

0.2 30 8.66 2.38 1.48 3.59

35 7.42 1.99 1.73 4.19

40 6.5 1.71 1.94 4.69

25 10.4 4.55 0.67 2.48

0.3 30 8.66 3.81 0.90 3.16

35 7.42 3.25 1.10 3.73

40 6.5 2.82 1.30 4.26

25 10.4 5.46 0.43 2.06

0.4 30 8.66 4.85 0.59 2.75

35 7.42 4.30 0.78 3.21

40 6.5 3.83 0.92 3.69
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On the other hand, the cross-sections for heavy-particle
reactions are two or three orders of magnitude greater than
those for photonuclear reactions. However, ionization
losses for heavy particles in their interaction with the
target increase to the same degree. Therefore, particles
quickly leave the resonance region.

Table 3 presents the simulation results for target 10-1,
which is made from natural molybdenum (the 100Mo
isotope content is 9.62%). Here, DW is the W converter
thickness, E0 is the accelerated electron energy, + beam is
the accelerated electron beam diameter, DH2O� 7 is the
thickness of the cooling water layer in front of target 10, P

is the absorbed radiation power in exit systems elements for

an electron beam of 10 kW power, Ti-1 is the Ti-foil exit
window of the accelerator, AMo99 is the 99Mo activity
induced in target 10-1 for 1 day at a beam power of 10 kW.
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Abstract

A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E.

Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th

Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on

orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations.

For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing

between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the

redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the

computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as

occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle

Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission

and electron trajectories in an electron gun are simulated.

r 2005 Elsevier B.V. All rights reserved.
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1. PIC algorithm and SCL emission

The PIC algorithm [3] is commonly used to simulate
electromagnetic field problems involving charged particles.
In the electrostatic approximation, the electric field
strength ~E is found by the solution of the POISSON equation
r�rf ¼ �r; ~E ¼ �rf. The equation of motion for the
ith particle is given by the NEWTON-LORENTZ equation
d=dtðg~viÞ ¼ q=m0½~Eð~riÞ þ~vi � ~Bð~riÞ�. For the discretisation
of the problem the staggered grid approach of the Finite
Integration Technique (FIT) [4] is used. The discrete
POISSON equation in FIT notation reads

eSM�
eST

U ¼ q; e
_
¼ eST

U (1)

where eS and eST
denote the discrete divergence and gradient

operators and e
_
is the vector of the electric voltages on the

edges of the primary grid.

The algorithm used for the SCL particle emission was
proposed in [1]. The algorithm is based on imposing exact
charge conservation along emission surfaces of arbitrary
curvature. In particular, the SCL condition of vanishing
electric fields on the emission surface is fulfilled in every
time step even for transient external fields and boundary
conditions.

2. Parallelization of the PIC algorithm

One problem when parallelizing an algorithm concerns
the decomposition of computational tasks on the processes.
In this paper, an approach which couples the computa-
tional tasks with the grid cells by a weight function is
proposed. The weight wi;j;k associated to a cell ði; j; kÞ is the
measure of the local computational cost for the update
of fields and particles. Assuming that the simulation
should be distributed among Np processes the total
computational load is said to be ideally balanced between
the processes, if the weight associated to each process is
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wideal:¼ð1=NpÞ
P

wi;j;k. This optimal weight distribution
can be approximately achieved for an arbitrary number of
processes by a slightly modified orthogonal recursive
bisection (ORB) of the computational domain. A domain,
which has assigned Np processes and holds the weight w, is
divided into two subdomains with weights wsub1 ;wsub2 in
such a way that the constraint N1=N2 ¼ wsub1=wsub2 is
fulfilled, where N1:¼dN=2e and N2:¼bN=2c denote the
number of processes assigned to the resulting subdomains.
In Fig. 1a, a sample decomposition resulting from a
simulation involving three processes is shown. In the
parallel PIC algorithm the slowest of the processes
determines the time needed for one PIC step, i.e., highly

nonuniform distribution of weights due to the particle
motion leads to a poorly balanced load. Thus the weights
have to be rebalanced to preserve the parallel performance,
i.e., the borders of the domains are adjusted as shown in
the example of Fig. 1a. The decision, if a new partitioning
of the computational tasks should occur, is based upon the
value of the maximum normed deviation of the weights
assigned to the processes from the ideal value
s:¼maxi¼1...Np

fðwsubi � widealÞ=widealg. The flowchart for
the parallel PIC algorithm is shown in Fig. 1b.

3. Simulation results

In a first simulation, multiple electron bunches as
occurring in the S-DALINAC accelerator [2] are simulated
in the absence of space charge fields. The bunches have a
longitudinal extent of 10�4 m. The distance between two
bunches is approximately 10�3 m. In this configuration a
highly nonuniform distribution of the particles is given. In
Fig. 2a is shown how the simulation load is efficiently
balanced for a two-process-partitioning. In the case of
particle tracking the weight function depends only on the
number of particles in each cell. Thus, the particles are
distributed equally on the processes after a repartition (see
Fig. 2b). In Fig. 2c, the parallelization speedup based on
the total simulation time is compared for simulations with
and without dynamic load balancing, respectively, and for
a different number of particles. The speedup curve is very
close to the ideal one, if few processes are employed.
However, it is less optimal, when the number of processes
increases above a certain value. The simulation shows, that
the critical number of parallel processes for optimum
speedup depends on the number of particles used in the
simulation. As repartitioning is expensive in terms of CPU
time and interprocess communication, the influence of the
parameter s on the parallel performance was studied in the
second example of a high perveance electron gun [5]. The
geometry of the model and the electron beam is shown in
Fig. 3a. The emitted particles are accelerated in the
cathode-anode gap of 100 kV voltage and the beam is
focused by an immersing magnetic field. Fig. 3b shows the
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for istep=1to nstep

repartitioning solve Poisson  equation

load balancing
necessary?

obtain local solution

add charge to
global rhs vector emit particles

interpolate charge to grid send / receiveparticles push particles

Yes

No

(b)

Fig. 1. (a) Hierarchical structure of the domain decomposition for three

processes. In a repartitioning step the borders of the domains are adjusted

as indicated by the dashed lines, (b) flowchart of the parallel PIC

algorithm.

Fig. 2. (a) CPU time needed to complete the PIC loop for a simulation using two processes, (b) decomposition of the particles on the two processes, (c)

speedup for different numbers of particles.
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total runtime of a simulation involving 43.5 million
computational particles for different thresholds smax on 8
processes. An optimal value of smax � 0:1 can be identified.
This confirms the result from the first example, that
dynamic load balancing leads to good results, as long as
the number of particles per process is large.

4. Conclusions

A 3D parallel PIC Code with a dynamic load balancing
algorithm was presented and tested in two simulation
examples. It was shown, that the algorithm leads to a better
parallel performance for particle dominated problems.
Care should be taken in selecting the criterion for
repartition. Since repartitioning is expensive in terms of
CPU time and interprocess communication, performance

deterioration may occur, if the repartition procedure is
invoked too frequently.
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Abstract

In the design and optimisation of the matching between an ion source and a RFQ there is a lacking tool: Either the program

for the calculation of ion extraction and matching to the RFQ (e.g. IGUN) has to stop at the entrance flange of the RFQ,

because the RF-focusing of the RFQ electrodes (vanes or rods) cannot be taken into account, or the RFQ simulation program, like

PARMTEQ, cannot take into account static electric-field, which originate from the matching lens. We therefore have developed a simple

theory, how to take into account the RF-focusing of a RF-quadrupole structure as well as the beam spreading by emittance in a

simulation with zero emittance by IGUN. This allows very effective use of IGUN to design the matching between an ion source and the

RFQ up to the end of the radial matching section of a RFQ. IGUN automatically takes into account the local focusing strength of the

RFQ electrodes to adjust the space-charge spreading by virtually adjusting the beam current. Handling of a finite emittance has also been

added to IGUN.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The direct injection scheme of the RIKEN laser ion
source into a RFQ [1], created in the entrance of the
RFQ radial matching section a region with overlapping
electrostatic and RF-fields. The standard RFQ design
program Parmteq in its version of PTEQHI [2] could
not handle the plasma meniscus as well as the accelerating
static field, while a standard ion extraction program,
like IGUN [3–5] could not consider the reduction of
beam spreading by starting of RF-focusing in this region
or the finite emittance of the real beam (Fig. 1). On the
basis of the beam envelope equation we present in
this paper a method for IGUN to take into account
RF-focusing as well as the enhanced beam spreading by a
finite emittance [6].

2. Emittance and RF-focusing simulated by beam spreading

in IGUN

The KV-equation, or more generally, the rms envelope
equation

a00 ¼
Kp

a
þ

e2

a3
� ka (1)

describes the variation of the so-called smooth envelope in
a RF-focusing channel, for example in the non-modulated
entrance part of a RFQ accelerator. Here a is the transverse
rms beam size, and Kp is defined as the perveance,
representing the beam spreading by space charge. The
rms emittance e is assumed constant or known a priori and
k represents the focusing effect of the RF-field. The
program IGUN could handle the beam spreading by
space-charge (first term) correctly, but the second and third
terms could not be treated. Although beam spreading by a
finite emittance could be taken into account in IGUN by
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thermal splitting of trajectories, no acceptance can be
defined. We therefore modify the space-charge allocation in
order to simulate with a zero emittance beam both, the RF-
focusing and the finite emittance of an ion beam. How to

proceed, can be directly seen from inspection of the
KV-equation (Eq. (1)): Adding the last two terms to the
first term, will create an ‘‘effective’’ perveance or current
to describe beam spreading, emittance spreading and
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Fig. 1. Direct injection scheme of the RIKEN laser ion source, as an example for the overlap of DC and RF-field in the radial matching section, calculated

by IGUN without considering the reduction of beam spreading by RF-focusing.

Fig. 2. An input file for IGUN to calculate the injection system from the RIKEN laser ion source to a RFQ as shown in Fig. 4. The relevant parameters

are in line 3 as part of &INPUT1, the geometrical data about the RFQ vane shape in the right column, starting with potential number 4. Naming RFQ ¼ 4

in line 3 is a signal to IGUN, to use the coordinates with potential number 4 in the right column as local values of A(z). For more details about the

variables and the interpretation of the geometrical data the reader is referred to the IGUN manual or to the web page www.egun-igun.com
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rf-focusing of RFQ: APERTF=0.6, ACCEPTF=0.5, matched case 

rf-focusingof RFQ: APERTF=0.6, ACCEPTF=0.0, matched case 

rf-focusing of RFQ:APERTF=0.6, ACCEPTF=0.5, beam 75% of matched case 

Fig. 3. (Top to bottom) Betatron oscillations in the RFQ as simulated by IGUN. (a) RF-focusing for 60% fill of aperture, no emittance (matched case),

(b) RF-focusing for 60% fill of aperture and 50% fill of acceptance by emittance, (c) Mismatch of case (b) by an initial beam radius of 75% of the matched

one.
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RF-focusing as given for the RFQ by beam spreading of a
laminar beam in IGUN.

a00 ¼
Kp

a
1þ

e2

Kpa2
�

ka2

Kp

� �
¼

Kp;eff

a
. (2)

We read the factor of the first term as an ‘‘effective’’
perveance and relate it to an effective current by

Kp;eff

Kp
¼

Ip;eff

Ip
. (3)

The balanced (matched) condition a00 ¼ 0 of the envelope
equation can be used to express Kp by corresponding
values, indicated by subscript ‘‘0’’

Kp ¼ k0a2
0 �

e2

a2
0

. (4)

In the RFQ the coefficient of the focusing force k changes
according to the vane aperture A

k ¼ k0
A0

A

� �2

(5)

where again the subscript ‘‘0’’ indicates the RFQ aperture
where the beam is considered matched; for example, a few
cells beyond the end of the radial matching section, which
is typically 4–6 cells long. Using the definition for the
acceptance

a ¼ a2
0

ffiffiffiffiffi
k0
p

(6)

it is finally obtained

Ip;eff

Ip
¼ 1þ

ða0=aÞ4ðe=aÞ2

1� ðe=aÞ2
�
ðaA0=a0AÞ

2

1� ðe=aÞ2
. (7)

At the match point with a ¼ a0, A ¼ A0 the effective
current becomes zero, independent of the emittance to
acceptance ratio, reflecting the homogeneous focusing
action of an RFQ in smooth approximation with non-
modulated electrodes (ignoring the envelope wiggles from
the RF-fields).

3. Implementation into IGUN

The ratio of Eq. (7) will be used in IGUN to locally and
virtually reduce the ion current for the space-charge
allocation procedure. For this some variables are known
to IGUN by boundary input, e.g. the local aperture A, and
its special value A0, where matching should occur. IGUN
also has control on the beam boundary radii a, while a0 can
be calculated from the input parameter APERTFILL ¼
a0/A0. The definition becomes complete by the second input
parameter ACCEPTFILL ¼ e/a, which is the ratio of beam
emittance to the RFQ acceptance. (The equations could
alternatively be expressed in terms of the ‘‘tune depres-
sion’’.). A typical input file for IGUN then may look like
Fig. 2.
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Fig. 4. Matching of the laser ion source of Fig. 1 to the RFQ by means of a decelerating electrostatic lens as ion source potential. The upper panel shows

trajectories and equipotential lines, the left lower panel shows surface fields along the boundary, indicating that the critical field maxima at relative

negative potential are below 35kV/cm. In the lower panel to the right the final emittance is plotted, which is dominated by aberrations and exhibits an

emittance growth of a factor of 30 with respect to the pure electrostatic ion gun.
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4. Simulation of betatron oscillations for matched and

mismatched beams

For the matched case a ¼ a0, A ¼ A0 the effective current
becomes zero, independent of the emittance to acceptance
ratio (Fig. 3a,b). For mismatched cases, the beam envelope
shows betatron oscillations and a series of negative and
positive space charge fields with corresponding equipotential
lines for potential wells and hills (Fig. 3c). These potential
wells and hills are a footprint of the simulation method: the
virtual effective current according to Eq. (7) becomes positive,
if the beam radius is smaller than the matched one and
negative, if it is larger. In the ‘‘real’’ world, the potential inside
the beam will always be positive with respect to the walls.

5. Matching calculation

As an example for the application of this new feature of
IGUN, we present the result of simulations for the matching
of the laser ion source—as shown in Fig. 1—to a RFQ by
introduction of a decelerating electrostatic lens. The result of
the IGUN simulation is shown in Fig. 4. In the (most likely)
case, when the matching conditions are not met properly at
the end of the radial matching section, the beam is left in a
mismatched situation. As a result, it will perform betatron
oscillations, as shown in Fig. 3c, which, however, may be
damped by the beginning acceleration in the RFQ.

6. Conclusions

For the task of matching a high-intensity ion source to a
RFQ a new feature has been added to IGUN, in order to

correctly take into account the RF-focusing action of the
non-modulated RFQ electrodes in the radial matching
section. This allows the use of IGUN from the plasma
meniscus to that point inside the RFQ, where axial
acceleration starts by modulation of the electrodes.
Application of this method will facilitate the end-to-end
simulation of accelerating systems, because no transition to
a LEBT simulation program will be needed. Additional
freedom is available to the design of matching sections,
because the end flange of the RFQ tank may be on a high-
voltage potential. This has been shown as a very effective
way to match high-current beams [7]. The new method has
been successfully applied to the problem of matching a
high intensity (104mA C6+) ion beam at 50 keV/u energy
to a RFQ, providing a decelerating electrostatic lens, which
uses the ion source potential. The electrode distances and
shapes could be optimised to limit the maximum electric
field at relative negative surface parts to below
35 kV/cm.
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Abstract

Analysis of the dependence of the accuracy of the interelectrode distance on the accuracy of electrode surface machining for a 433MHz

four-segment radio-frequency quadrupole (RFQ) resonator is reported. The aim of the research was to determine the requirements for

measurement methods and machining of the RFQ segments. Analysis of particle capture into acceleration as a function of the electrode

modulation amplitude at the RFQ input is discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The accuracy of quadrupole symmetry of the electro-
magnetic field in a radio-frequency quadrupole (RFQ)
structure is mainly determined by the accuracy of the
manufacture of the segments. After manufacture and
assembly of the four segments (Fig. 5), the electromagnetic
field can be corrected using adjustment elements. The
higher the manufacturing and assembly accuracy, the less is
the necessity to use adjusting elements.

Fig. 1 shows the results of numerical calculations of the
electric component of the electromagnetic field in a
resonator with exact quadrupole symmetry.

Fig. 2 shows the result for similar calculations for a
resonator with a displaced upper electrode; the top of the
electrode is displaced to the right by 20 mm, which is o1%
of the distance (2.899mm) between the tops of neighbour-
ing electrodes.

Analysis shows that realisation of tolerances for inter-
electrode distances of �20 mm and less requires a high
level of technology, and consequently, methods for
measurement and electrode machining corresponding to
this level.

2. Analysis of tolerances

The accuracy requirements for the manufacture and
assembly of RFQ resonators define the accuracy require-
ments for methods for measurement and machining of
resonator segments. The analysis presented allows estima-
tion of the accuracy requirements for these methods.
Fig. 3 shows the cross-section of the resonator. Fig. 6

displays the cross-section at the axes of the resonator.
Dimension chains forming interelectrode distances d ¼

7:000 and e ¼ 2:899mm (shown in Fig. 4) were subjected to
analysis for the conformity of both dimensions (d and e) to
a tolerance of 20 mm. It was supposed that the electrode
modulation was ideally manufactured using a diamond
mill, i.e. the error due to this mill was not taken into
account.
A dimension chain determining the dimension of

interelectrode distance d is formed by the dimensions
a ¼ 150:000, b ¼ 126:500 and c ¼ 16:500mm (Fig. 3).
Fig. 5 illustrates the dimension scheme for interelectrode

distance d ¼ 7:000� 0:025mm.
According to this scheme, the tolerance for dimension d

of 725mm is uniformly distributed among the dimensions
a, b and c (assuming identical accuracy in machining
of jointing planes) and hence the tolerance for dimensions
a, b and c is 725/3mm ¼78mm. Thus, the dimensions
have values a ¼ 150:000� 0:008, b ¼ 126:500� 0:008 and
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c ¼ 16:500� 0:008mm. The maximum deviation of dimen-
sion d takes place when dimension a deflects in antiphase in
relation to dimensions b and c. For example, d ¼ a–b–c ¼

149.992–126.508–16.5086.976mm, i.e., d ¼ 7.000–0.024mm,
or d ¼ a–b–c ¼ 150.008–126.492–16.492 ¼ 7.024mm.
Furthermore, it is necessary to choose a tolerance level

for non-flatness of the jointing planes corresponding to the
dimension chain considered. The most reliable value for
tolerance of non-flatness for jointing planes is one-tenth of
the tolerance for the dimensions, i.e. for the case given,
16mm� 0.1 ¼ 1.6mm, but achievement of such accuracy
involves significant costs. A more optimum solution from
the point of view of both costs and reliability is a factor of
0.2 of the dimension tolerance, i.e., 16mm� 0.2 ¼ 3.2mm.
Similar arguments are applicable to the measurement error
for non-flatness—it is more reliable to have one-tenth of the
tolerance value for non-flatness, i.e. 3.2mm� 0.1 ¼ 0.32mm,
but a more realistic variation is 3.2mm� 0.2 ¼ 0.64mm.
Thus, for the nominal dimension d ¼ 7:000mm and

tolerance 725 mm, we have tolerance for dimensions a, b

and c of 16 mm, non-flatness tolerance of 3.2 mm, and
measurement error for non-flatness of 0.64 mm.
Fig. 6 shows the cross-section of the RFQ resonator; the

dimensions specified form the dimension chain determining
the interelectrode distance e in Fig. 4.
Distance e changes to the greatest degree when both

adjacent electrodes are simultaneously displaced towards
or apart from each other. Thus, the value D (change in
interelectrode distance e) is connected to L (displacement
of electrodes on the x and y axes; Fig. 6) by D ¼

ffiffiffiffiffiffi
2L
p

, i.e.,
if dimension e ¼ 2.899mm has tolerance D ¼725 mm, the
displacement of each electrode on the x or y axis for the
centre of quadrupole symmetry should not exceed
L ¼ �25mm=

ffiffiffi
2
p
ffi �18mm; thus, we have r ¼ 3:5�

0:018mm (Fig. 4).
The dimension chain dictating the interelectrode dimension

e is shown in Fig. 7. Here r is the distance from the top of the
electrode to the centre of quadrupole symmetry (Fig. 4). As
the deviation of the electrode from the nominal position
is defined by two dimensions, f and g, the tolerance for
these dimensions will be L/2 ¼718mm/2 ¼79mm, i.e.,
f ¼ 130.00070.009mm and g ¼ 126.00070.009mm. As-
suming a tolerance for non-flatness of the jointing planes of
18mm� 0.2 ¼ 3.6mm, we obtain a value for allowable
measurement error for non-flatness of 3.6mm� 0.2 ¼
0.72mm. A summary of the results is shown in Table 1.
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Fig. 2. Electric component of the electromagnetic field in a resonator with

a displaced upper electrode.
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Fig. 3. Resonator cross-section.
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Fig. 4. Interelectrode distances d and e at the tops of the electrodes.

        

Fig. 1. Electric component of the electromagnetic field in a resonator with

exact quadrupole symmetry.
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Fig. 5. Dimension scheme for interelectrode distance d.
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Practice has shown that such requirements assume
temperature monitoring in the room and machine tool
capability (elements and detail) to within 1/10 and even 1/
100 of 11. In particular, achieving a measurement error of
1 mm for the NPK LUTS used in the HS328 machine tool
required both modification of the machine tool software
and improvement of its cooling system to maintain the
coolant temperature and elements of the machine tool
within a narrower temperature range.

Figs. 8 and 9 show diagrams reflecting the dependence of
the tolerance for non-flatness of the jointing planes e and
the required measurement accuracy z on tolerance d for
interelectrode distance d.

3. Results of particle dynamics optimisation

A number of measures to improve the HS328 machine
tool are now planned to realise an accuracy of 2–3 mm for
machining of the jointing planes and electrode modulation.
As stated earlier, numerical calculations for optimisation

of the particle dynamics for a 1MeV deuteron 433MHz
RFQ structure have been carried out. The calculations take
into account the opportunity to downsize the electrode
modulation amplitude at an accelerating–focusing channel
input from 40 to 10 mm. The purpose of this optimisation
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Fig. 7. Dimension chain for interelectrode distance e.

Table 1

Summary of calculated results

Dimension

d e

Dimension tolerance (mm) 725 725

Tolerance for non-flatness of jointing planes (mm) 3.2 3.6

Non-flatness measurement accuracy for jointing

planes (mm)

0.64 0.72
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Fig. 8. Dependence of the non-flatness tolerance for jointing planes e on
tolerance d for interelectrode distance d.
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Fig. 9. Dependence of the required measurement accuracy z on tolerance

d for interelectrode distance d.
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was to increase particle capture into acceleration for a
15mA input beam (while preserving the length of the
structure at 2300mm) with input modulation amplitude of
approximately 10 mm.

By optimising the particle dynamics, particle capture
into acceleration was increased from 80% to 91% and the
phase length of output bunches decreased from 721 to 361.
Fig. 10 shows the phase spectrum for the output beam in
the structure before optimisation. Fig. 11 illustrates the
phase spectrum in the structure for a smaller electrode
modulation amplitude. Figs. 12 and 13 illustrate power
spectra for the output beam for these two variations.

4. Conclusion

Analysis of the tolerances for a 433MHz RFQ shows
that for tolerance of 725 mm for the interelectrode
distances, the error in measurements of the machining of
jointing planes must be approximately 1 mm. Correspond-
ingly, the tolerance for the non-flatness of jointing planes
must be approximately 3mm. At present, using the HS328
machine tool it was possible to achieve measurement error
of 1mm, while the realisation of 3 mm for non-flatness of the
jointing planes will require additional efforts. Resolution of
these problems will essentially allow simplification of the
procedure for RF tuning.
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Fig. 11. Phase spectrum of the output beam in a structure with smaller

electrode modulation amplitude.
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Abstract

Calculations have been made to investigate the energy penetration through the pumping holes of the beam tube at the interaction point

of the HERMES experiment at HERA. A shielding screen made from etched nickel foil, pressed into the aluminium of the target cell,

was proposed. Several different models were studied. Calculations for the new design of the spring fingers were also made, and the results

for the 2000 design are included for comparison. As there have been no measurements as yet, the 2000 values are the only indication of an

upper limit of radio frequency interference which is not tolerable for the detector electronics. The effect of discretisation on the results

was also analysed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The 2003 design of the target cell requires six pumping
holes on either side of the elliptical beam tube at the
interaction point of the HERMES experiment. Fig. 1
shows the present installation. These holes would be
stamped out of the sides of the beam tube, 4mm high,
10mm long, with a separation of 2.5mm, see the insert in
Fig. 1. The radii of the elliptical beam pipe of the target cell
are 4.45� 10.5mm.

Previous experience with insufficiently shielded gaps in
the beam tube at other positions of the target cell, i.e. the
spring fingers which connect the target cell to the wakefield
suppressor on the one side, at 0.347m, and the C2
collimator, at �0.24m, on the other, has shown that
high-frequency electro-magnetic fields from the beam can
saturate the detector electronics so that data cannot be
taken.

A fine screen pressed into the aluminium of the target
cell has been proposed for shielding the sensitive detector
electronics. The screen would be formed by etching nickel
foil, 20 mm thick, leaving �12 line/cm with 90% transpar-
ency. The width of the metal separating the square cells
would be 40 mm and the thickness 20 mm. The cells are
0.4mm square.
Preliminary calculations were first carried out to evaluate

possible models for the shielding. Then a simpler model
was used to examine the mechanism of coupling through a
fine screen. Two other simplified models were used to
investigate the effect of discretisation on the results directly
and also on the inductance, as a qualitative measure of the
coupling. After that, a detailed model was constructed. The
calculation used an excitation which allowed a variable
mesh in the beam direction. All calculations were carried
out with the MAFIA [1] programs.
Calculations for the new design of the spring fingers,

using much shorter and narrower gaps are also presented
here. This provides a comparison between a model with
elliptical beam cross-section and the rectangular approx-
imation, which is used in the other calculations. The
previous design had also been calculated and is included
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for comparison, as this is the only available indication of
the level of RF power which is not tolerable.

2. Spring fingers—comparison with previous calculations

So far there have been no measurements which can be
correlated to the amount of RF noise tolerable for the
diagnostic equipment. However, in 2000 the level was so
high that data could not be taken.

Spring fingers are used in the first place to provide RF
shielding and to facilitate the removal of the target cell
when necessary, but also as pumping slits. Naturally,
pumping power is only achieved at the expense of the
shielding. The gaps in the beam tube have been reduced in
the 2003 design, reducing the calculated energy penetration
by five orders of magnitude, from 183mW to 1.3 mW.

� 2003 Design: fingers 2mm wide, 5mm long, with a
spacing of 0.8mm.
� 2000 Design: fingers 2mm wide, 35.5mm long, with a

spacing of 5mm.

The equipment around the beam tube could not be
modelled accurately, thus multiple reflections in that area
were neglected. For a good approximation of the actual
energy transfer, a half wavelength of empty space round
the beam tube was modelled, with sufficiently fine
discretisation to allow EM waves to propagate. This means

that the model must include at least 10mm empty space for
the case of a 3mm sigma bunch and then 40mm for a
12mm sigma bunch.
It was also shown that using a rectangular instead of an

elliptical model for the beam tube underestimated the
energy penetration by less than a factor of 2.
Fig. 2 shows the elliptical calculation model and the 2003

design for the spring fingers.

3. Preliminary calculations

For the preliminary calculations the screen was modelled
with a coarser mesh, 12� 2 wires instead of 23� 5, a
rectangular beam tube was used and 1

4
of the geometry was

modelled. Sheets, elements with zero thickness available in
the MAFIA [1] programs, were used to model the wires of
the screen.
The following assumptions were made:

� Shielding is effective: after bunch passage, no coupling
between beam tube and outer volume;
� field energy in outer volume is a measure of the

coupling;
� energy loss for all bunches adds up incoherently and is

absorbed in the outer volume.

Five models were compared. (1) Screen over the holes,
surrounded by a cage; (2) cage surrounding open holes;
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Fig. 1. Hermes 2000 target cell, with beam tube in place (no pumping holes). Inset shows the type of pumping holes used at the target cell.

Fig. 2. Elliptical calculation model with a view of new spring fingers.
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(3) two horizontal wires; (4) screen over the holes; (5) open
holes.

Models 4 and 5, shown in Fig. 3, were chosen for further
investigation. Model 3 shields better than Model 4, but the
wires cannot be attached firmly. Model 1 provides better
shielding but would only be considered if Model 4 proves
insufficient, as it is mechanically less stable.

4. Simplified models

4.1. Transmission line

In order to gain insight into these results, a much
simplified calculation model was designed, see Fig. 4; a
transmission line consisting of three electric plates with two
waveguide ports at each end was used, as shown in Fig. 5.
The model represented the six holes in the beam pipe, each
10mm long with a 2mm separation bar; the holes in the
screen were 400� 400 mm, with 40 mm for the width of the
wire. Periodic boundary conditions were applied transver-
sally producing an infinitely wide model.

The reflection, (r), and transmission, (t), together with
the coupling, (c) and the isolation, (i), were calculated (see
Fig. 5). The excitation is a Gaussian pulse which travels
from the bottom left at the speed of light. As the main
scattering effect seemed to come from the edges of the
pumping holes and to a lesser extent from the edge of each
of the holes in the screen (see Fig. 6), the shape of the
screen holes was varied, using rectangular holes two and
four times as long. A tapering of the ends of the holes was
also tried.

The energy transfer calculated for each port was

for sigma ¼ 3mm ðrÞ ¼ 1:5%; ðiÞ ¼ 0:18%,

ðtÞ ¼ 95:2%; ðcÞ ¼ 3:1%,

for sigma ¼ 12mm ðrÞ ¼ 0:32%; ðiÞ ¼ 0:025%,

ðtÞ ¼ 99:4%; ðcÞ ¼ 0:2%.

For a 12mm bunch the energy penetration was 0.11mW.
Using rectangular holes, with a 2:1 ratio, this could be
reduced to 0.051mW and with 4:1, to 0.038mW.
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Fig. 3. Geometry of models 4 and 5.

Fig. 4. Left hand side: calculation model. Right hand side: model with boundary conditions.

Fig. 5. Four ports are monitored to calculate the transmission (t),

reflection (r), coupling (c) and isolation (i).
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4.2. Discretisation test—TEM conductors

In so fine a structure as the shielding screen, it was
important to establish to what degree the discretisation
affected the results obtained. Outside the beam tube there
is a large area where waves can propagate. In order to
investigate the effect of varying the mesh density within
and either side of the screen, a waveguiding structure
was introduced; a model with TEM conductor plates, see
Fig. 7, guides and reflects the electromagnetic waves,
representing a similar physical situation in a smaller
volume with better discretisation.

As expected, the actual size of the holes in the screen
plays a large role, so that the coarser screen used in Section
3 overestimates the power transmission by two orders of
magnitude. However, the fineness of the discretisation
within these holes also affects the results, making the screen
more transparent. This is not in contradiction to the results
in Section 4.1, as there the holes were changed from square
to rectangular. It was seen in Model 3 of Section 3 that the
wires parallel to the beam direction have a screening effect,
while those perpendicular to the beam cause reflections.

4.3. Discretisation test—inductance of wires in screen

The inductance of wires in a screen was investigated with
an even simpler model.
The screen consists of many individual wires. Current

flowing through the wires causes magnetic fields round
each wire. This magnetic field is responsible for the
coupling and, as the inductance describes the relation of
the current to the field energy, the inductance is a good
measure of the coupling strength. Thus, the inductance is
used to investigate the effect of discretisation on the results.
A very simple model can be used to consider the effect of

varied discretisations on the calculated coupling. A two-
plate resonator with periodic structure was chosen, that of
a metal post between two metal plates, top and bottom,
with periodic boundaries on the other two sides, left and
right (see Fig. 8). This represents the resonant conditions
for one wire of the screen. The height of the post must be
small with respect to the length of the resonator. The
frequency shift caused by the presence of the wire is
calculated in the frequency domain. The effect of the use of
sheets on the calculated field penetration through the
shielding screen was also investigated. In Fig. 9 the lower
curves (yellow and blue) represent the solid post, (almost
coincident) and the upper curves show the sheet model with
different orientations L/Z0 was normalised to the best
discretisation of the solid post, and plotted versus the mesh
density. The curves rise steeply initially and then flatten
out.
Each wire acts as a very small magnetic filter, thus the

thickness of the wire would also affect the coupling. As the
calculated fields are constant in each mesh cell, a coarse
mesh simulates a thicker wire even when the dimensions of
the wire remain constant. Sheets increase transmission
through the screen by a factor of almost two.

5. Full model

In the time domain, when wakefields are not required, it
is no longer necessary to maintain an equidistant mesh. A
model with solid wires in the screen was generated, shown
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Fig. 7. Model with TEM capacitor plates.

Fig. 8. Simplified model for inductance calculations of wires in a screen as

a metal post between two metal plates.

Fig. 6. Energy transfer to the four ports is plotted against time, showing

the reflections from the edges of the six holes.
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in Fig. 10. For comparison, models were also calculated
with wires as sheets and without screening.

Using sheets also allows more energy to reach the outer
area and the higher resolution, i.e. more mesh lines between
the wires of the screen is also necessary to obtain the
correct energy penetration. Table 1 shows the results.

Although the differences between the solid and the sheet
model are small when sigma ¼ 12mm, it is interesting to
note that increasing the discretisation makes the screen
more transparent to higher frequency components. In
Section 4.3, L/Z0 was plotted against the mesh density.

The differences found there between the solid and the sheet
model are also apparent in these calculations.

6. Conclusions

A calculation model was found which gave reliable
results within the given restrictions. The factors which
affected the results were the use of sheets, discretisation,
and the coarseness of the screen. The initial results were a
factor of 10 too high.
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The screening reduces the energy penetration by at least
two orders of magnitude for a 12mm beam. This should be
sufficient to reduce the radio frequency interference to a
tolerable level. Measurements are in progress. To be
effective the screening must be firmly attached.
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Table 1

Energy penetration through the pumping holes of the full model for two bunch lengths

Screen model Resolution Sigma ¼ 3mm Sigma ¼ 12mm

Energy outsidea

(� 106VA s/m3)

Power lossb (mW) Energy outsidea

((� 103VA s/m3)

Power lossb (mW)

Solid Low 0.3549 0.1278 0.2693 o 1

Solid High 0.3944 0.1420 0.2951 o 1

Sheets Low 0.8490 0.3056 0.5711 o 1

Sheets High 0.9215 0.3317 0.6136 o 1

Open

Open holes Low 834.4 300.4 32.13 11.57

The screen wires were modelled as either sheets or solid, with 6� 6 mesh lines per screen hole (high-resolution), or 4� 4 (low-resolution).
aEnergy calculated for a bunch with 1C charge.
bEnergy scaled to the HERA design current, 60mA.
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Abstract

Results are reported for a computational study of the output beam of the high-current Moscow Meson Factory (MMF) linac H+ and

H� injectors for various ion source operation modes and a variety of accelerating tube optics. Values for the emittance and phase density

of the beam at the exit of the accelerating tubes are presented. The possibility of increasing the pulse current and thus the beam brightness

with limited emittance growth was investigated. Numerical calculations are compared with experimental data. A computational

application for monitoring the beam parameters in television is proposed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For a long time, a proton injector [1] has provided the
beam for the Moscow Meson Factory high-current linac
(MMFL) [2]. In addition, a new H� injector is under
construction.

Modernization of injector optics has been supported by
both computational monitoring of the injector output
emittance and simulation of accelerator tube (AT) beam
transmission matching with a linac low-energy beam
transport (LEBT) channel and a radio-frequency quadru-
pole accelerator (RFQ). The RFQ cavity has an acceptance
of 0.35p cm � mrad. Simulation results for AT beam
formation derived using the large-particle method and the
Kapchinskij–Vladimirskij microcanonical beam (MCB)
model [3–5] practically agree. Because of the great
advantage of PC use in terms of the calculation rate and
result visualization, the MCB model was later used as a
convenient engineering tool. In addition, modernization of
the expander–extractor electrode system [6] was accom-
panied by simulation using the large-particle method.

Emittance measurements, processing and visual repre-
sentation of results [7] are carried out using LabVIEW
software packages.
The accelerating voltage shape and measured beam

current at the injector exit are operationally routed into the
linac local network, as well as a number of operational
injector parameters.
Within the framework of creation of the H� injector, a

computer control system (CCS) project [8] was developed
using the National Instruments modules.
Monitoring the cross-sectional structure of beams is also

a fundamental requirement for the high-current MMFL.
The two-coordinate ionization detector combined with a
TV has been applied for non-destructive monitoring of the
LEBT beam proton component [9].

2. Injector design

The ion source (IS) optics is a set of focusing elements
with strong high-order optical effects depending on the
aperture. This consideration, combined with the require-
ments for high-gradient accelerating tubes, makes it
attractive to consider simple, linear focusing elements in
developing H+ and H� injectors.
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The MMFL proton injector provides a pulsed beam at
the input of the LEBT channel, 2m downstream of the AT
[10] beam formation system.

The MMFL proton injector has been modernized to
improve the qualitative performance and to increase the
average beam current. This involves reconstructing the AT
optics. Research carried out has allowed essential reduction
of the emittance and beam current noise. The possibility of
increasing the pulse current with limited emittance growth
is being studied.

Until summer 2002, the beam pulse current of the proton
injector was approximately 100mA and normalized
emittance was not less than 0.24p cmmrad, depending on
the IS operation mode and the AT optical conditions
(hereafter, the emittance is given for the beam core,
containing 63% of the total beam current).

The necessity for an increase in beam brightness dictated
the development of new injector optics. Between September
2002 and April 2003, a greed-free extraction system with
conical electrodes was tested. A maximum pulse current of
110mA and emittance of 0.16p cmmrad (at 100mA) were
achieved.

At the end of April 2003, a system with a cylinder
expander, Pierce geometry and a plate extraction electrode
was put into the AT. This allows maximum pulse current of
up to 145mA. At a current of 120mA, emittance of
0.11p cmmrad was measured [6].
Designed for proton injector computer models, a system

for computational control and diagnostics, as well as the
handling of measurement results, has been used in the
development of the H� injector.

The H� injector has to provide a beam at the input of the
linac LEBT channel (hereafter called the injector ‘‘target’’).
The beam radius at the target must not exceed 26mm, and
it is provided only the AT optics for 400 kV, without the
additional focusing devices of the LEBT channel. By virtue
of the equipment already selected for the injector, the IS
output is located approximately 270 cm from the target.

The version of the AT focusing electrodes meeting these
requirements is shown in Fig. 1. Beam focusing is achieved

by changing the intermediate electrode voltage U1 and the
focusing electrode voltage Uf. U1 is fixed using the AT
voltage divider and can only be changed after removal of a
beam. The Uf voltage is supplied from a separate power
source and may be controlled operationally. The voltages
are determined relative to the AT high-voltage end, which
is under potential of 400 kV with respect to ground.

3. Simulations

The forming electrodes were developed with the help of
the MCB model.
The possibilities for an injector forming system are

shown in Fig. 2a. For comparison, the characteristics of a
system differing only by a 50-mm-longer focusing electrode
are shown in Fig. 2b. The admissible areas for the
parameters U f and U1 are shown when the beam envelope
is fitted into the apertures of the forming electrodes and
does not exceed the target radius for fixed parameters of
the AT input beam. The MCB model allows rapid
calculation, obtaining the areas shown in Fig. 2 in 1 h.
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Fig. 1. Electrode scheme: (1) high-voltage AT flange, (2) focusing

electrode, (3) intermediate electrode and (4), grounded electrode.

Fig. 2. Areas of admissible values for the focusing and accelerating

electrode voltages, calculated using MCB models. (a) Forming system of

the H� injector (Fig. 3); (b) focusing electrode is longer by 50mm and all

other sizes are as for (a). Beam with current fluctuations;

beam without fluctuations.
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Beams typical for the surface-plasma H� source,
developed at the Institute for Nuclear Physics (Novosi-
birsk), were taken as the ‘‘test’’ beams [11]. Depending on
the IS conditioning and tuning, in particular on hydrogen
feed value, both an ordinary beam (with current fluctua-
tions during the impulse) and an optimum beam (when the
fluctuations are overwhelmed) can be obtained. For an
ordinary beam, a model was used with the following
parameters at the AT input: envelope radius, 15mm;
envelope divergence, 15mrad; and normalized emittance,
2pmmmrad. The corresponding parameters for an opti-
mum beam are 10mm, 10mrad and 0.2pmmmrad, with
ion energy of 20 keV.

It is evident from Fig. 2 that the admissible areas for
these beams differ considerably. However, for the H�

injector electrode system selected, there is an essential
range of admissible parameters (see Fig. 4) where the areas
are close for both beams. U1 voltage in the range
90–120 kV can be easily obtained with the existing AT
design. Focusing voltage with regulation in the 20–30 kV
range is also suitable for beam control. From the width of
the admissible area, it is also possible to conclude as far as
beam control achieved is convenient in exploitation. With
the same technique, it is possible to calculate other
characteristics of a system: beam-forming device (for
example, beam current, envelope slope, etc.).

An extraction system with a cylinder expander, Pierce
optics and a plate extractor is shown in Fig. 3. Simulation
of particle trajectories was carried out with particle
velocities perpendicular to the emission surface. The beam
at the entrance of AT space is almost parallel. It has a large
diameter and may be sufficiently well focused when passing
through the AT.

Calculations carried out with a complete AT model that
included drift space allowed determination of the transmis-
sion conditions for a 200-mA beam to the target aperture.
Fig. 4 shows admissible areas for the IS electrodes voltages
for different U1 values in the model with Pierce optics.

4. Computerized control, data acquisition and processing

At present, the system for measuring HV-modulator
parameters and the beam characteristics of the H+ injector
has been put into operation. Similar software and hard-
ware for the H� injector are prepared. The systems are
based on LabVIEW software. A workstation for the H+

injector provides control (up to 73 channels) of the 400-kV
pulse generator with a pulse repetition rate of up to 100Hz.
Control of ion sources under high potential (45 channels
for H+ and 104 for H�) is carried out using a fiber optic
cable. The analog channels have a bandwidth of
0–1.6MHz.
A workstation based on a P-III/800 processor has the

potential to exchange data with other linac control
workstations using an Ethernet protocol through a 100-
Mb/s local network. PCI-1200 and PCI-MIO-16E1 multi-
functional input/output modules are built into the work-
station for data acquisition and processing for the HV-
modulator and auxiliary systems. These modules have four
DAC and 24 ADC 12-bit programmable amplification
channels with input signals in the range 0.01–10V and
accuracy of 70.025%. There are also 40 TTL input/output
channels, and five counter/timer channels with 10-ns
precision.
The IS control subsystem located inside the HV

electrode is based on an SCXI-1001 microprocessor
chassis. The built-in modules (ADC SCXI-1124, DAC
SCXI-1140, SCXI-1160 relay and multifunctional SCXI-
1200) use 34 analogue channels, 48 discrete channels and
six counter/timer channels. In addition, 16 relay channels
are used for control of the apparatus, with switching
current of up to 2A at voltage of up to 250Vrms. A
proportion of the channels is reserved.

ARTICLE IN PRESS

Fig. 3. Extraction system simulation: cylinder expander, Pierce optics,

plate extractor, pulse current of 120mA and extractor voltage of 35 kV. (1)

expander, (2) extractor and (3) focusing electrode.

Fig. 4. Admissible voltage values for extracting (Ue) and focusing (U f )

electrodes for U1 ¼ 100, 140 and 180 kV with beam current of 200mA.
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The SCXI system stores information and dumps it to the
operator workstation through a fiber optic cable. Data are
transferred in both directions through the SCXI-2400
connection module using RS232 ports.

A workstation with 256MB of RAM stores the injector
operation history for subsequent analysis. The system
periodically dumps accumulated information into an
archive.

Beam diagnostics and data processing programs allow
control of the qualitative beam parameters [7,12]. The
control display of the emittance measurement system is
shown in Fig. 5 and the output window of the data
processing program for beam emittance measurement is
shown in Fig. 6. The following beam parameters are

displayed: emittance, average and maximum pulse current,
phase density, beam width and position, etc. (Fig. 7).
Among the diagnostics tools, measurement of the beam

transverse dimensions and position is the most important.
A non-destructive ionization detector is used for this
purpose. An optical image of the beam cross-section is
recorded from the detector screen by TV camera for
monitoring and computer processing. The computer dis-
play provides visual control of the beam cross-section,
profiles and center-of-mass position (Fig. 8). The frame
resolution is 384� 288 pixels with 64 brightness levels. The
total number of frames that can be saved in the RAM is
256.
The software provides on-line capability to:

� show background discrimination;
� present 128-point vertical and horizontal beam profiles;
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Fig. 5. Control display for the emittance measurement system.

Fig. 6. Output window of the data processing program for beam

emittance measurement.

Fig. 7. Output window of the data processing program for measurement

of beam current parameters.

Fig. 8. Characteristic image and profiles of the cross-section of the proton

injector beam on the interactive display of the control program.
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� present averaged vertical and horizontal profiles;
� accumulate up to 256 frames, resulting in an increase in

absolute sensitivity and in signal/noise ratio by more
than an order of magnitude;
� show Gaussian distribution fitting of profiles with the

least-squares method to determine the beam position;
and
� show dispersion of the beam position distribution and

average beam position calculated from Gaussian fitting
results.

5. Conclusions

It is important to minimize ion beam losses and to match
emittance with LEBT/RFQ acceptance.

Construction of a linearized injection path from the
simplest lenses has successfully demonstrated the possibi-
lity of obtaining beam parameters acceptable for either
proton or H� acceleration. Our experimental results
provide the basis for checking our simulations of proton
and H� beams.

Future studies are needed to decrease the value of the
beam emittance and to include other effects to make the
simulations more realistic.
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Abstract

Frictional cooling is a proposed method of phase space reduction for a potential muon beam intended for collisions. The basic principle

involves compensating for the muon energy loss in media by a constant electric field. The muons are in an energy regime below the ionization

peak which for muons in helium is less than 10keV. Electronic energy loss is treated as a continuous process and all individual nuclear scatters

with scattering angles greater than 50mrad are simulated as discrete processes. Other effects like the Barkas [W.H. Barkas, W. Birnbaum,

F.M. Smith, Phys. Rev. 101 (1956) 778.] effect and Muonium formation are also included. The results of our simulations are summarized.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Muon beams are produced occupying a large phase space.
The emittance, a quantity quantifying the size of the phase
space, must be reduced in order to make luminous collisions
possible. The required normalized six-dimensional emittance
for several Muon Collider parameter sets is �6;N ¼ 1:7�
10�10 in units of ðpmÞ3 [1,2]. This represents six orders of
magnitude smaller than typical initial muon beam emittances.
This reduction must be accomplished with reasonable
efficiency if a Muon Collider is to be a realizable machine.

2. Simulation of a Muon Collider based on frictional cooling

The scheme illustrated in Fig. 1 has been simulated.
Muons of both signs are produced by scattering an intense
proton beam on a target located in a region with a very
strong solenoidal magnetic field (20T, as in the Neutrino
Factory study). A drift region with a more moderate
magnetic field, of the order of 5T, allows the bulk of the
pions to decay to muons. A combination of MARS [3] and

GEANT 3.21 [4] are used to simulate these sections. The
muons are then input into the cooling channel, which
consists of a cooling cell roughly �11m long. The cooling
cell contains Helium gas (possibly H2 for m�), and an
electric field perpendicular to the magnetic field. The
electric field direction is reversed periodically, as a function
of the position along the axis of the gas cell, to cancel the
beam drift. The muons stopped in the cell drift out at a
characteristic angle dependent on ~B and ~E. They are then
extracted through thin windows and reaccelerated.
At the end of the drift region, there is a correlation

between the longitudinal momentum of the muons and
their arrival time. This allows for a phase rotation, where
time varying electric fields are used to increase the number
of muons at lower momenta.

3. Simulation of physics processes

Frictional cooling cools muon beams to the limit of
nuclear scattering. A detailed simulation was therefore
performed where all large angle nuclear scatters were
simulated. The differential distributions and mean free
paths for m-nucleus scattering were calculated in two
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different ways depending on the energy regime. A quantum
mechanical (Born approximation) calculation was used for
the scattering cross section at high kinetic energies
(Tm42 keV) and a classical calculation was used at lower
kinetic energies. A screened Coulomb potential used in the
Born and classical calculations had the form

V ¼
4e2

r
exp
�r

a

� �
,

where a is the screening length. For the classical calculation
the procedure of Everhart et al. [6] was followed. The
differential cross section was calculated by scanning in impact
parameter and evaluating the scattering angle at each impact
parameter. From the differential cross section, a mean free
path for scattering angles greater than a cutoff (0.05 rad) was
found, and scatters were then generated according to the
differential cross section. This method reproduces the energy
loss from nuclear scatters tabulated by NIST [7] for protons.
For mþ, the electronic energy loss is taken from the NIST
tables. The suppression for m� (Barkas effect [1]) was
parameterized from the results in [8]. The electronic energy
loss was treated as a continuous process. The electronic
energy losses for mþ and m� are shown in Fig. 2. This
difference is significant below the ionization peak, which is
expected to be due in part to muonium formation.

To simulate the effect of muonium formation in the
tracking, an effective charge was used, as given by
sI=ðsF þ sIÞ, where sI is the cross section for muonium
ionization and sF is the cross section for muonium
formation. At energies relevant to frictional cooling of
muons, the muonium formation cross section dominates
over muonium ionization in all media except for Helium.

Negative muon capture was parameterized from calcula-
tions of Cohen [9,10] and included in our simulation. The
calculations only extend up to 80 eV. Beyond this, a simple
exponential fall off with kinetic energy was assumed.

4. Results and conclusions

A Muon Collider complex would be invaluable to the
world of high energy physics. In order to make this

machine realizable the formidable task of solving the muon
cooling problem must be faced. Detailed simulations of
such a collider based on the concept of frictional cooling
have been performed. They include the simulation and
optimization of a collider frontend consisting of

� a 2GeV proton driver,
� a Copper target 30 cm in length and 0.5 cm thick,
� a drift length of 28m.

Other physics processes such as muonium formation and
muon capture were also addressed as these processes
become important to consider in the low energy regime in
which frictional cooling functions.
The results of these studies show that final emittances of
ð628Þ � 10�11ðpmÞ3 can be achieved which offers hope in
the pursuit of a successful cooling scheme to make a Muon
Collider realizable.
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Fig. 1. Overview of a Muon Collider based on frictional cooling. The

different sections are not to scale.
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Abstract

Electron cooling is now a standard tool for improvement of ion beam parameters in storage rings. In BINP, after successful

development of several low-energy electron cooling devices, a project involving a high-energy electron cooler for GSI has been proposed.

This cooler has a classical electrostatic scheme with electron energy of up to 8MeV. Here we present results of numerical simulations of

electron beam formation, acceleration and collection for this project. Special attention is paid to a description of the new codes developed

in BINP. The electron gun and collector are simulated by the 2D USAM code. This code is modified to calculate collector performance

with consideration of secondary emission. The BEAM code is used for simulation of dynamics in the accelerating section. A new 3D

electrostatic code, ELEC3D, developed for the simulation of beam dynamics in bends with electrostatic compensation of the centrifugal

drift, is described. This code is combined with the existing MAG3D magnetostatic code to provide a universal tool for 3D static

calculations.

r 2005 Elsevier B.V. All rights reserved.
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1. HESR electron cooler

The subject of this article is the investigation of the
electron beam dynamics in a high-energy electron cooler.
Fast electron cooling of antiproton beams in the energy
range between 0.8 and 14.5GeV is a key feature of one of
the major objectives of GSI future plans: internal target
experiments at the HESR ring [1,2]. Powerful cooling is
required for high-resolution experiments investigating the
structure of hadrons and the interaction of quarks and
gluons in a nuclear medium.

The project involving an 8-MeV electron cooler pro-
posed by BINP is based on a classical electrostatic scheme.
The 8-m-high high electrostatic column consists of 80
sections, with potential increasing from the bottom section
to the top one. The column has three accelerating tubes,
two for the acceleration and deceleration of an electron
beam, and one for charging of the column head. For the
electrostatic cooler small, a 10-MeV cyclotron of H– ions is
proposed as the charging system. After injection and

acceleration, the electron beam is bent in the vertical and
horizontal planes and is moved to the cooling section.
After the main solenoid, the beam is returned to the
electrostatic column, where it is decelerated to recuperate
its energy. A longitudinal magnetic field accompanies the
electron beam along all of its path.

2. Electron gun with variable beam profile

During cooling of intensive ion beams, it was found that
there is strong recombination of ions cooled to the low
temperature with the electron beam. This recombination
leads to considerable losses of the stored beam. Moreover,
excessive cooling causes the development of transversal
instability that also leads to beam losses. To avoid these
effects, the use of hollow electron beams for cooling was
proposed [3]. The decrease in electron beam density in the
central part, where cooled ions accumulate, leads to a
considerable decrease in recombination losses while main-
taining the cooling rate of the whole ion beam (because the
cooling time decreases rapidly with decreasing oscillation
amplitude).
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An electron gun with variable beam profile was designed
and successfully tested in BINP. The gun is shown in Fig. 1.
The control electrode is located near the cathode edge, so
its potential strictly influences emission from this area. At
negative voltage on this electrode, emission is suppressed
on the edge of the cathode, so a pencil beam is formed. At
positive voltage, a hollow beam is formed. The calculated
and measured perveance of the electron gun versus the
control electrode potential are shown in Fig. 2.

The gun output current increases with increasing control
potential to some value of Ucontrol/Uanode, which depends
on the value of Uanode/Ucathode. The formation of a virtual
cathode takes place at this point. The control electrode
potential causes such a large current that it cannot pass
over the anode due to sagging of the potential and part of it
is reflected back, whereupon the gun output current
remains constant, regardless of further growth of the

control electrode potential. At Ucontrol values less than the
threshold for the virtual cathode, the electron beam is very
stable and no fluctuation of space charge was observed.
A thin tungsten wire is used for electron-beam profile

measurements. The deposited current was measured during
movement of the wire transverse to the beam direction. The
beam profiles were recreated using these data. The
measured and calculated profiles corresponding to different
values of the control electrode potential are shown in
Fig. 3.

3. Simulation of secondary emission in collector

The main questions that should be considered in
designing and simulation of a collector for electron coolers
are the prevention of local overheating, achieving higher
collector perveance, and consideration of secondary emis-
sion. In this article we concentrate on the last question for
the collector installed on the EC-300 cooler and proposed
for the HESR cooler. This collector is shown in Fig. 4.
To minimize the output current of secondary electrons, a

suppressor is installed before the collector. Moreover, the
magnetic field in the collector is much lower than in the
drift tube, so only secondary electrons with velocities lying
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in a small cone

y ¼ Bcoll=Btube (1)

can leave collector, while others are reflected back.
To estimate secondary emission in the collector, the

following formulas describing coefficients of emission for
re-diffused (2) and elastically reflected (3) electrons are
used [4]:

ZðE0Þ ¼ Zinf ð1� expð�ðE0=ErÞÞÞ (2)

rðE0Þ ¼ rinf þ ðr0 � rinf Þ expð�ðjE0 � Eej=W ÞÞ (3)

where E0 is the primary beam energy.
To describe the dependence of the secondary emission

coefficient as a function of angle of incidence formula (4) is
used:

ZðE0; yÞ ¼ ZðE0Þ expðKð1� cosðyÞÞÞ. (4)

The energy spectrum of re-diffused electrons is taken as

dnrd

dE
¼ f rd ¼ Nrd

3

2

1

E0

ffiffiffiffiffiffi
E

E0

r
.

To describe secondary emission from every point of
incidence of the primary electrons, a set of secondary
electrons is started. The velocities of these secondary
electrons are not randomized as in the Monte–Carlo
method, but are defined by the primary electron velocity
and by numbers of divisions specified by the user. These
velocities are determined according to the condition that
each secondary particle must carry the same current.
Several generations of secondary electrons can be calcu-
lated.

Calculated and measured coefficients of secondary
emission from the collector are shown as a function of
the suppressor potential in Fig. 5. Calculations predict a
larger coefficient because the space charge of secondary
electrons is not considered. The charge density distribution
of the secondary beam is presented in Fig. 6. Due to the
diamond-like shape of the collector, the magnetic field on
its surface is much higher for larger radii. According to Eq.
(1), more secondary electrons from this region are allowed
to leave the collector, and the charge density increases on

the outer beam radius. The energy spectrum of the
secondary beam is shown in Fig. 7.

4. UltraSAM—2D code for simulation of electron guns

The SAM code package was designed in BINP for
simulations of stationary axial-symmetric electron–optical
systems and electron guns [5]. The SAM code uses the
boundary elements method. The following boundary
equations are considered:Z

LeþLd

sðZÞGðx; ZÞdl

¼ U eðxÞ �
Z

Sb

rðZÞGðx; ZÞdS; x 2 Le ð5Þ
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2p
e1 þ e2
e1 � e2

sðxÞ �
Z

LeþLd

sðZÞ
qG

qnx
ðx; ZÞdl

¼

Z
Sb

rðZÞ
qG

qnx
ðx; ZÞdS; x 2 Ld

where Le and Ld are the contours of the electrodes and
dielectrics; x ¼ ðr0; z0Þ, Z ¼ ðr; zÞ are points on these
contours; and Sb is the beam cross-section. The kernel of
integral Eq. (5)

Gðx; ZÞ ¼
Z 2p

0

rdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � 2r0r cos yþ r2 þ ðz0 � zÞ2

q (6)

has a simple physical meaning. It is the potential induced at
point ðr0; z0Þ by an infinitely thin, charged ring with radius r

axial coordinate z and unit surface charge density. Integral
Eq. (6) can be expressed by the total elliptical integral of
the first order.

These integral equations are solved by the collocation
method, with spline-interpolation of the solution. Separa-
tions of the kernel singularity of the integral equations and
of the solution singularity are performed. The contours of
the surfaces of the electrodes and dielectrics are defined by
segments (lines and arcs). A set of rectangular meshes is
used for the space charge distribution. Space charge density
is considered to be constant within individual cells. A
quasilaminar model of current pipes is used for the
description of beam dynamics.

4.1. Curved meshes

The most important step in the development of the SAM
code and transition to the UltraSAM code is the
replacement of rectangular meshes by curved meshes. The
contours of curved meshes can be adjusted using the

geometry of the electrodes and the beam shape. It is
possible to specify several emitters of complex shape. A set
of curved meshes is defined for each segment that describes
the electron flux from it. These measures greatly increase
the precision of a near-cathode area simulation, decrease
the numerical aberrations that arise in trajectory analysis
due to inaccurate description of the beam self field on its
edge, and extend the scope of solvable tasks.
Every cell of the curved mesh is defined by nine points—

the cell nodes. The cell is treated as a quadrangular
element, which is defined using the finite element method.
The cell is transformed into a square situated in logical
plane XY. In this square the interpolation of every function
f is built with the help of basis functions ciðx; yÞ:

f ðx; yÞ ¼
X9
i¼1

f iciðx; yÞ (7)

where f i are the values of function f at the nodes. The same
approach is used for the transformation between real and
logical coordinates.

4.2. Calculation of potential and field induced by space

charge

The potential induced by the beam space charge is equal
to the sum of potentials induced by the space charge of
individual cells. Using Eq. (7), the potential from one cell
can be written as

jcellðr0; z0Þ ¼
X9
i¼1

riMiðr0; z0Þ

Miðr0; z0Þ ¼

ZZ
ciðx; yÞGðr0; z0; r; zÞJðx; yÞdxdy

where ri are the values of the space charge density at the
nodes, and Jðx; yÞ is the Jacobian for transformation from
logical coordinates ðx; yÞ into real ðr; zÞ. The coefficients Mi

depend only on the cell geometry. The calculation of these
coefficients is hindered by the logarithmic singularity of
function G at the observation point ðr0; z0Þ. To maintain
the high precision of the potential calculation when this
point is situated near the cell or in it, the singularity is
separated analytically by the same method as described in
Ref. [5].
Calculation of the electric field is achieved in the same

way by replacement of Gðr0; z0; r; zÞ with ~rGðr0; z0; r; zÞ.

4.3. Models of emission and beam dynamics

To determine the emitted current density, a special
surface placed parallel to a cathode at a small distance d is
introduced. Knowing the electric field on this surface, the
current density can be found using the Child-Langmuir
law. Approximation of a plane, cylindrical or spherical
diode is used, depending on the shape of the cathode
considered and its position. The use of electric field instead

ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

Us=0.445KV
Us=0.945KV
Us=1.445KV

Us=1.945KV
Us=2.145KV

Spectrum of output electrons energy

W (KeV)

(d
N

/d
E

)/
N

0

Fig. 7. The energy spectrum of the output beam.

A.V. Ivanov et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 227–234230



of potential significantly improves the convergence of space
charge iterations due to the sharp increase in field near the
cathode. The influence of the magnetic field is also
considered.

A beam is represented as a set of particle trajectories,
each carrying its own part of the full current. By moving
through a cell, each particle induces a charge on the nodes
of this cell. The charge density at the nodes is calculated
from the induced charge as:

ri ¼
Qi

V i

; Vi ¼

ZZ
2prðx; yÞciðx; yÞJðx; yÞ dx dy.

In some systems, heating of the cathode has a significant
influence on the beam dynamics. The transversal thermal
spread of initial velocities of particles is simulated to
consider this effect. From every start point of the
trajectories (in the case of a cold cathode), the calculation
of several trajectories, each having different additional
transverse thermal velocities, is started. These trajectories
describe the thermal distribution of the initial velocities.

5. Accelerating column

The accelerating column of the proposed cooler consists
of many accelerating sections. It is proposed to use 1-m-
long accelerating sections, but in the following calculations,
standard sections that are two-fold shorter are considered.
The presence of gaps between the accelerating electrodes at
the points of connection of neighboring sections leads to
strong pulsation of the accelerating field. When traveling
through the accelerating column, electrons are affected by
a radial oscillating force with constant space step created
by these pulsations. Moreover, an electron has its own
parameter—the space step for Larmour rotation. This step
increases with increasing electron energy. When these
parameters are comparable, a resonant increase in trans-
verse velocity may occur. Fig. 8 shows that subsequent
strikes can increase or suppress the transversal motion,
depending on the magnetic field.

To minimize these undesirable pulsations, it is proposed
to hit the beam by local variation of the magnetic field in
the area where the Larmour rotation step is large enough
(see Fig. 9). Calculations show that this local field can be
greater than the mean value, or can be smaller. The second
case is shown in the figure. To realize this, no special
changes in the magnetic system have to be made, apart
from the current in one coil must be decreased. Fig. 10
shows how the radius of the pulsations depends on the
current and position of this coil. With a change in the total
energy, the position and current of the affecting coil must
be changed; it is possible to use two or maybe more coils to
provide the necessary effect.

6. Matching point of magnetic fields

In the electrostatic column of the proposed HESR
cooler, the value of the accompanying magnetic field is

chosen as 500 Gs. In bends and in the cooling solenoid,
this field is 10-fold greater, at 5 kGs. Thus, a special
matching section must be included to provide a transition
of the electron beam between these fields without excitation
of the transversal motion. With electron beam energy of
8MeV, an adiabatic entrance will be too long; shorter field
growth leads to strong beam pulsations (see Fig. 11a). To
fabricate a compact matching section, another idea was
proposed – a quarter-wave transformation section. Be-
tween the low and high magnetic fields, there must be a
region with field equal to

Bmid ¼
ffiffiffiffiffiffiffiffiffiffiffi
B1B2

p
,

and the length of this region must be equal to a quarter of
the space step for Larmour rotation. In such a configura-
tion of the magnetic field, strikes on the entrance into the
section and on the exit compensate each other, and no
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transversal motion occurs. Results of beam dynamics
simulation for this section are shown in Fig. 11b.

7. Beam code

Beam behavior in the accelerating column and in the
matching point of the magnetic fields is simulated by the
BEAM code [6]. This 2D code was developed for
simulation of dynamics of non-laminar cylindrical beams
with high perveance in long electron–optic systems. The
initial beam parameters in this code can be defined by the

user or can be imported from SAM and UltraSAM codes.
In the last case, to describe the non-laminar beam radius of
trajectories, the trajectory slope angle and azimuthal speed
are represented by power series, with coefficients of these
series found by the least-squares method. High-order
paraxial approximation is used for the calculation of
external electric and magnetic fields. The axial distribution
of external fields is calculated using the SAM code. A
particle in cell (PIC) method is used to describe the beam
transversal electric and magnetic fields. The heat spread of
the velocities of beam particles can also be taken into
account. This spread is determined by the size and
temperature of the cathode and by the beam radius.

8. Bends with electrostatic compensation

The motion of an electron in a cooler is not reversible as
a rule. This means that electrons reflected from a collector
have a small chance of being absorbed by it after that. The
magnetic field bending an electron beam in the toroid part
of a cooler has an influence in the opposite direction to the
reflected electrons. Thus, these electrons fall into the
vacuum chamber, inducing an outgassing process and
becoming a cause of leakage current. The electrostatic
compensation of centrifugal drift can help to achieve
reversible dynamics of electrons. Electrons reflected from
the collector can return to it and be absorbed. Thus, the
leakage current can be strongly suppressed. This effect was
observed experimentally on the EC-300 cooler designed
and manufactured at BINP for a CSRe ring (IMP,
Lanzhou) [7].
To realize electrostatic bending, two plates forming a

capacitor are placed in the toroid part. However, this
capacitor itself can excite transversal motion of electrons.
The curvature of magnetic force lines increases on the
edges of toroids, and the electric field itself increases on the
edges of the capacitor (Fig. 12). If these two curves are
different, beam oscillation is excited. To provide the
necessary growth of the electric field, modification of the
capacitor edges is proposed (Fig. 13). Calculations show
that this modification helps to minimize beam transversal
energy. Beam pulsations in a capacitor with non-modified
and modified edges are shown in Fig. 14.

9. ELEC3D and MAG3D—3D electro- and magnetostatic

codes

A new 3D electrostatic code, ELEC3D, was developed in
BINP to calculate beam dynamics in bends with electro-
static compensation. This ELEC3D code uses the bound-
ary elements method, which has a number of advantages in
comparison with the finite element method. Open regions
and extreme aspect ratios do no pose problems for this
method, and field solution is perfectly smooth. Moreover,
no 3D mesh is necessary in typical cases, and only the
surfaces of elements must be described.

ARTICLE IN PRESS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0                   20 40 60 80 100

I (A)

D
 (

m
m

)

Z=3175mm

Z=3155 mm

Z=3145 mm

Fig. 10. Dependence of the diameter of the beam pulsations on the

position and current of test coil.

12

9

6

3

0

12

9

6

3

0
2500 3600 4700 5600 6900

Z (mm)

R
 (m

m
)

R
 (m

m
)

B2 = 5 KGs

B2 = 5 KGs

B1 = 500 Gs

B1 = 500 Gs

(A)

(B)

Fig. 11. Entrance into the strong magnetic field. The magnetic field and

beam envelope are shown. Smooth growth of field (a) and quarter-wave

transformation section (b).

A.V. Ivanov et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 227–234232



In the ELEC3D code, the following boundary equation
is considered:Z

Se

sð~rÞ dS

j~re �~rj
¼ U e; ~re 2 Se (8)

where Se are the surfaces and Ue the potentials of the
electrodes. To solve this equation, surfaces of electrodes are
divided into cells, and a constant surface charge density is
taken within one cell. With this assumption, Eq. (8) can be
rewritten as a system of linear equations:X
N cells

Cijsj ¼ Ui

where the coefficients Cij depended only on the geometry of
the system. Cij has a simple physical meaning: the potential
induced in the center of cell number i by unit surface charge
in cell number j. One disadvantage of the boundary
elements method is that the high non-uniformity of surface

charge distribution must be considered by division of
surfaces into cells, especially on edges.
Potentials and fields are calculated as the sum of

individual potentials and fields induced by cells. The
potential of cell number i can be rewritten by transforma-
tion of the coordinates as

Ui ¼ si

Z
Si

dSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ z2

p (9)

where Si is the surface of the cell, si is its surface charge
density, ~Z is the vector in the plane of the cell, and z is the
distance from the point of observation to this plane. To
provide precise and fast calculation of this integral, the
following analytical method is used. The function under
the integral can be represented as a divergence of the
function~Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ z2 þ z

p
. Using the Gauss theorem, we can

rewrite the surface integral as the integral on the sides,
which can easily be found analytically. The electric field
can be found by differentiation of Eq. (9).
The magnetic field in the electrostatic bends of the

HESR electron cooler is calculated using the MAG3D non-
linear magnetostatic code. In the MAG3D code, the
magnetic field ~H is considered as a sum of the current
field ~Hc and the magnetization field ~Hm. ~Hm can be
represented as a gradient of scalar function, which is
expressed as

Cð~r0Þ ¼
1

4p

Z
Vm

~M~r
1

j~r0 �~rj

� �
dV

where ~M ¼ wðHÞ~H is the vector of magnetization,
wðHÞ ¼ mðHÞ � 1, and Vm is the volume of ferromagnetic
materials. Thus, the magnetic field ~H can be written as

~H ¼ ~Hc þ
1

4p

Z
Vm

~r
wð ~H; ~RÞ

R3

" #
dV . (10)

The total volume occupied by ferromagnetic materials is
divided in the MAG3D code into small volumes. The
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magnetization of each of these volumes is supposed to be
constant. With this assumption, Eq. (10) can be rearranged
as a system of non-linear equations

~Hi ¼ ~Hc;i þ
X

k

Cikwk
~Hk

where the coefficients Cik are dependent only on the
geometry of the system. Coils in the MAG3D code have a
rectangular cross-section and consist of straight and arc
elements. For straight elements, ~Hc can be found
analytically; for arc elements, numerical arc integration
should be carried out.

The ELEC3D code is combined with the MAG3D code
in one code package to provide a universal tool for 3D
static calculations.
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Abstract

The paper describes a simulation technique for study of unsteady self-consistent dynamics of charged particles in RF linacs that consist

of cavities and travelling wave sections. The approach proposed is based on unsteady theories of the excitation of cavities and waveguides

by a beam of charged particles and RF feeders. The theory of waveguide excitation is extended to the case of spatially inhomogeneous

travelling-wave structures. The SUPERFISH code is used to evaluate the characteristics of the axisymmetric travelling-wave sections.

The PARMELA code is applied for simulation of particle motion and to obtain data required for solving the equations for excitation of

the RF structures by the beam.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Acceleration of intense charged beams in RF linacs in
the short pulse regime, for which the filling time of standing
wave (SW) bunchers and travelling wave (TW) sections
cannot be neglected, requires detailed knowledge of
transients to diminish their influence on the beam para-
meters. Although a great deal of information about
unsteady acceleration can be obtained using particle-in-
cell (PIC) codes, calculation of the beam dynamics in long
RF structures using these PIC codes requires rather large
computing resources. At the same time it is often necessary
to study slow-varying phenomena of a narrow frequency
spectrum in the working passband of RF linacs. It has been
shown [1] that in this case such well-known codes as
PARMELA [2] and SUPERFISH [3], which is usually
applied to simulation of steady dynamics, can be used to
simulate unsteady, self-consistent particle dynamics in SW

cavities. The present work is aimed at developing a
simulation technique for unsteady particle dynamics in
inhomogeneous TW structures and integrating this techni-
que into a unified algorithm for simulation of self-
consistent, unsteady beam dynamics in RF linacs contain-
ing both SW and TW structures.

2. Method

Extending the theory of excitation of waveguides [4] to
inhomogeneous accelerating structures, we suppose that
the orthogonal eigen waves ~E0�s, ~H

0

�s (electrical and
magnetic fields, respectively) with the norm

N 0s ¼
c

4p

Z
SðzÞ

~E
0

s �
~H
0

�s �
~E
0

�s �
~H
0

s

� �
~ez dS ¼ const (1)

can propagate along the longitudinal direction 7z of an
inhomogeneous waveguide. Here ~ez is the unit vector along
the OZ axis and S(z) is the waveguide cross-section at the z

coordinate. Then, according to Ref. [4], the Fourier
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harmonics of fields can be presented as follows:

~Eo ¼
X

s

C0s
~E
0

s þ C0�s
~E
0

�s þ
4p
io
~jo;z

~Ho ¼
X

s

C0s
~H
0

s þ C0�s
~H
0

�s ð2Þ

where~jo;z is the longitudinal component of current density
and C0�sðzÞ is a function of z that satisfies

dC0�s

dz
¼

1

N 0�s

Z
SðzÞ

~jo~E
0

�s dS. (3)

If the geometry of a structure varies slowly in the
longitudinal direction, the eigen waves ~E

0

�s; ~H
0

�s in cross-
section z can be expressed through the eigen waves
~E�s ¼ e�ihsz~E

ð0Þ

�s,
~H�s ¼ e�ihsz ~H

ð0Þ

�s that correspond to the
homogeneous waveguide with cross-section S(z), as fol-
lows:

~E
0

�s ¼ xsðzÞe
�icsðzÞ~E

ð0Þ

�s

~H
0

�s ¼ xsðzÞe
�icsðzÞ ~H

ð0Þ

�s

(4)

where dcs=dz ¼ hsðzÞ, Re{hs(z)} is a propagation constant,
ImfhsðzÞg ¼ asðzÞ is an attenuation constant, and xs(z) is a
real function of the z coordinate. It should be noted that
Eq. (4) provides adiabatic invariance of the wave power
flow.

In a periodic waveguide, functions ~E
ð0Þ

�s; ~H
ð0Þ

�s can be
expressed as Floquet’s series:

~E
ð0Þ

�s ¼
X1

n¼�1

~E�s;ne
i2pn

D
z; ~H

ð0Þ

�s ¼
X1

n¼�1

~H�s;ne
i2pn

D
z. (5)

Substituting Eq. (4) into Eq. (1), we can obtain a
connection between the norms of the waves (~E

0

�s; ~H
0

�s) and
(~E�s; ~H�s) as

N 0�s ¼ xsðzÞ
2N�sðzÞ ¼ const: (6)

Differentiating Eq. (6) with respect to z and substituting
Eq. (4) into Eqs. (2) and (3), the Fourier harmonics of a
field can be found in the following forms:

~Eo ¼
X

s

Cs
~E
ð0Þ

s þ C�s
~E
ð0Þ

�s þ
4p
io
~jo;z

~Ho ¼
X

s

Cs
~H
ð0Þ

s þ C�s
~H
ð0Þ

�s ð7Þ

where C�sðzÞ are the new amplitudes of the expansion
C�s ¼ xsðzÞe

�icsðzÞC0�s that satisfy

dC�s

dz
þ

1

2N�s

dN�s

dz
� ihs

� �
C�s ¼

1

N�s

Z
SðzÞ

~jo~E
ð0Þ

�s dS. (8)

In the case of acceleration of a train of bunches, the
fields and beam current are specified by narrow frequency
spreads around the working frequency o0. Thus, accom-
plishing the inverse Fourier transformation in Eqs. (7) and
(8), we can obtain expressions for the fields of forward

wave in the lower band in time-dependent form:

~Eðt;~rÞ ¼ Re Cþ0ðt; zÞ~E
ð0Þ

þ0ð~rÞ

�

� exp i

Z z

0

h0ðzÞdz� io0t

� ��
,

~Hðt;~rÞ ¼ Re Cþ0ðt; zÞ ~H
ð0Þ

þ0ð~rÞ

�

� exp i

Z z

0

h0ðzÞdz� io0t

� ��
. ð9Þ

The slow-varying amplitude Cþ0ðt; zÞ obeys

qCþ0

qz
�

1

2R0

dR0

dz
Cþ0 þ

1

vgðzÞ

qCþ0

qt
¼

R0

2
e
�i
R z

0
h0ðzÞ dz

Z
SðzÞ

~jo0
ðt;~rÞ~E

ð0Þn

þ0 ð~rÞdS ð10Þ

where R0ðzÞ ¼ �4jE
ð0Þ
z;þ0ð0Þj

2=N0ðzÞ is the serial impedance
of the synchronous space harmonic of the accelerated field
and vg(z) is the group velocity. The harmonic of current
density is expressed through the Lagrange coordinates ~rk,
tkðt; zÞ of beam particles in the form:

~jo0
ðt;~rÞ ¼ q

o0

2p

Z t�p=o0

t�p=o0

dt

� eio0t
XK

k¼1

d½~r? �~r?;k� � d½t� tkðt; zÞ�

( )

where q is the charge of the particles. The particle
coordinates depend on the field amplitude Cþ0ðt; zÞ, so
they are slow-varying functions of time.
It should be noted that the field of the backward wave

can be found in the same way.

3. Simulation techniques

3.1. Travelling wave cells

For numerical solution of Eq. (10) we use the difference
equation of the first-order of approximation [5]:

C̄
ðn;mÞ
� C̄

ðn;m�1Þ

Dz
þ

C̄
ðnþ1;mÞ

� C̄
ðn;mÞ

v
ðmÞ
g Dt

¼ �f ðmÞI ðn;mÞ (11)

where

C̄
ðn;mÞ
¼ Cþ0ðnDt;mDzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ð0Þ=R0ðmDzÞ

p

f ðmÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ðmDzÞR0ð0Þ

p
e
i
R mLz

0
h0ðzÞ dz

Dt is the temporal step and Dz is the spatial step. The
indexes n and m correspond to the discrete time nDt and
longitudinal coordinate mDz. The Fourier harmonic of a
current I ðn;mÞ with mean value I(nDt) over the period 2p/o0

is given in the form:

I ðn;mÞ ¼ IðnDtÞ
X

k

eio0tkðnDt;mDzÞ. (12)

ARTICLE IN PRESS
V.V. Mytrochenko, A. Opanasenko / Nuclear Instruments and Methods in Physics Research A 558 (2006) 235–239236



To obtain a self-consistent set of the equations, it is
necessary to supplement Eq. (11) by a set of equations of
motion of the particles in the fields (Eq. (9)). For solution
of the equations of motion we use the PARMELA code,
which takes into account the influence of space charge
forces, as well as of the focusing system, on the beam
dynamics.

By processing the output file of the PARMELA code
with particle coordinates, it is possible to calculate the
Fourier harmonic of a beam current using Eq. (12) at the
end of each TW cell that represents the period of a disk-
loaded waveguide (DLW). Obviously, in this case Dz must
be a multiple of the cell length and Dt must be an integer
number of periods of an accelerating field. Then C̄

ðn;mÞ

determines a field in the mth cell for the nth time step.
Knowing the initial amplitudes in cells C̄

ð0;mÞ
and the

amplitude in the first cell C̄
ðn;0Þ

as a function of time,
Eq. (11) can be solved by evaluating the increments in
amplitude for each TW cell at each time step.

To build up field distributions in TW cells, the
PARMELA code needs the relative amplitudes of the
spatial harmonics. In addition, values of a0, R0 and vg as
functions of z have to be specified. Evaluation of these
values can be carried out using the SUPERFISH group of
codes. The characteristics of an inhomogeneous DLW are
presented as a set of characteristics of a homogenous DLW
with iris radii that are equal to each iris radius in the
simulated DLW (as follows from Eq. (4)). The parameters
of the homogenous DLWs are evaluated using a technique
[6] for field patterns in the cavity stacks.

3.2. Standing wave cells

Generally, RF linacs, besides TW sections, consist of SW
structures. Application of the PARMELA and SUPER-
FISH codes for simulation of unsteady, self-consistent
beam dynamics in SW cavities [1] can be integrated in a
common algorithm for full-scale simulation of the RF
linac. According to Ref. [1], the slow-varying complex
amplitudes Cr of fields

~Eðt;~rÞ � RefCrðtÞ~Erð~rÞe
iotg

~Hðt;~rÞ � RefCrðtÞ~Hrð~rÞe
iotg

in SW cells (except cells of the input and output couplers)
are evaluated from the difference equation:

Cðnþ1Þr � CðnÞr

Dt
þ iðo0 � orÞ þ

orð1þ bÞ
2Qr

� �
CðnÞr

¼
or

QrE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZshbP

ðnÞ
r0

d

s
eiðjrþp=2Þ

þ
Zshorq

2Qr dE2
0

X
k¼1

~vkðnDtÞ~Er ~rkðnDtÞð Þeiot, ð13Þ

where or is the resonant frequency of the cavity, Qr is the
unloaded quality factor, Zsh is the shunt impedance per
unit length, d is the cavity length, E0 is the mean amplitude

of the on-axis electric field, ~vk is the particle velocity, b is
the coupling factor for a cavity with a feeder, jr is the
phase shift, and P

ðnÞ
r0 is the incident RF power at the given

time step. The overbar in Eq. (13) represents time
averaging. The field distribution and the values of or, Zsh

and Qr can be specified with the SUPERFISH codes.

3.3. Algorithm features

Let us consider the features of the algorithm designed. If
the beam current at a given temporary step is not equal to
zero, the running values of the amplitudes and field phases
in the cells are written into the input file of the PARMELA
code and the simulation of particle motion starts. After the
PARMELA code completes the task, its output files carry
out-processing to obtain the data necessary to evaluate the
increments of the amplitudes. Then the process repeats.
Therefore, to keep a physical sense of the results obtained,
the step Dt should be longer than the time-of-flight of
particles through the simulated segment. On the other
hand, Eq. (11) gives correct results only at vgDtoDz, so the
quantity of TW cells M should be less then c/vg, where c is
the velocity of light. Besides, there is artificial tailing of a
wavefront along the section if vgDt 6¼Dz because of
amplitude averaging over the cell length. Therefore, the
edges of current and RF power pulses should be at least
longer than MDt to diminish errors due to this tailing,
which increases with increasing cell numbers. Thus, the
typical values of Dt and M are 10 periods of RF oscillations
and 40 cells. A long linac can be broken into several
segments that contain an acceptable number of cells. To
inject the beam from one segment into the next, a file with
particle coordinates in the six-dimensional phase space is
created at each time step. During simulation of the
subsequent segment the PARMELA code accepts the file
that corresponds to the running time step. It should be
noted that the time steps have to be the same throughout
simulation of the whole linac. The DLW segments are
bounded by half-cells. The field of the last half-cell is the
boundary condition used to simulate the next segment.
Testing of the algorithm was carried out in several ways.

First, the results of simulation of excitation of pillbox cells
and a homogenous DLW by short, ultra-relativistic
bunches were compared with the analytical results for a
steady-state mode. The simulated field distribution along a
DLW containing 40 regular cells agreed within 0.1% with
an analytically derived one distribution. The DLW of the
KUT linac [7] was chosen to represent an inhomogeneous
TW structure. It contains four homogenous segments
connected with matching cells, with a total of 35 cells; the
phase advance is 1201 per cell and vg drops from 0.024 to
0.009% of c. Fig. 1 shows the dependence of the relative
group velocity and a0 on distance along the DWL for the
KUT linac. An analytical steady-state solution for accel-
erating field distribution was evaluated from the equation
of power diffusion [8]. The test showed that the results
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agreed within 3.5%. This is a good result taking into
account such a steep change in vg.

4. Simulation example

To check the capability of the algorithm designed, full-
scale simulation of the KUT linac was carried out. The
linac consists of a two-cavity injector and a TW accelerat-
ing section, as shown in Fig. 2. The characteristics of the
cavities are listed in Table 1. To provide beam transporta-

tion, three axial magnetic lenses are installed along the
injector and the accelerating section is equipped with a
short solenoid. The simulation was carried out at values of
the beam current and RF power that are characteristic for
KUT operation (accelerated beam current approx. 0.8A;

ARTICLE IN PRESS

Fig. 1. Dependence of the relative group velocity (curve 1, left axis) and

attenuation (curve 2, right axis) on distance along the DWL for the KUT

linac.

Fig. 2. Linac layout.

Table 1

Specification for the injector cavities

Buncher cavity Accelerating cavity

Zsh (MO/m) 15.1 31.4

D (cm) 3 5

b 10 5

Q 2500 10,800

P0 (kW) 0–0.5 1000

f (MHz) 2797.15 2797.15

Fig. 3. Waveform of the beam current at a linac exit.

Fig. 4. Waveforms of reflected waves in the feeders of the buncher cavity

(1) and the accelerating cavity (2).

Fig. 5. Time dependence of the energy spread width (1) and the mean

beam energy (2).
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RF power supply of the buncher cavity, accelerating cavity
accelerating section of 70W, 0.8MW and 12MW, respec-
tively).

The duration of a beam current pulse was chosen to be
shorter than that of an RF pulse to determine the influence
of beam loading. Results of the simulation of self-
consistent transient beam dynamics for a certain set of
phase shifts between incident waves in the RF feeders are
presented in Figs. 3–5. Power waveforms of reflected waves
in the feeders of the buncher and accelerating cavities are
shown in Fig. 3. Increasing reflection from the bunching
cavity at beam injection is evident. The meaning of
this effect is given below. Some electrons that are not
captured into acceleration can propagate in the backward
direction and excite the buncher cavity. Therefore, there is
feedback due to the beam. This effect was observed
experimentally [9].

Although operation of the injector is stable under the
simulation conditions, its adjustment involves fairly
complicated work. The time dependence of the energy
spread width and the mean beam energy are shown in
Fig. 5. It is evident that phasing of the injector and the
accelerating section was optimal for the transient region.
Such a choice increases the width of the energy spread for
the whole pulse. Fig. 6 shows the time–space distribution of
the self-consistent field in the DLW excited by the RF
source and the electron beam. The accelerated beam
substantially decreases the field at the end of the section.
On acceleration of the beam with a pulse current of 1.2A,
the field at the end of the section will be approximately zero
under the given RF power supply.

5. Conclusion

The simulation technique designed for transients in RF
linacs allows data on the time-dependent accelerating fields
and beam characteristics to be obtained. The testing
carried out has shown that the model adequately describes
the physical processes involved. The accuracy of simulation
of the characteristics of fields and the beam corresponds to
the approximations made while developing the technique.
The technique proposed can be useful for the design of
linacs, as well as in research of beam dynamics.
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Abstract

The linac based on SC cavities has special features. Due to specific requirements the SC cavity is desirable to have a constant geometry

of the accelerating cells with limited family number of cavities. All cavities are divided into modules, and each module is housed into one

cryostat. First of all, such geometry of cavity leads to a non-synchronism. Secondly, the inter-cryostat drift space parametrically perturbs

the longitudinal motion. In this article, we study the non-linear resonant effects due to the inter-cryostat drift space, using the separatrix

formalism for a super-conducting linear accelerator [Yu. Senichev, A. Bogdanov, R. Maier, Phys. Rev. ST AB 6 (2003) 124001]. Methods

to avoid or to compensate the resonant effect are also presented. We consider 3D beam dynamics together with space charge effects. The

final lattice meets to all physical requirements.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.17.+w; 29.27.�a; 45.20.Jj

Keywords: Linear accelerators; Charged-particle beams; Hamiltonian; Nonlinear optics

1. Introduction

Super-conducting (SC) RF technology allows getting the
high gradient acceleration. Especially it is effective in case
of low current, since the power required for the beam
acceleration is much smaller than the RF power needed for
the RF field creation in a normal-conducting cavity.
Additional argument for a SC cavity is a possibility to
accelerate particles with different charge-mass ratio due to
independent feeding of cavities. However, due to lot of
reasons a super-conducting cavity does not have flexible
tuning as a normal-conducting cavity, and geometry of SC
cavity has to be simplified as much as possible. In
particular, it is desirable to have SC cavity with constant
geometry of accelerating cells and changing from one
family of cavities to another. It means the phase velocity
changes step by step from family to family as well. The
particles are sliding down or up relatively of RF wave in
dependence on ratio between the particles and the wave
velocities. Thus, the particles are almost never in synchron-

ism with the equivalent traveling wave, and they have not
instantaneous stability. Nevertheless, abandoning from
synchronism, we acquire a freedom in choice of RF phase
shift between relatively short SC cavities, which can
provide the stable quasi-synchronous motion in whole
accelerator.
For cryogenics all SC cavities are divided into modules,

and each module is housed into one cryostat. However,
some equipment, in particular, diagnostics, vacuum pumps
and focusing elements desirable to place outside of cryostat
under normal conditions. It requires an additional drift
space between cryostats. The number of SC cavities in one
module is determined by required length between focusing
elements. In the same time drift spaces can be considered as
a parametric perturbation of the longitudinal motion.
Evident advantages of SC cavities initiate its application
starting with the lowest possible energy. Moving down
with energy the longitudinal frequency grows and it can
be comparable with the repetition frequency of drift spaces.
In this case, the resonance condition for particle
in longitudinal plane can be realised. Since the drift
space length can be comparable with the length of module,
the resonance width can be significant and it could
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dramatically affect on beam stability. In this paper we
study the resonant effects due to the inter-cryostat drift
space. Developed theory let us follow the beam dynamics
under the influence of different order parametric reso-
nances, as well as estimate resonance width and find the
most dangerous resonances. Methods to avoid or to
compensate the resonant affect are also presented.

At present SC linear accelerator is considered as
candidate for intensive beam with high duty cycle. We
investigated the space charge effect in SC linear accelerator
based on module lattice with long distance between
focusing elements and strong defocusing RF field.

Due to absence of synchronous particle the SC linear
accelerator has specificity in RF amplitude and phase
tuning. In this article, we consider the modified delta-T
procedure for SC linear accelerator.

All practical applications are considered on the example
of COSY SC linac [2].

2. SC accelerators with stepped RF phase structure

We already mentioned that in SC linear accelerator the
cavities are joint in families, and all n cavities of one family
have the same structure phase velocity bstr ¼ const for
i 2 12n. Thus, particles move in a cavity, where the
structure phase velocity bstr is constant. Therefore, they
oscillate around js ¼ 00 (for ‘‘sin’’ wave). In the considered
case the particle velocity deviation from the structure
phase velocity Db ¼ bstr � b can exceeds the velocity
spread of stationary separatrix with a synchronous level
b ¼ bstr. Fig. 1 explains the mechanism of acceleration. It is
based on an RF shift for each cavity. The particles have to
return back each time after passing through a cavity to get
an average phase fs over all cavities. By a proper choice of
the RF phase shift DjRF between cavities one can create a

quasi-synchronous motion and in total a stable motion in
the whole accelerator. The quasi-synchronous particle
oscillating in a cavity around j ¼ 00 is forced by the
inter-cavity RF shift to oscillate around fs. In one cavity
we can write the equations:

df
dB
¼

bstr
b
� 1

db
dB
¼

eEaclbstr
2pm0c2g3b

sinf ð1Þ

where dB ¼ 2pðdz=bstrlÞ is new normalized longitudinal
coordinate, Eac is accelerating field and l is wave length.
The separatrix in case of the stepped RF phase is created in
the following way [1] . From Eq. (1) one derives the phase
oscillation equation d2f=dB2 þ O2 sinf ¼ 0, where O2 ¼

AE � b
2
str=b

3 is determined by means of parameter
AE ¼ eEacl=2pm0c2g3.
Obviously, if one does not undertake some action with

phase f, the particles will accelerate around phase f ¼ 0,
and acceleration will be absent, since DW / sinfs. To
correct this situation, one adds the external phase shift
jstrðBÞ to the phase f, and the corrected phase is:

fðBÞ ¼
Z B

0

bstr dx
b
�

Z B

0

dxþ jstrðBÞ (2)

and the first equation of system (1) takes the form:

df
dB
¼

bstr
b
� 1þ

djstrðBÞ
dB

. (3)

Then the phase oscillation equation is:

d2f
dB2
þ O2 sinf�

d2jstr

dB2
¼ 0. (4)

Thus, the second derivative of jstrðBÞ defines the accelera-
tion rate in the stepped RF phase structure.
However, the RF phase of each cavity is fixed and

changes from cavity to cavity step by step. The step value is
proportional to periodicity T of the cavities. It is a step-
wise function with an average value jstr coinciding with an
RF shift of the ideal case. Introducing a ‘‘triangular’’
function ~jnorm ¼

P1
m¼1 ð1=pmÞ sinmnphB, the real jstrðBÞ

could be submitted through the sum:

jstrðBÞ ¼ jstrðBÞ þ
djstr

dB
� 2p � T � ~jnormðBÞ. (5)

As distinct from the stepped phase velocity structure in the
considered structure the amplitude of triangular function is
proportional to the derivative ðdjstr=dBÞ � 2p � T :

~jstr ¼
djstr

dB
� 2p � T �

X1
m¼1

1

pm
sinmnphB (6)
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Fig. 1. Longitudinal motion in stepped RF phase structure.
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where nph ¼ 1=T . Substituting Eqs. (5), (6) in Eq. (4), one
gets

d2f
dB2
þ O2 sinf� O2 sinfs

¼ 2
d3jstr

dB3
X1
m¼1

sinmnphB
mnph

þ 4
d2jstr

dB2
X1
m¼1

cosmnphB

� 2
djstr

dB

X1
m¼1

mnph sinmnphB. ð7Þ

To compare the contribution of the terms on the right side
of Eq. (7) all derivatives are written in more explicit form
using the current velocity b:

djstr

dB
¼ 1�

bstr
bðBÞ

;
d2jstr

dB2
¼ O2ðBÞ sinfs

and

d3jstr

dB3
¼ 3

bðBÞ
bstr

O4 sin2 fs. (8)

In the vicinity of fs one can write for (7)

fðBÞ ¼ A cosðO cos1=2 fs � Bþ wÞ þ fs

� 2
djstr

dB

X1
m¼1

mnph � sinmnphB

O2 cosfs �m2n2ph
. ð9Þ

As in the case of the stepped phase velocity one defines
the particle oscillating only with external frequency as a
quasi-synchronous particle:

fqs ¼ fs � 2
djstr

dB

X1
m¼1

mnph � sinmnphB

O2 cosfs �m2n2ph
. (10)

Let us pass on to a coordinate system moving together with
the quasi-synchronous particle c ¼ f� fs � f ðBÞ, where
f ðBÞ is:

f ðBÞ ¼ �2
djstr

dB

X1
m¼1

mnph � sinmnphB

O2 cosfs �m2n2ph
. (11)

For nbbO cos1=2 fs one retains the first harmonic only
f ðBÞ ¼ ja sin nphB with ja ¼ ð2=nphÞ � ðdjstr=dBÞ.

Using new variables fDb ¼ bqs � b;c ¼ f� fs � f ðBÞg
one gets the equation system [1]:

dc
dB
¼ pc

dpc

dB
¼ �O2

0½sinðcþ fsÞ � sinfs� ð12Þ

where pc ¼ ðbstr=b
2
qsÞ � ðb� bqsÞ is the relative velocity

spread and O2
0 ¼ ðb

2
str=b

3
qsÞAEJ0ðjaÞ. Expanding the right-

side of the second equation (12) into a series about c, using
new impulse and new time variable p ¼ pc=O0 cos

1=2fs;

t ¼ O0 cos
1=2fs � B, and then passing to ‘‘action-angle’’

ðI ; yÞ coordinates I ¼ p2

2
þ

c2

2
; c ¼

ffiffiffiffiffi
2I
p
� cos y; and p ¼ffiffiffiffiffi

2I
p
� sin y, we write Hamiltonian in the new coordinates:

HðI ; yÞ ¼ I �
23=2

3!
tanfs � I

3=2 cos3 y�
22

4!
� I2 cos4 y

þ
25=2

5!
tanfs � I

5=2 cos5 yþ � � � ð13Þ

3. Longitudinal motion parametrization by inter-cryostat

drift space

Now we consider the motion with drift space between
cryo-modules, when the particle passes through the system
‘‘moduleþ drift’’ and the field Eac can be submitted
through Fourier series:

Eac ¼ E0
Lmod

LT
� 1þ 2

X
k

sinðkpLmod=LTÞ

kpLmod=LT
cos knB

 !

(14)

where n ¼ 1=Tp is the perturbation frequency and the
period of perturbation measured in number of bstrl, that is
Tp ¼ LT=bstrl and LT—space length of the perturbation
period.
Taking into account the field representation in an

accelerator with drifts and supposing that one of the
resonant condition n � nO is fulfilled, we retain only slow-
oscillating terms cosðny� ðn=OÞtÞ. Hence, the phase W ¼
y� ðn=nOÞt changes very slowly, and W can be considered
as parameter. Using the generating function
F ðI ;W; tÞ ¼ �I � ðWþ ðn=nOÞ � tÞ, we pass to the resonant
Hamiltonian H̄r;nðĪ ; nWÞ ¼ HðĪ ; nWÞ � ðn=nOÞ � Ī with vari-
ables I ; nW. Here we introduce the parameter Dn ¼

1� ðn=nOÞ, showing how far the eigen frequency of small
oscillation from n-integer resonance, or by another words,
it is the frequency detuning from resonance, when I51 and
_y � 1. In new variables the resonant Hamiltonian is for the
first-integer resonance _y � n=O

Hr;1ðI ;WÞ ¼ D1 � I �
1

16
I
2
�

21=2

8
e1 tanfs � I

3=2
cos W

þ
21=2

96
e1 tanfs � I

5=2 cos W ð15Þ

for the second-integer resonance 2_y � n=O

Hr;2ðI ; 2WÞ ¼ D2 � I �
1

16
I
2
þ

1

4
e1 � I cos 2W

�
1

24
e1 � I

2
cos 2W ð16Þ

for the third-integer resonance 3_y � n=O

Hr;3ðI ; 3WÞ ¼ D3 � I �
1

16
I
2
�

21=2

24
e1 tanfs � I

3=2
cos 3W

þ
21=2

192
e1 tanfs � I

5=2 cos 3W ð17Þ

and so on.
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The resonant Hamiltonian (15–17) describes the motion
in the coordinates system rotating with angular frequency
on ¼ n=nO in normalized time t ¼ O � B. One can see the
non-linear approach gives many additional resonances in
comparison with linear case. As example Fig. 2 shows the
curves of OðW Þ and n

n
ðW Þ together with n-integer

resonance boundaries.

4. Direct and inverse bifurcations under non-linear

resonance crossing

For low energy accelerator the second-integer resonance
is the first, which one affects the beam with initial energy,
in particular, in COSY 2.5MeV (see Fig. 2). It has the
quadrupole symmetry topology. Therefore, for the more
visual interpretation let us pass in Cartesian coordinates

Hr;2ðc̄; p̄Þ ¼
c̄
2

2
D2 þ

1

4
e1;2

� �
þ

p̄2

2
D2 �

1

4
e1;2

� �

�
c̄
4

64
1þ

2

3
e1;4

� �
�

p̄4

64
1�

2

3
e1;4

� �

�
1

32
c̄
2
p̄2 ð18Þ

where c̄; p̄ describe the averaged motion. Here we
introduce new parameters e1;2 and e1;4. They both equal
to e1, but the second index indicates on their origin. The
first of them e1;2 is due to the quadrupole term in
Hamiltonian, and the second e1;4 is due to the octupole
term. Fig. 3 shows the separatrix of second integer
resonance together with the isolated singular points and
distances from the origin for detuning jD2jo 1

4
e1;2.

During acceleration the longitudinal frequency O of
particle motion goes down (Fig. 2), and detuning
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Fig. 2. Non-linear resonances in COSY injector.

Fig. 3. Separatrix of second integer resonance.
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parameter D2 ¼ 1� ðn=2OÞ changes its value from positive
to negative. Depending on trajectories behavior in the
vicinity of the origin coordinates we will subdivide the
detuning values on the resonant jD2joe1;2=4 and non-
resonant jD2j4e1;2=4 regions.

Since in the non-resonant region Hamiltonian (18)
can be submitted as ðc̄

2
=2ÞðD2 þ e1;2=4Þ þ ðp̄2=2ÞðD2�

ðe1;2=4ÞÞ ¼ Ci, where both coefficients of c2 and p2 have
either positive ðD24 1

4
e1;2Þ, or negative ðD2o� 1

4
e1;2Þ signs

simultaneously, the phase trajectories at small c have an
elliptical form with the center in the origin of coordinates
c̄ ¼ 0; p̄ ¼ 0.

The oscillation frequency of particles with a small

deviation is _W � ðD2
2 �

1
16

e21;2Þ
1=2. Far from the resonance

jD2jbe1;2=4 the ratio of c̄m to p̄m axes is c̄m=p̄m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�ðe1;2=4Þ
D2þðe1;2=4Þ

q
! 1 and _W! D2. It means that outside the

resonance, when detuning jD2jbe1;2=4, particles have the

circular phase trajectories, and the total frequency in the
original phase space D2 þ ðn=2OÞ equals to unit. Hence, in
accordance with definition of the detuning parameter D2 ¼

1� ðn=2OÞ the trajectories are unperturbed. For the non-
resonant cases D24e1;2=4 and D2o� e1;2=4 the phase

trajectories have elliptical form in the central part.
Now let us consider the resonant case, when the

coordinates origin losses stability jD2jp 1
4

e1. In this
moment both coefficients of c2 and p2 in Hamiltonian
have different signs, and how we mentioned already, the
center of oscillation degenerates into the saddle. The phase
trajectories have the form of hyperbola in the central
region c2

¼ ðð1
4

e1;2 � D2Þ=ðD2 þ
1
4

e1;2Þp
2Þ. In the periphery

due to the non-linear third term of Hamiltonian they are
closing with two islands formation. From Eq. (18) we can
find the equation of small oscillation inside these islands:

D €̄cþ 2
e21;2
16
� D2

2

 !
� Dc̄ ¼ 0. (19)

Thus, in the resonance D2
2oe21;2=16 there are two regions:

outside islands particles oscillate with frequency as before

_W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
2 �

1
16

e21;2

q
, and inside with frequency

_W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e21;2
16
� D2

2

 !vuut .

The transformation process of the elliptical motion with

one stable centre ðD24 1
4

e1;2Þ into the hyperbolical motion

with two stable centres ðD2o 1
4

e1;2Þ is called the direct

bifurcation. And the inverse transformation of the two
centers motion into the one center motion is called the
inverse bifurcation. During the resonance crossing particles
experience both bifurcations. It is possible, when neighbour
particles begin to move with the different frequencies. After
resonance the frequencies become equal. Bifurcation causes
a significant growth of the effective emittance. We have

considered bifurcation under second order resonance
crossing. The same phenomena can be observed under
higher order resonance.
Moving away from the second integer resonance, we

approach to the third integer resonance. The force of the
third integer resonance is much smaller than the second
integer resonance for the central part of phase space, and it
can be stronger for the larger deviation from centre. Many
authors investigated the resonances crossing. In particular,
in Ref. [3] the effect of passing through the isolated
resonance is considered. In our case the particles not
leaving the previous resonance they are coming in the next
one. It is interesting to see the integrated effect of
resonance crossing, when the detuning changes dynami-
cally during the acceleration process with Lorenz damping.
The phase portrait strongly depends on how we come
through resonances. Hamiltonian formalism does not
allow doing that, and we used the numerical simulation.
Fig. 4 shows the option nearest to real case of COSY, when
we start from the detuning from the second order
resonance D2 ¼ 0:3 and finish by the detuning from the
third order resonance D3 ¼ �0:13.
There are different methods how to decrease influence of

resonance. It is obviously in order to avoid the resonance
crossing we should change the frequency perturbation n,
for instance, by decreasing cavities number in one cryo-
module. But it is not always convenient from technical
point of view.
Another method is the recovering of phase shape of

bunch by two harmonics debuncher [4]. This debuncher
consists of two cavities: cavity with normal frequency
and cavity with doubled frequency. As soon as the
phase shift is small enough we can say that both harmonics
act simultaneously. This system can be represented as
system with two harmonic simultaneously: ðd2j=dt2Þ þ

O2ðsinðjÞ þ a sinð2jÞÞ ¼ 0; or

d2j
dt2
þ O2 sinðjÞð1þ 2a cosðjÞÞ ¼ 0.
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Fig. 4. Dynamical change of detuning from D2 ¼ 0:3 to D3 ¼ �0:13
ðe1 ¼ 1:2; a ¼ 0:14Þ.
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Now we construct the Hamiltonian H ¼ ðP2=2Þ � cosðjÞ �
ða=2Þ cosð2jÞ in normalized time t ¼ Ot and normalized
momentum P ¼ 1

O ðdj=dtÞ ¼ dj=dt. We can see that the
form of Hamiltonian seems like resonant Hamiltonian of
2nd order for a � �0:5, what means it acts oppositely to
linear accelerator itself. Therefore, after debuncher the
phase portrait becomes more straight (see Fig. 5).

5. Tune-up procedure of SC linear accelerator

Development of the tune-up procedure for a linear
accelerator is the next important stage after the design is
complete. Conventional DT procedure developed by
Crandall for a tuning of a normal-conducting (NC) linear
accelerator allows setting up of the accelerating field
amplitude and phase in cavities with design phase velocity
[5]. In contrast the quasi-synchronous phase velocity in SC
linear accelerator is determined by an amplitude and RF
phase of cavities. And the phasing itself must be established
in frame of the tune-up procedure. The lack of coincidence
between the experimental and design values of the
equivalent phase velocity results in the uncertainty of the
final energy. Moreover, a SC cavity is short and has small
phase advance of the longitudinal motion, which leads to
an insensibility of particles motion to variation of the
electric field inside the cavity.

The main task for the phasing of the cavities is to ensure
a quasi-synchronous motion of the particles. In order to
realize quasi-synchronous motion in the real accelerating
structure the phasing must be based on the measured data
of the beam. We scan the initial phase of a particle and
search for the particle with zero energy gain. Than the
phase of the sought particle differs from the measured by
�ð90� þ jsÞ. After all the cavities have been phased the
equivalent phase velocity of the structure is adjusted.

Because of small phase advance the accuracy of time
flight procedure is greatly insufficient to feel changing of

the field amplitude and phase inside the cavity. On the
other hand it means the particle motion remains stable with
respect to the amplitude and phase errors. This stability
allows joining several cavities in one module without losing
the quality of the beam. And the further tuning deals with
such a module. The phase advance equal to the half of one
longitudinal oscillation gives the maximum sensitivity.
Hence the optimal number of cavities in a module must
provide around p of the phase advance.
We have investigated how variation of field amplitude

and phase along one module with discontinuity of one
cavity affects on the equivalent phase velocity. One of the
ways to change the equivalent phase velocity of some
particular module is to vary an average field level in the
whole module, after which it is necessary to re-phase the
cavities inside the module. In order to control the behavior
of the equivalent phase velocity and to compare it with the
design value we analyze the DT plane. After we adjusted
the equivalent phase velocity of the real accelerating
structure we use the conventional DT-procedure to finalize
tuning. In details DT-procedure for SC linear accelerator is
described in Ref. [6].
The modified tune-up gives one of the most attractive

features of SC linacs. It is the possibility of the smooth
adjustment of the final energy. The phasing of the cavities,
which allows changing the equivalent phase velocity,
provides a basis for such a possibility. This fact puts the
SC linear accelerator in one series of accelerators-candi-
dates for medical therapy.

6. Features of high intense beam dynamics in SC linear

accelerator

From mentioned above we see that SC linear accelerator
has a lot of advantages in comparison with room
temperature accelerators. In case of intense beam with
high duty cycle and high accelerating gradient the SC linear
accelerator is the only candidate. But together with benefits
there are new problems for high intense beam. In
particular, the focusing elements of SC linear accelerator
usually are located between cryo-modules, what makes the
focusing period longer and the space charge effect stronger.
Simultaneously, together with strong RF defocusing factor
the high accelerating gradient gives the phase advance in
longitudinal plane comparable with the phase advance in
radial plane. Due to all these factors the SC linear tune
shift can reach the value up to 50%. Nevertheless,
compensating the linear part of space charge force, we
have the strong influence of non-linear space charge part,
which affects on hallo particles and causes the losses. Since
the limitation for high current accelerators usually is
coming from losses, approximately 5W/m, the non-linear
space charge acquires significant role. The aperture of SC
cavity can be done larger than quadrupole, therefore the
main part of losses usually is located in quadrupoles. In the
same time maximum quadrupole aperture is restricted by
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magnetic saturation on pole, and for 2 cm radius aperture
the gradient is limited by 50T/m.

As example we consider COSY injector design. Focusing
period consist of four SC half wave cavities [2] in
cryomodule and quadrupole doublet. Numerical calcula-
tion shows it is possible in this structure to accelerate
30mA of average current with losses of order 5W/m and
duty factor 100%. The beam is accelerated from energy
2.5MeV up to 50MeV in two kinds of resonators with
operation frequency 160MHz on first 5 periods and
320MHz on rest 6 ones. Transverse RMS are shown at
Fig. 6.

Since the matched acceptance depends on RF phase the
total transverse RMS emittance growth by �30%.
Obviously, for shorter focusing period the effect of space
charge is weaker. In particular, the linear accelerator with 2
resonators in cryo-module and twice shorter focusing
period has maximum current 160mA. In detail the space
charge effect is investigated in Ref. [7].

7. Conclusion

In SC linear accelerator is no synchronism between
particle and phase wave. To create a quasi-synchronous
motion the stepped RF phasing of cavities is used. In this
article we have used the developed earlier separatrix
formalism for super-conducting linear accelerators in
absence of synchronism.

We have investigated the inter-cryostat drift space
influence on the longitudinal motion in a super-conducting
linear accelerator. It is known that in the non-resonant case
the drift decreases the separatrix momentum spread
proportionally to Dp=p /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lcav=ðLcav þ LdriftÞ

p
and keeps

the same phase length. However, in case of the resonance
n ¼ nO the influence of drift space plays significant role.

The shape of both separatrix and bunch can change
dramatically. Using Hamiltonian formalism, we deter-
mined the resonance boundary and qualitatively described
the behavior of particles versus values of the perturbation
and detuning from resonance.
We have studied analytically and numerically the direct

and inverse bifurcation phenomena. The last one allowed
us understanding of bunch shape distortion. Comparing
the results of this model with numerical simulation in 3D
fields of MAFIA, we could explain the bunch behavior in
the COSY SC linear accelerator.
We have developed two possible methods of avoidance

of the strong resonance influence. The first obvious
solution is a resonance bypass. The first cavities are housed
in one cryo-module two by two. After the resonance
passing we return to the option four cavities in one cryo-
module. The second method is two harmonics bunch-
rotator. Its action is so adjusted in order to unbend S shape
bunch after a linear accelerator. For the COSY SC linac we
made a choice for second method, since it gives additional
beam monochromatization, which one is important in case
of injection in a ring.
The modified DT-procedure has been developed for SC

linear accelerator. It has the next main features. Firstly, we
tune up several cavities at once. Secondly, before we can
use the conventional DT procedure, it is essential to adjust
the equivalent phase velocity of the real accelerating
structure. This adjustment can be done by variation of
the field level inside the module being tuned up. And only
after that we are able to apply convenient DT-procedure
for the final tuning.
High intense linear accelerators based on SC structures

gives the advantage like lower power supply at higher
accelerating gradient. Simultaneously, SC linear accelera-
tor has the strong RF defocusing factor and longer
focusing period in comparison with conventional NC
accelerator. We have investigated how critically 6D
mismatching affects on losses and determined criteria for
SC accelerator parameters choice.
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Abstract

This paper describes the redesign of the low-energy beam line at KVI. Redesigned and properties of the optical elements of the

transport beam line is done by using the code COSY INFINITY in the third-order of approximation. The effects of fringe fields of the

optical elements are also taken into account in the third order of accuracy. Examples of beam transport calculations and emittance

measurements are shown in the case of 3Heþ. The beam emittance is estimated by varying quadrupole method. By using COSY code it is

concluded that the settings of some optical elements in the present design of the beam line should changed to increase the beam

transmission. In this way the beam transmission is increased 2–3 times. To achieve higher beam transmission the redesign of the beam

line is necessary.

r 2005 Published by Elsevier B.V.
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1. Introduction

The beam current of 3Heþ beam just after the analyzing
magnet M72 (see Fig. 1 in the Ref. [1]) is about 20mA but
after the matching section (matching section consists of five
electrostatic quadrupoles; from EQ8 to EQ12 in Fig. 1) is
only 2mA. To improve the transmission of the beam
through the injection beam line, the optical properties of
the transport beam line and the beam emittance should be
known. The beam emittance is measured at the three
different positions along the beam transport line and in the
both planes, horizontal and vertical, by varying the
strength of an upstream quadrupole. The first horizontal/
vertical profile grid (marked by letters HH1/HV1 in the
Fig. 1) is located 7:17m=7:27m downstream from the ion
source, the second profile grid (HH2/HV2) is located
10:20m=10:30m and the third one (HH4/HV4) is located
15:40m=15:41m downstream from the ion source.

Redesign of the transport beam line (within the existing
building) and its optical properties is done by using the
code COSY INFINITY [2–5] in the third order of

approximation, taking into account in the third order of
accuracy the effects of the fringe fields also.

2. COSY calculations for the present beam line design

The optical properties of the low energy beam line are
studied for the 3Heþ beam. It is considered the case of
ex ¼ ey ¼ 50pmmmrad for the beam emittances and 0.5%
of the half of the momentum spread.
By using COSY code it has come to conclusion that the

strength of the EQ5 and EQ7 electrostatic quadrupoles
should increase to increase the beam transmission 2–3
times.
After the M72 magnet and after a long drift space
ð210 cmÞ is a matching section which consists of five
electrostatic quadrupoles. After the matching section the
beam is bend 901 up by an electrostatic deflector, into the
cyclotron. The beam envelopes, calculated by the code
COSY INFINITY, are presented in Fig. 1a (horizontal
plane) and Fig. 1b (vertical plane). The double vertical lines
are the positions of the profile grids in the horizontal (first
line) and the vertical (second line) plane.
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From the Fig. 1b we can see that the beam is over-
focused by the M72 bending magnet. Due to shortage of a
vertical focused quadrupole in the long drift space after the
M72 magnet the beam blew up in the vertical plane. The
bending magnet M72 and the drift space between the M72
and the matching section are the main places of the beam
loosing.

Before we present the new design of the low-energy beam
line we will turn our attention to the matching section. The
matching section consists of five electrostatic quadrupoles.
Half of the aperture and the length of each of them are 5
and 12 cm, respectively. The distance between each of them
is only 8 cm. The consequence of this geometry is that the
fringe field effects in this region are very strong. One of the
ways to decrease the fringe field effects in the matching

section is to remove the electrostatic quadrupoles EQ9 and
EQ11 (see Fig. 1 in the Ref. [1]). In the new design of the
beam line the matching section is made by three electro-
static quadrupoles (EQ8, EQ10 and EQ12; see Fig. 1).
The envelope of the new (redesign) transport beam line is

presented in Fig. 2a (horizontal plane) and Fig. 2b (vertical
plane).
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Fig. 1. Envelopes of the beam for the present beam line design calculated

by the code COSY INFINITY in the horizontal (case a) and the vertical

(case b) plane. The double vertical lines are the positions of the profile

grids in the horizontal (first line) and the vertical (second line) plane.

Fig. 2. Envelopes of the beam for the redesign beam line calculated by the

code COSY INFINITY in the horizontal (case a) and the vertical (case b)

plane.

D. Toprek et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 247–248248



Nuclear Instruments and Methods in Physics Research A 558 (2006) 249–252

Experimental characterization and numerical simulations of
the electron source at PITZ

K. Abrahamyana, J. Bähra, J.P. Carneirob, K. Flöttmannb, J.H. Hana, M.v. Hartrottc,
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Abstract

The Photo Injector Test facility at DESY Zeuthen (PITZ) works on the optimization of electron sources for Free Electron Lasers

(FELs). The main motivation and challenge of PITZ is the production of electron beams with high charge and small normalized

transverse emittance. Recent results of electron beam studies at PITZ are presented in this paper. The experimental characterization of

the electron source is discussed together with beam dynamics simulations.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Photo Injector Test Facility at DESY Zeuthen
(PITZ) has been built in order to test and optimize electron
sources for Free Electron Lasers (FELs) and future linear
colliders. PITZ is a facility that has the purpose to produce
intense electron beams with minimum transverse emittance
and short bunch length as required for FEL operation. The
experimental set-up consists of a 1.5 cell L-band RF gun
with a Cs2Te photocathode, a solenoid system for space
charge compensation, a photocathode laser capable to
generate long pulse trains with variable temporal and
spatial pulse shape, and an extensive diagnostics section.
The slit masks technique is used for the electron beam
emittance measurements, the emittance measurements
system (EMSY) including single and multislit masks is
located at z ¼ 1:62m from the cathode. A schematic layout
of PITZ is shown in Fig. 1.

The first stage of the PITZ project has been successfully
completed at the end of 2003. A smooth commissioning
procedure of the RF gun cavity yielded an operation with
up to 900 ms long RF pulses at 10Hz repetition rate and an
accelerating gradient at the cathode of about 42MV/m [1].
That corresponds to a maximum average power of 27 kW
in the gun cavity with 0.9% duty cycle. This long RF pulse
operation fulfills the TTF2 requirements. The startup
conditions of TTF2 on normalized projected beam
emittance [2] have been fulfilled. By optimization of the
photocathode laser properties together with the RF field
and solenoid parameters a minimum normalized projected
emittance of 1.7 pmmmrad has been achieved for a 1 nC
electron beam at a mean longitudinal momentum of
4.7MeV/c.

2. Photocathode laser

One of the key issues of a photo injector is the photo-
cathode laser. The laser temporal and spatial profiles have
a significant impact on the electron beam performance. In
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order to reduce the space charge influence on the transverse
beam emittance the longitudinal laser profile at PITZ has
been modified from a Gaussian (st � 7 ps) to a flat-top
distribution (18–23 ps FWHM). ASTRA [3] beam dy-
namics simulations for both laser profiles show that the
optimum emittance (minimum emittance at EMSY loca-

tion z ¼ 1:62m) for the flat-top profile (20 ps FWHM, 2 ps
rise/fall time) is a factor of �2 smaller than for the best
Gaussian profile (st � 5:2 ps). The simulated normalized
beam emittance as a function of longitudinal position
along the beam line is shown in Fig. 2a. The slice beam
emittance inside the electron bunch at z ¼ 1:62m is shown
in Fig. 2b for both longitudinal laser profiles together with
the corresponding charge density profiles.

3. Charge production study

Faraday Cups and integrating current transformers
(ICT) have been used to measure the electron beam charge.
A basic measurement is the so-called phase scan: the
accelerated charge downstream of the gun is measured as a
function of the launch phase, the relative phase of the laser
pulses with respect to the RF. Phase scan studies
(measurements and simulations) for the normal operating
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Fig. 1. Layout of PITZ.
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conditions (1 nC bunch charge and 42MV/m accelerating
field at the cathode) have been presented in Refs. [1,4]. For
a detailed study of photo injection processes phase scans
have been done also for low bunch charges (�4–5 pC) and
moderate RF field on the photocathode (�21MV/m).
Corresponding simulations have been performed as well.
Solenoids were off for this study. A typical phase scan for
this case is shown in Fig. 3. In order to simulate the phase
scan the Schottky effect—the dependence of the charge
emission on the actual electric field (RF and space
charge)—has been modeled by using the formula
Q½pC� / ð0:4þ 0:045 � ERFþSC½MV=m�Þ. Another charge
production mechanism can be illustrated by a detailed
study of the RF phase range �100–1151. This corresponds
to a ‘‘bump’’ in the phase scan. For these RF phases the
beam acceleration takes place in a non-smooth way:
besides the particles accelerated downstream there is an
amount of particles reflected back to the cathode. Under
some circumstances reflected particles can produce second-
ary electrons. Simulations show (Fig. 3b) that secondary
electrons can explain at least partially these phase scan
peculiarities. Furthermore, momentum measurements and
simulations [5] show that the beam momentum distribution
contains a secondary electron part.

The discrepancy between measurements and simulations
can be explained by a non-perfect beam and beamline
alignment during measurements (QmeasuredoQsimulated due
to electrons lost on the aperture), as well as by restrictions
of the primary and secondary emission modeling
ðQmeasured4QsimulatedÞ. Another probable reason of the
discrepancy is the uncertainty in the RF field balance of
the gun cavity (ratio ECathode=EFullCell) that has been used
in the simulations.

4. Emittance study at PITZ

Measurements of the transverse emittance were per-
formed using a single-slit scan technique [1]. Beamlets from
three slit positions were taken into account for the
emittance calculation. Beamlet profiles were observed at
screen 3, 1010mm downstream of the single-slit mask (see
Fig. 1).

Besides the photocathode laser parameter optimization
other RF gun parameters have been optimized in order to
reach a minimum normalized beam emittance, namely RF
phase, main and bucking solenoid current. The emittance
has been measured for different RF phases and main
solenoid currents exyðFRF; ImainÞ [6]. The photocathode
laser with flat-top longitudinal profile (20 ps FWHM and
�5 ps rise/fall time) and transverse rms (X/Y) sizes 0.51/
0.63mm has been tuned in order to keep the beam charge
at 1 nC. The applied RF gradient on the cathode
corresponded to �42MV/m. During the two-dimensional
ðFRF; ImainÞ parameter scan the bucking solenoid was off,
so the magnetic field at the cathode is supposed to be small
but not zero. For the best point ðFRF ¼ �5

�; Imain ¼

305AÞ the bucking solenoid current was fine tuned in order

to compensate the remnant longitudinal magnetic field on
the cathode. The measured horizontal and vertical
emittance as a function of the bucking solenoid current is
shown in Fig. 4a. The asymmetry in the laser transverse
profile leads to the observed beam shape and emittance
asymmetry. Another asymmetry factor can be the impact
of the vacuum mirror, used to position the laser beam onto
the photocathode [7].
The normalized beam emittance has been simulated

using ASTRA for injector parameters close to the ones
observed during the emittance measurements, except the
transverse laser profile which has been assumed rotation-
ally symmetric (to apply a 2D r2z space charge routine
with equivalent rms sizes). The results of the simulations
are shown in Fig. 4b. Simulated slice parameters of the
optimum beam emittance (Ibuck ¼ 20A) are plotted in
Fig. 5a,b. for z ¼ 1:62m (EMSY location).
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5. Conclusions

The optimization of the electron source at the Photo
Injector Test facility at DESY Zeuthen (PITZ) yielded a

minimum normalized projected emittance of
1.5 pmmmrad in one plane and of 1.7 pmmmrad as a
geometrical average of the horizontal and vertical emit-
tances. This result has been obtained by extensive variation
of the photo injector parameters within a wide range. A
flat-top longitudinal photocathode laser profile has been
used. Detailed experimental and numerical studies of the
photo injector have been performed. As next step, a large
extension of the facility by including a booster cavity for
emittance conservation studies is foreseen as well as further
improvements of the photocathode laser properties.
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Abstract

The attempt to replace hot cathode with field emission cathode in a commercial X-ray tube have been made. We are continuing

investigation of emission properties of the carbon fibers. Cathodes for X-ray tube were made from bundle of carbon fibers. The

prototype provides 0.1mA with focus spot about +2mm under continued 40 kV mode. Each tube contain cathode made of single fibers

bundle. The matrix cathode to increase total tube current up to 10mA/cm2 for macro cathode structure is also considered.

r 2005 Elsevier B.V. All rights reserved.
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The main direction of portable X-ray equipment
evolution is the downsizing, reliability improvement and
power consumption decreasing. It requires improvement of
X-ray tube as a key element of X-ray equipment. So it is
necessary to enhance efficiency and downsize of X-ray
tube. The performance of X-ray tube basically depends on
electron gun construction. The requirements for the
electron gun could be determined in the following way:
the dimensions about several millimeters, high efficiency
(more than 90%) with instant turning on and low power
consumptions.

Mainly the commercial X-ray tubes have the electron
gun with hot cathode. Still these tubes do not fulfill the
requirements for portable X-ray equipment.

The electron gun with field emission cathode (FEC) is
more promising for application in portable devices. It is
possible to significantly decrease the electron gun dimen-
sions due to the high current density of the field emission
(FE). The FE is very effective phenomenon because it does
not consume the additional energy in comparison with the
thermal electron emission. FEC is instantly ready for
operation.

Nowadays the field emission properties of various
materials are investigated. Nevertheless majority of cath-

ode materials require the vacuum condition better than
10�7 Torr for a high emission current stability and long
lifetime [1].
The technology used for producing of X-ray tubes with

hot cathode provides residual gas pressure about
10�6 Torr. The improvement of vacuum will essentially
increase the production cost. Therefore it is reasonable to
develop FECs, which are able to operate in vacuum
10�6 Torr. The carbon fibers are the most suitable material
for this purpose [2]. The FECs made of carbon fibers (CF)
posses high emission current stability and lifetime about
10 000 h in vacuum 10�6 Torr.
Due to the wide (about 1201) and not uniform angular

distribution of emitted electrons [3,4] there are some
difficulties in developing of electron gun with CF cathode.
In our laboratory we are considering various methods of

cathodes producing from carbon fibers. The encapsulating
bundle of fibers into glass capillary is the most promising
methods [2]. However there are some fibers features, which
makes difficulties in application of fibers bundle as FEC.
The bundle of fibers is a multi tips system. The peripheral
fibers of the bundle can deviate from main bundle under
electrostatic load and change the emission characteristic of
the cathode. The special forming process of cathodes by
corona discharges under atmosphere condition was used.
At work [5] the method of fibers sharpening is described.
We used similar tools to make special profile of our
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cathode and to minimize the influence of peripheral fibers
(see Fig. 1). After forming process emission is more stable.

Cathode long test in vacuum chamber showed that the
cathode material was evaporated during cathode operat-
ing. The surface near the cathode was being covered by film
of cathode evaporation product. In some cases a leakage
between cathode and modulator electrodes were observed.
There are special vacuum gaps in the design of cathodes-
modulator unit for X-ray tube to avoid leakages.

For our experiments we chose commercial X-ray tube
with hot cathode of indirect heating (manufacturer
Svetlana-X-ray Company, Russia—www.svetlana-x-
ray.ru). The initial parameters of tube are: anode
voltage—50 kV, anode current—0.3mA, focus spot—+
3–4mm. Fig. 2 shows the stem of the tube with field
emission cathode-modulator unit.

The pilot lot of tubes were assembled and subjected
standard pumping down process with training on a vacuum
station.

There was some problem with current leakage between
pins of the tube stem. The control voltage for our cathode
is up to 1.2 kV, but the stem pins provide only 1 kV
isolation. We have to coat stem with special high voltage
compound to increase stem insulatation of the tubes.
HV power supplies (+40 kV for anode and 2.5 kV for

control voltage) of our own design were used to test tubes.
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Fig. 1. Bundle of carbon fibers after corona discharge forming.

Fig. 2. X-ray tube stem with field emission cathode-modulator unit: 1—

modulator, 2—cathode wire, 3—muff, 4—stem of tube, 5—carbon fibers,

6—glass insulator.

Fig. 3. X-ray tube with FEC is turned on in continuous mode with 40 kV

and 0.1mA on the anode.

Fig. 4. The phosphor is covered on the tube anode to evaluate size and

shape of the focal spot under various anode voltages and currents. The

figure represents the tube under +40kV and 0.1mA on the anode.
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The anode side and cathode side of tubes were coated
with HV compound to test tubes in normal atmosphere.
The intensifying X-ray screen was utilized to observe X-ray
(see Fig. 3).

The beryllium exit window of tube was covered with
phosphor to observe the shape and size of focal spot under
various anode voltages and currents (see Fig. 4). The
photos were made with mirror to prevent a camera from
X-ray.

Some tubes were tested during 50 h without any
degradation tendency in the cathodes emission character-
istics. At present time we are planning to develop special
measuring bench for long test of X-ray tubes with field
emission cathodes.

The cathode described above can provide the tube
current up to 0.25mA. However the more convenience way
is to utilize a matrix cathode made of bundles of carbon

fibers. The packing density of such cathode is 100 bundles
per cm2 with total current 10mA/cm2 from macro cathode
structure. This is comparable with nanotubes cathodes [6]
for X-ray tubes. The expected lifetime of such structure is
several thousand of hours.

The authors wish to thank the company ‘‘Svetala–Rent-
gen’’ for technical support of the experiments.
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Abstract

The significant current degradation of the carbon nanotubes cathode was found in the presented work. This current instability came

from the adsorption desorption processes on the cathode surface. During the long-time tests the periodical changing of the cathode

electron work function was shown. The proposed model allowed to find the dependence of the electron work function changing with the

time. This model has a good agreement with the experimentally obtained results.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most promising applications of the carbon
nanotubes (CNT) is the field electron emission [1]. The
main advantage of the CNT in comparison with other
carbon materials [2] is the significant value of the field
amplification factor. One of the most important character-
istics of the field emission cathodes and the devices based
upon them is the long-term emission current stability.
However, the inconsistent results were obtained during the
long-time field emission tests of the CNT cathodes [3]. The
drastic decrease of the emission current at once after
the cathode is switching on occurs so the stable operation
of the cathode during long time was obtained [3].

The saturation phenomenon was found in the work [4].
This effect consists of the changing of the current voltage
characteristic Fowler–Nordheim behavior during the ap-
plied voltage increase. To clarify this phenomenon different
models were suggested [5,6]. However, the more completed
study of the effect was made in the work [7]. The authors
associate this phenomenon with the sorption process,

which occurs on the surface of the carbon nanotube. The
results of different works show the influence of the sorption
process on the long-term current stability [8,9].
At the experiment described below an interesting effect

was observed during the investigation of the long-term
current stability. Two different time periods were found
characterized by different degradation ratio (the current
voltage characteristic of the cathode shifts to the higher
voltage region). In the presented work, the model was
proposed to describe the observed effect by the mean of the
sorption process and ion bombardment.

2. Field-emission cathode production

The screen-printing technique was applied to produce
the field-emission cathodes. The carbon powder obtained
in the arc discharge was mixed with the organic binder. The
carbon power contained more than 80% of the multiwall
carbon nanotubes. The got paste was drown through the
mask to the glass substrate covered by the ITO layer. The
area of the cathode was 0.125 cm2. To remove the organic
binder the cathode was baked at 450 1C for 10min. The
surface of the produced cathode is shown in Fig. 1.
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3. Field emission tests

The diode tester was made of the field-emission cathode.
The distance between anode and cathode was fixed by the
spacer and this distance was 100 mm. Then the device was
pumped and sealed off till the technical vacuum condition
(�10�6 Torr). The long-term stability of the emission
current was investigated at the current stabilization mode.
The applied voltage versus time characteristics was
measured. During the long-term tests the interesting effect
was observed. It was the decreasing of the applied voltage
after the cathodes switching off and following switching on
(see Fig. 2). Furthermore the voltage–time characteristic
has different time periods (Fig. 2, time period 1 and 2)
characterized by a different degradation ratio.

The first time period is characterized by the significant
changing of the current voltage characteristic. The second
time period has slower changing of the characteristic. Such
significant changing is attributed to the electron work
function of the cathode excursion, which occurs due to the
sputtering of the chemical adsorbed molecules by ion
bombardment of the cathode surface. As it is known from
different works [8,9] some types of the molecules (for
example H2O) adsorbing to the surface of the carbon
nanotubes decrease the electron work function.

During the long-time test the current voltage character-
istics were measured every 1min. It is possible to estimate a
field amplification factor of the cathode by making an
assumption that the electron work function is equal to
4.7 eV at the end of the second time period (see Fig. 2).
Then the values of the electron work function at the
different times of the cathode operation were calculated
(see Fig. 3). There is a periodical changing of the electron
work function in the presented figure. It is attributed to
formation of the adsorbed layer of the molecules during

non-operating time period and to the destruction of the
layer by ion bombardment during the cathode operation.
The obtained results show that the ion bombardment
greatly influences the stability of the emission current of the
cathode based on carbon nanotube.

4. The model of the adsorbed layer formation

Let us consider the time period, which is characterized
by the absence of the ion bombardment. For the average
flow of the molecules per unit area in a unit of time the
following expression can be written:

Va
1

cm2c

� �
:
2:3� 1022P ðTorrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MT ½K�
p . (1)

The covering efficiency of the surface Y can be
introduced as a ratio of the number of molecules N
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Fig. 1. The SEM image of field-emission cathode surface.

Fig. 2. Voltage versus time curve of the carbon nanotubes FEC. j-const.

j ¼ 0:5mA=cm2.

Fig. 3. Electron work function change during long-time field-emission

tests.
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covering the surface to the number of molecules N0

forming the monolayer.
Using the accommodation coefficient Kak, which has a

decreasing value during the increasing covering efficiency
[10], it is possible to write the expression to characterize the
ratio increasing of the covering efficiency:

vþ ¼ KakðYÞ
Va

N0
. (2)

Let us consider two energy states of the adsorbed
molecules. These states correspond to the physical and
chemical adsorptions. The physical adsorption state has
energy Um. For a molecule to make a transition to the
chemical adsorption state, it must get the energizing Qa.
Using the typical times of lifetime of the adsorbed
molecules in these energy states and the typical time
transition from the one energy state to another it is possible
to write the expressions (3,4) characterizing the ratio
changing of the covering efficiency.

_Y1 ¼ Kak
Va

N0
�

Y1

t0
exp �

Um

kT

� �
þ exp �

Qa

kT

� �� �
(3)

_Y2 ¼
Y1

t0
exp �

Qa

kT

� �
�

Y2

t0
exp �

Ua

kT

� �
(4)

where _Y1 is the ratio changing of the covering efficiency by
the physical adsorbed molecules, t0 the period of the
thermal oscillation (t0 ¼ h=kT), _Y2 the ratio changing of
the covering efficiency by the chemical adsorbed molecules,
and Ua the energy in the chemical adsorbed state.

To estimate the number of ions, which are generated in
the anode–cathode spacing in a unit of time, it is possible to
apply the following expression [11]:

N i ¼
I e

e

pL

kT
s (5)

where Ie is the electron emission current, k the Boltzmann
constant, L the anode–cathode distance, T the tempera-
ture, e the electron charge, p the pressure, and s the
ionization cross-section.

Let us introduce the effective cathode area of the ion
bombardment Se. In general this value is not equal to the
total area of the cathode. The ion current can be given by
the expression

ji ¼
N i

Se
¼

I e

e

pL

kT

s
Se

. (6)

We can introduce the spattering coefficients of the
chemical and physical adsorbed molecules D1 and D2,
correspondently. Expressions (3) and (4) can be written in
the following forms when the ion bombardment occurs:

_Y1 ¼ Kak
Va

N0
�

Y1

t0
exp �

Um

kT

� �
þ exp �

Qa

kT

� �� �

� ji
D1

N0
Y1 ð7Þ

_Y2 ¼
Y1

t0
exp �

Qa

kT

� �
�

Y2

t0
exp �

Ua

kT

� �
� ji

D2

N0
Y2. (8)

Using the numerous works [12], which describe the
results of the investigation of the adsorption process of the
active metal on the field emission cathodes surface, one can
expect that the first layer of the adsorbed atoms result in
the significant changing of the electron work function. The
electron work function changing depending on the cover-
ing efficiency of the surface by the chemical adsorbed
molecules can be given by the empirically obtained
formula:

jðYÞ ¼ ðj0 � jminÞ exp �
Y

Yopt

� �
þ jmin (9)

where j0 ¼ 4:7 eV is the electron work function of the
carbon nanotubes, jmin the minimum experimentally
obtained value of electron work function of the carbon
nanotubes.
Using the proposed model the numerical simulation of

the electron work function changing by ion bombardment
was made. Having set a value of the effective spattering
coefficients, the energy of the chemical adsorbed state of
the molecules [10] the dependence of the electron work
function upon time was calculated (see Fig. 4).
Fig. 4 shows that the proposed model has a good

agreement with the experimental data, which were obtained
during the field emission tests of the cathode of carbon
nanotubes.

5. Conclusions

During the experiment it was found that the ion
bombardment influences the long-term current stability of
the field-emission cathodes of carbon nanotubes. The
significant shift of the current voltage characteristic to
the higher voltage region occurred during the cathode
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operation under technical vacuum conditions. This beha-
vior of the characteristic took place due to the distraction of
the layer formed by adsorbed molecules, which leads to the
electron work function increase. The physical model was
proposed to describe the adsorption desorption processes of
the residual gases on the cathode surface. This model takes
into account the ion bombardment destructing the ad-
sorbed layer. The simulation results have a good agreement
with the experimental data. Using the proposed model it is
possible to optimize the operation regimes of the carbon
nanotubes field-emission cathode. For example, one can
select the most optimal composition of the residual gases,
which allow to decrease the electron work function. Choice
of the density of electron emission current will not allow to
destruct the adsorbed layer significantly. The considered
model makes it possible to predict the long-term behavior
of the field-emission cathode.
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Abstract

In this paper, we propose an electron acceleration by using an intense short pulse laser and a thin slab plasma separator. When an

intense short pulse laser illuminates electrons in vacuum, the electrons are accelerated by the ponderomotive force at the front of laser

pulse and the electrons accelerated loose their energies at the tail of laser pulse. This is one of serious problems in the ponderomotive

electron acceleration. In order to suppress the energy loss, we propose an overdense plasma separator to extract the electrons before

entering the deceleration region of laser pulse. In our electron acceleration mechanism, only the laser is reflected by the overdense plasma

separator and the electrons pass through the plasma separator. Consequently, the electrons can obtain a net energy after the interaction

with the laser pulse.

r 2005 Elsevier B.V. All rights reserved.

PACS: 41.75.Jv; 29.27Fh

Keywords: Electron acceleration; Pondermotive force; Plasma separator

1. Introduction

In recent years, many particle acceleration schemes have
been proposed by an invention of the Chirped Pulse
Amplification (CPA) technique [1,2], such as electron
acceleration in vacuum [3–13], high energy ion production
[14–20] and so on. The ponderomotive electron accelera-
tion is one of the typical mechanisms in an electron
acceleration in vacuum, and it has been investigated well in
previous researches [7–11]. However, the ponderomotive
electron acceleration has some problems. One is an electron
scattering in the transverse direction by the transverse
ponderomotive force. A TEM00 mode laser, which is
generally employed, has an intensity peak at the laser axis.
Therefore, the transverse ponderomotive force scatters
electrons in transverse. The transverse electron scattering is
suppressed successfully by using a TEM10 þ TEM01

mode laser, which has been investigated in our previous
research [11].

Another problem is a phase difference between the
electrons and the laser. When an intense short pulse laser
illuminates the electrons in vacuum, the electrons are
accelerated by the ponderomotive force at the front of laser
pulse. However, the electrons accelerated loose their
energies at the laser pulse tail. Even if the laser is strongly
focused, the energy loss appears. Most simple idea of a
suppression of the electron deceleration is a separation of
the electrons from the laser pulse before entering the laser
deceleration region [12,13]. In this paper, we focused on the
electron separation from the laser deceleration region by
using an overdense plasma separator. The electrons
are accelerated by the ponderomotive force in the head of
laser pulse, and then the laser pulse and electrons hit
the overdense plasma. The laser is reflected by the plasma
and only the electrons pass through the plasma. After the
laser reflected, the laser does not influence the electrons and
a high energy electron bunch is generated. In our
calculations, we employ 2.5-dimensional particle-in-cell
(PIC) simulations, and the relativistic equation of motion
is used.
In Section 2, the calculation model and parameters are

presented. Section 3 shows the simulation results of the
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electrons acceleration by using the plasma separator. The
conclusions are described in Section 4.

2. Simulation model

Fig. 1 shows a schematic view of 2.5-dimensional PIC
simulations. The laser propagates in the x direction and is
polarized in the y direction. A focused TEM00 mode laser is
adopted in our calculations. The longitudinal and trans-
verse electric fields induced at the left boundary of the
simulation box are written by

Ex ¼
i

k

qEy

qy
, (1)

Ey ¼ E0
w0

wðxÞ
exp �

ðy� ycÞ

wðxÞ

� �2
�

Z
t=2

� �2
( )

� sin kZ� fðxÞ þ
ky2

2RðxÞ

� �� �
. ð2Þ

Here k is the laser wave number, E0 is the amplitude of
electric field of laser, w0 is the radius of laser,

wðxÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðx� xf Þ=xR�

2
q

, Z ¼ x� xf � ct, xf is the

laser focal point, xR is the Rayleigh length, yc is the center
of the laser in the transverse direction, t is the pulse length
of laser, fðxÞ ¼ tan�1½ðx� xf Þ=xR�, and RðxÞ ¼ x½1þ ½xR=

ðx� xf Þ�
2�. In our simulations, yc ¼ 20l, where l is the

laser wavelength. The laser enters from the left boundary
(x ¼ 0), and then the laser propagation is solved by the
Maxwell equation. To solve the motion of particles the
relativistic equation of motion dP=dt ¼ qðE þ V � BÞ is
employed, where P is the particle momentum, q is the
particle charge, and E and B are the electric fields and
magnetic fields, respectively.

In our study, the laser wavelength l ¼ 1:053 mm,
w0 ¼ 3l, the laser intensity is 2:67� 1019 W=cm2

ða0�4:65Þ, the pulse duration t ¼ 9l ð�30 fsÞ, the focal
point of laser xf ¼ 15l, the initial electrons velocity in the x

direction is 0:1c, and the initial density of electrons injected
is 1:0� 1014 cm�3. Here a0 is the dimensionless parameter
of the laser field, e and me are the electron charge and mass,

o is the laser angular frequency, and c is the speed of light
in vacuum. The laser and the electrons injected propagate
in the x direction, and the center of the laser and electron
bunch coincide at the focal point xf . The electron bunch is
located in 6lpxp18l initially, and the transverse size is
9l. The separator plasma consists of a proton and electron.
At the initial time, the separator plasma charge is neutral,
and the number density np ¼ 3nc. Here nc is the critical
density. The thickness of plasma is 2l, and is located in
35lpxp37l. The electron bunch and plasma are in the
Maxwell distributions with the temperature of the electron
bunch T e ¼ 1 eV and the plasma temperature Tp ¼ 100 eV
initially.
The computational domain is given by R ¼

fðx; yÞj0oxo80l; 0oyo40lg. The mesh size in the x and
y directions Dx ¼ Dy ¼ 0:05, and the number of super
particle in one mesh is 16.

3. Simulation results

In this section, first we show simulation results of the
ponderomotive electron acceleration in the case without
the plasma separator. Fig. 2 presents time developments of
the distributions of electron kinetic energy in the x2y plane
at the times of t ¼ 112; 169, and 253 fs. The center of laser
and electron bunch injected reach to the focal point at
t ¼ 82:7 fs. The electrons, which are located near the
central axis, are accelerated strongly by the ponderomotive
force, and their kinetic energies reach about 9:27MeV at
t ¼ 169 fs. However, the electrons are decelerated and
scattered in the transverse direction at the tail of laser
pulse. Consequently, the electron bunch accelerated is
scattered in transverse. Fig. 3 shows a history of the
relativistic factor g of typical electron in the x axis.
The electrons are trapped by the laser field, and after the
passage of the electrons through the laser focal point, the
electrons are scattered gradually in the transverse direction
with the expansion of laser in transverse as shown in Fig. 2.
At the same time the electron energy g also decreases at the
laser tail deceleration. The final energy of typical electron is
about gf ¼ 10:5 (see Fig. 3), and it agrees well with the
estimation of final electron energy expressed by gf�a2

0=2 ¼
10:9 [9]. Such the acceleration is the typical ponderomotive
electron one.
To extract the high energy electrons before entering the

laser deceleration region, the plasma separator is employed
in this paper. Distributions of the kinetic energy of
electrons are presented in Fig. 4. The parameters of the
laser and the initial electron bunch are same as those in the
case without the plasma separator. Before the electrons and
laser hit the plasma, the distribution of electron energy is
same with that in Fig. 2a. When the electrons and the laser
reach to the plasma separator, only the laser is reflected by
the plasma separator, and the electrons accelerated pass
through the plasma separator. Consequently, the electron
bunch accelerated keeps their energy, and the transverse
divergence of electrons accelerated is suppressed. Fig. 5
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presents an energy g history of electron accelerated. In the
above description, the electrons can obtain a net energy
after the passage of the electrons through the plasma
separator. The final energy g of the electron accelerated
reaches about g ¼ 17:7. The electron slightly loses the
energy at the left-side surface of the plasma separator as
shown in Fig. 5. This is caused by the laser reflected. After
the laser is reflected, the electron accelerated is not influ-
enced by the transverse ponderomotive force of the laser
field, and consequently the high energy electron bunch
locates near the central axis as shown in Figs. 4b and c.

The averaged energy of the electron bunch accelerated is
about g ¼ 3:92, and the rms emittances in the transverse
and longitudinal directions are about 0:527mmmrad and
0:697mmmrad, respectively. Figs. 6a and b show the
averaged kinetic energy and the rms emittances of the high
energy electron bunch with the different laser intensities
and the pulse lengths. In these cases, the total laser energy
is kept constant when the pulse length changes. From
Fig. 6, the averaged electron energy becomes large and
the transverse and longitudinal rms emittances decrease
with the increase in the laser intensity. Because the
ponderomotive force is proportional to the laser
intensity, at the low intensity region the electrons are not
accelerated sufficiently by the laser, and are scattered in the
transverse direction. At the laser intensity of 1:60�
1019 W=cm2, the averaged energy of the electron bunch is
about g ¼ 2:27.
Fig. 7 presents an influence of the location of plasma

separator to the electron bunch accelerated. Fig. 7a shows
the averaged kinetic energy of electron bunch accelerated,
and the transverse and longitudinal rms emittances are
presented in Fig. 7b. By setting the plasma separator
leftward from the optimal position, the electrons are
separated by the plasma separator before the sufficient
acceleration. Therefore, the electron energy is slightly
decreased. When the plasma separator is placed right from
the optimal position, the low energy electrons are scattered
in transverse before entering the plasma separator, and
only the high energy electrons pass through the plasma
separator. Consequently, the electron bunch with the low
divergence is produced as shown in Fig. 7b. However, the
averaged energy is slightly decreases because the electrons
accelerated enter to the laser deceleration region. From
Fig. 7, the difference of the electron energy and the rms
emittances are relatively insensitive to the position of the
plasma separator.
The maximum growth rate of the two-stream insta-

bility and the filamentation instability between the
electron bunch accelerated and the separator electrons
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are estimated below. The two-stream instability is written
by [21]

dmax ¼ �
nb
2
þ

ffiffiffi
p
2

r
o2

b

oe

V 2
b

u2
b

exp �
1

2

� �
. (3)

Here nb is the collision frequency between the beam
electron and the plasma electron, ob is the electron bunch
plasma frequency, oe is the electron frequency of the
plasma separator, Vb is the electron bunch velocity, and ub

is the thermal velocity of the electron bunch. In our
case the passage time of the plasma separator is

about tele ¼ 7:28 fs. The maximum growth rate of
the two-stream instability is estimated by dmax�1:98�
1013 1=s, that is, stable. The filamentation instability is
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estimated by [22]

dmax�neb=3, (4)

at k ¼ ð2w2
b=9n

2
eÞ

1=4
ðoe=cÞ. Here b ¼ o2

b=o
2
e þ k2c2=o2

e ,
and ne is the collision frequency of the electron–electron
in plasma. This equation is derived under the conditions
of jðoc þ ineÞ=ðkueÞj41, joc=ðkueÞj41, and ne4d, where
oc is the complex wave frequency, and ue is the thermal
velocity of plasma electron. These conditions are fulfilled
in our case. The maximum growth rate of the filamenta-
tion instability is about dmaxtele�9:90� 10�451. If the
thickness of the plasma separator is not too thick, it
serves a stable plasma separator. The electron energy
loss by the collisions [23] is also estimated. The
parameters we employed the collisional energy loss is
1:31 eV. Therefore the energy loss by the collision is
negligible.

4. Conclusions

In summary, we demonstrated the successful accelera-
tion and separation of the electrons by using the slab
plasma separator. In this paper, the plasma separator
separates the electrons accelerated before entering the laser
deceleration regions, and the transverse divergence induced
by the transverse ponderomotive force of TEM00 mode
laser is also suppressed. For the laser intensity of 2:67�
1019 W=cm2 ða0�4:65Þ, the averaged energy of the electron
bunch accelerated reaches about g ¼ 3:92, and the trans-
verse and longitudinal rms emittances are about 0.527 and
0:697mm mrad, respectively. In this paper, the relation
between the position of the plasma separator and the
electron bunch accelerated is also investigated. The
influence of the location of the plasma separator to the
electron acceleration is relatively weak. The plasma
separator proposed in this paper could be simply used in
the electron acceleration in vacuum.
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Abstract

A suppression of transverse proton divergence by a localization of high-energy electron bunch generated by an interaction between an

intense laser and a foil target is investigated in this paper. When an intense laser illuminates a foil target, electrons are accelerated

longitudinally by the ponderomotive force and produce a strong magnetic field. The electrons are confined by the magnetic field and an

electric field is generated locally. Protons are extracted and mainly accelerated longitudinally by the local electric field. Consequently, the

transverse divergence of high-energy protons is successfully suppressed.

r 2005 Elsevier B.V. All rights reserved.

PACS: 52.38Kd; 52.65Rr; 41.75.Jv

Keywords: Laser–foil interaction; Electron localization; High-energy proton

1. Introduction

In recent years, we have seen remarkable progress in the
laser intensity improvement [1,2], and various researches
have been made on laser–matter interaction, for example,
electron acceleration in vacuum [3–7], high-energy ion
bunch generation [8–17] and so on. When an intense laser
illuminates a thin slab foil, electrons are accelerated by the
ponderomotive force of the laser and oscillate around the
foil target. The accelerated electrons produce an electric
field near both the sides of the target (see for example, Ref.
[14]) and accelerate ions. Such a high-energy ion produc-
tion has been well-investigated experimentally and theore-
tically. In the future, an improvement in a quality of
accelerated ions becomes very important, and researches in
the progress of the beam quality are just stated [16,17]. In
this paper, we focused on suppression mechanism of the
high-energy proton divergence in a laser–foil interaction by
using 2.5-dimensional particle-in-cell (PIC) simulations.

In the laser–foil interactions, the spread of the protons is
strongly related to the behavior of the electrons. Recently,
it has been proposed in Ref. [16] to use the underdense
plasma for protons acceleration. In the mechanism
proposed in Ref. [16] underdense plasma electrons are
accelerated by the ponderomotive force, and the acceler-
ated electrons produce a strong magnetic field. Such a
magnetic field confines the electrons and produces an
electric field in a long time, and the proton energy is higher
than in the case of overdense plasma in the same parameter
range.
In our study, we employ the ultra-intense laser and a

solid target to suppress the transverse divergence of the
accelerated protons. When the laser intensity is high
enough, even in the case of the solid target the electrons
are accelerated strongly in the direction of laser propaga-
tion, and a strong magnetic field, which has a transverse
confinement effect on the electrons, is generated near the
target. The electrons are localized in transverse and
longitudinal directions near the opposite side of the
irradiation surface of laser, and a static electric potential
is formed locally. The localization of static electric
potential produces a transverse electric field toward the
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laser axis. The protons are extracted and accelerated by the
transverse and longitudinal electric fields. Therefore, even
in the slab solid target one can expect the suppression of
fast protons divergence.

In order to investigate the transverse suppression effect
of the protons divergence, four different combinations of
the laser intensity and pulse duration with a same laser
energy are calculated in this paper.

In our suppression mechanism, the behavior of the
electrons influences strongly the protons beam divergence.
In the calculation results presented in this paper, the
maximum proton energy is almost same for all the para-
meter sets. However, even if the laser energy is same, a
transverse spread of the electrons accelerated by the
ponderomotive force becomes large with a reduction of
the laser intensity, and consequently the protons also
diverge. This is caused by the difference in the distribution
of the magnetic field generated by the fast electrons acceler-
ated by the laser. The simulation model and parameters are
presented in Section 2. In Section 3, the simulation results
of the suppression processes of the transverse protons
divergence are presented. In Section 4, concludes the paper.

2. Simulation model

In our study, we employ 2.5-dimensional particle-in-cell
(PIC) simulations. Fig. 1 shows the schematic view of
simulation model. The foil target consists of a Hþ layer of
1:5l thickness with an additional 1:0l linearly changing
density gradient and the peak density is a solid density.
Here l is the laser wavelength. At initial time, the
temperatures of protons and electrons are in the Maxwell
distribution with 1 keV. The mass ratio of the proton and
electron mi=me is 1836. The laser propagates in the x

direction and is linearly polarized in the y direction with
the Gaussian profile in the transverse and longitudinal
directions. The laser wavelength l ¼ 1:053mm and the laser

diameter rs ¼ 4l. The center of laser in the transverse
direction yc ¼ 11l. The simulations are carried out with the
four different combinations for the laser intensity I and
pulse duration t as shown in Fig. 1. In this paper, the target
side illuminated by the laser is called the laser side and
other side is called the rear side.
The computational domain is given by R ¼ fðx; yÞj0o

xo50l; 0oyo22lg. At the initial time ðt ¼ 0Þ, the foil
target is located in 23loxo24:5l. The mesh width in the
x and y directions Dx ¼ Dy ¼ 0:05l, the computational
time step Dt ¼ 0:04Dx, and the total number of super
particle is equal to 3:0� 105 for the electrons and protons,
respectively.

3. Simulation results

The simulation results for the suppression of the
transverse proton spread are shown in this section. First
we investigate the magnetic field distributions in the cases
of the parameter sets of Cases 2 and 4.
Fig. 2(a) shows the distribution of high kinetic energy
ð41MeVÞ electrons in the x2y plane at the t ¼ 140 fs for
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Case 2, and the magnetic field Bz distribution in the x2y

plane at the time of t ¼ 140 fs is presented in Fig. 2(b). In
Case 2, the peak of the laser pulse reaches the left end of
foil surface in 130 fs. Because the laser intensity is high
ðI ¼ 5� 1019 W=cm2Þ and the pulse duration is short
ðt ¼ 50 fsÞ, the electrons are rapidly accelerated by the
ponderomotive force in the longitudinal direction and the
high-energy electron bunches are produced clearly as
shown in Fig. 2(a). The maximum kinetic energy of
electrons is about 6.89MeV. The distances of the electron
bunch accelerated correspond to the half laser wavelength
l=2. As seen from Fig. 2(b), such electron bunches generate
strong magnetic field Bz, and the electrons are confined by
this magnetic field. The maximum amplitude of the
magnetic field Bz reaches about 104 T, and a strong
magnetic field is formed in wide area.

Fig. 3 presents the distributions of the longitudinal and
transverse electric fields Ex and Ey in the x2y plane at the
times of t ¼ 126; 140; 169 and 197 fs. The magnetic field
confines the electrons strongly at the rear side, and a static
electric potential is formed locally near the right side of
target surface. At this time, most protons are not emitted
from the foil target because of the difference in mass ratio
of electron and proton. Consequently, a local electric field

Ex is formed by the localization of the electrons at the rear
side, and the transverse electric field Ey is also formed
toward the center in transverse as shown in Fig. 3(b).
Although the amplitude of the longitudinal electric field Ex

is slightly higher than the transverse electric field Ey, both
Ex and Ey are about few MV=mm. After that, the protons
are mainly accelerated longitudinally by the longitudinal
electric field Ex. The potential formed at the front of the
foil target is negated by the protons and the transverse
electric field Ey also vanishes immediately. However, the
transverse divergence of the protons is suppressed by this
transverse electric field Ey generated by the localization of
electrons.
Fig. 4 shows the high kinetic energy ð41MeVÞ electron

distribution and the magnetic field distribution Bz in the
x2y plane at t ¼ 337 fs for Case 4. Here the laser intensity
peak arrives to the left side of the target surface at the time
of 330 fs. In Case 4, because of the low intensity ðI ¼
1� 1019 W=cm2Þ and the long pulse ðt ¼ 250 fsÞ laser, the
electrons are spread gradually in the transverse and
longitudinal directions, receiving the laser energy. The
maximum kinetic energy of electron is about 6.00MeV,
and it is nearly same for Case 2. However, the fast electron
bunches are not formed clearly in the foil by the electron
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divergence as shown in Fig. 4(a). The maximum amplitude
of the magnetic field Bz is about 6:71� 103 T, and the areas
of strong magnetic field are narrow compared to that in
Case 2. Therefore, the electron confinement effect of the
magnetic field Bz is also weak and the electrons spread
slowly in the transverse and longitudinal directions like a
thermal expansion from the target.

Fig. 5 shows the longitudinal and transverse electric
fields, Ex and Ey, distributions in the x2y plane at t ¼

295; 337; 379 and 421 fs in the parameter sets of Case 4. The
electrons are slowly emitted from the target and the
localization of the static electric potential is not generated.
Therefore, the transverse electric field Ey generated by the
localization of electrons, which is seen in Case 2, is not
generated, and the protons are accelerated by the thin layer
of electric field formed by electron expansion. Conse-
quently, the protons spread in the transverse direction with
electron divergence.

The beam intensity distributions of accelerated protons
and the phase space V x � V y distributions of protons

accelerated for Cases 2 and 4 are shown in Fig. 6. The
protons are mainly accelerated in the x direction and
produce the high intensity regions at the rear side in
both the cases. The maximum intensity of protons
accelerated for Cases 2 and 4 are 2:68� 1014 W=cm2 and
2:94� 1014 W=cm2, respectively, and the particle number
of the proton bunch accelerated for Cases 2 and 4 are
about 2:09� 1012=mm and 2:45� 1012=mm, respectively.
As a result, the number of protons accelerated is nearly
same for Cases 2 and 4. However, the remarkable
difference appears in the spread of the transverse velocity
of the protons accelerated. Although the accelerated
protons are gathered around V y ¼ 0 in Case 2, the protons
of Case 4 are diffused. This is caused by the difference in
the distributions of the transverse electric field Ey

generated by the electron localization as shown in Figs.
3(b) and 5(b).
Fig. 7(a) shows the transverse and longitudinal rms

emittances for Cases 1–4. The longitudinal rms emittance is
nearly same in all cases. However, the transverse rms
emittance becomes large as the laser pulse duration
becomes long. The maximum kinetic energy of proton for
all cases is presented in Fig. 7(b). Since the laser energy is
fixed, the maximum kinetic energy of proton is almost
same.

4. Conclusions

In this paper, we investigated the suppression effect of
the transverse proton divergence in the laser–foil interac-
tion by using 2.5-dimensional PIC simulations. We kept
the laser energy constant and calculated different laser
intensities and pulse durations. In the short pulse and
high intensity laser, the electrons are accelerated long-
itudinally to the order of MeV by the laser and produce
a localized static electric potential quickly at the rear side.
At the same time the strong magnetic field confines the
electrons in transverse. As a result, the transverse electric
field appears toward the direction of the laser axis, and
the spread of the transverse direction of the protons
is suppressed. For the low intensity and the long pulse
laser, the electrons expand in the transverse and long-
itudinal directions and accelerate the protons gradually.
At this case, the suppression effect of the transverse elec-
tric field does not appear and the protons expand
transversely. At the laser intensity of I ¼ 5� 1019 W=cm2

and the pulse duration of t ¼ 50 fs, the transverse and
longitudinal rms emittances are about 0.119mmmrad and
0.417mmmrad, respectively, the maximum kinetic energy
of proton reaches about 8.12MeV, and the averaged
kinetic energy is about 3.35MeV. By using the long pulse
duration and low intensity laser, although the energy of the
particle hardly changed compared with the high intensity
and short pulse laser, the transverse rms emittance becomes
large.

ARTICLE IN PRESS

23 24 25 26 27

20

15

10

5

5

 10

 15

 20

 20  22  24  26  28
x/λ

y/
λ

x/λ

-10 0 10

Magnetic field [kT]

y/
λ

(a)

(b)

Fig. 4. The distributions of (a) the high kinetic energy ð41:0MeVÞ

electrons and (b) the magnetic field Bz distribution in the x2y plane at

time t ¼ 337 fs for Case 4. The intensity peak of laser arrives at the left side

of foil at t ¼ 330 fs.

S. Miyazaki et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 265–270268



ARTICLE IN PRESS

23 25 27

20

15

10

5

x/λ

-5 0 5
 [MV/µm]

-5 0 5
 [MV/µm]

23 25 27

x/λ
23 25 27

x/λ
23 25 27

x/λ

  Longitudinal electric field Ex

y/
λ

23 25 27

20

15

10

5

x/λ
23 25 27

x/λ
23 25 27

x/λ
23 25 27

x/λ

  Transverse electric field Ey 

y/
λ

421 fs379 fs337 fs

295 fs 421 fs379 fs337 fs

295 fs

(a)

(b)

Fig. 5. The distributions of (a) the longitudinal and (b) the transverse electric fields at t ¼ 295; 337; 379 and 421 fs in Case 4.

Fig. 6. The intensity distribution of accelerated protons for (a) Case 2 and (b) Case 4 after interaction with the laser. The phase space Vx � Vy

distributions for (c) Case 2 and (d) Case 4. Here, the values of intensity are normalized by 1014 W=cm2.

S. Miyazaki et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 265–270 269



Acknowledgements

The authors would like to extend their thanks to Prof. J.
Limpouch, Prof. K. Mima, Prof. K. Tachibana, Prof. S. V.
Bulanov, Prof. K. Nakajima, Prof. S. Kurokawa and Prof.
N. Yugami for their valuable discussions and suggestions
on this subject. This work was partly supported by JSPS
(Japan Society for the Promotion of Science) and MEXT.

References

[1] D. Strickland, G. Mourou, Opt. Commun. 56 (1985) 219.

[2] G. Mourou, C.P.J. Barty, et al., Phys. Today 51 (1998) 22.

[3] S. Kawata, T. Maruyama, et al., Phys. Rev. Lett. 66 (1991) 2072.

[4] Q. Kong, S. Miyazaki, et al., Phys. Rev. E 69 (2004) 056502.

[5] P.X. Wang, Y.K. Ho, et al., Phys. Lett. 78 (2001) 2253.

[6] G. Malka, J.L. Miquel, Phys. Rev. Lett. 77 (1996) 75.

[7] G. Malka, E. Lefebvre, et al., Phys. Rev. Lett. 78 (1997) 3314.

[8] S.V. Bulanov, F. Califano, et al., Rev. Plasma Phys. 22 (2001) 227.

[9] S.V. Bulanov, T.Zh. Esirkepov, et al., Phys. Lett. A 299 (2002)

240.

[10] S.C. Wilks, A.B. Langdon, et al., Phys. Plasmas 8 (2001) 542.

[11] T. Esirkepov, M. Borghesi, et al., Phys. Rev. Lett. 92 (2004) 175003.

[12] M. Allen, Y. Sentoku, et al., Phys. Plasma 10 (2003) 3283.

[13] M. Borghesi, A.J. Mackinnon, et al., Phys. Rev. Lett. 92 (2004)

055003.

[14] T. Nakamura, S. Kawata, Phys. Rev. E 67 (2003) 026403.

[15] P.K. Patel, A.J. Mackinnon, et al., Phys. Rev. Lett. 91 (2003) 125004.

[16] K. Matsukado, T. Esirkepov, et al., Phys. Rev. Lett. 91 (2003)

215001.

[17] T.E. Cowan, J. Fuchs, et al., Phys. Rev. Lett. 92 (2004) 204801.

ARTICLE IN PRESS

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

 Longitudinal rms emittance:εx
Transverse rms emittance:εy

R
M

S 
E

m
itt

an
ce

 
   

[m
m

 m
ra

d]

Pulse duration [fs]

0 100 150 250
1

10

Pr
ot

on
 k

in
et

ic
 e

ne
rg

y
   

   
   

  [
M

eV
]

Pulse duration [fs]

50 200

(a) (b)

Fig. 7. (a) The transverse and longitudinal rms emittances for Cases 1–4 after the acceleration. (b) The maximum proton kinetic energy for all the

parameter sets.

S. Miyazaki et al. / Nuclear Instruments and Methods in Physics Research A 558 (2006) 265–270270



Nuclear Instruments and Methods in Physics Research A 558 (2006) 271–273

Multi-tip field emission-based electron sources

Vladimir M. Zhukov

St. Petersburg State University, Universitetskij pr., 35, St. Petersburg 198504, Russia

Available online 22 November 2005

Abstract

The principal parts of accelerators are electron sources, which operate in some cases in field electron emission mode and can be

developed as multi-tip field emission arrays (FEAs). Using an FEA with thermally smoothed tips, field emission current of 20.5A was

obtained in the pulse mode. The highest field emission current obtained using a non-thermally smoothed FEA was 175A in the pulse

mode.
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1. Introduction

The principal elements of accelerator devices are
charged-particle (electrons and ions) sources.

In many cases, electron sources (cathodes) operate in the
field electron emission (FEE) mode [1], which is mostly
obtainable for tip emitters with small tip curvature radius.

A traditional method to obtain sufficiently high FEE
current at relatively low voltage is the development of
multi-tip field emission arrays (FEAs) with high identity
order of the individual emitters.

Multi-tip systems were first described and approved by
Dyke and co-workers [2]. In their work, preprocessed tips
were fixed onto FEA bodies by point welding. Disadvan-
tages of this technique are the inconsistency of tip spacing,
differences in height and parallelism, low mechanical
strength, and discontinuities in heat and electrical contacts
between the tips and the conducting base. These factors
negatively influence the simultaneous sharpening and
formation of emitters.

Golov proposed [3] that field-emission cathode arrays
could be produced from refractory metal foils (in
particular, tungsten) by spark cutting. Using this techni-
que, the array body and preprocessed tips are a single
entity, and high uniformity of the bar geometry is ensured.

2. Experimental

The arrays used in this work (Fig. 1) were prepared using
a modified technique.
Separate emitter tips were sharpened using a typical

electrochemical etch in NaOH solution.
Further processing of the multi-tip cathodes may be

carried out directly in the electron-accelerator vacuum
chamber by thermal or thermo-field treatment (‘‘build-
up’’). Using this procedure, the heated tip is exposed to an
electron decelerating voltage (‘‘+’’ onto the tip).
Using multi-tip field-emission arrays with this final

processing step for thermal smoothing of tips at high
temperature in single pulse mode, FEE current of 20.5A
was obtained (at a voltage pulse duration of t ¼ 2ms,
maximum voltage U ¼ 167 kV, and N ¼ 12 emitters) [4].
In this system a separate tip was ‘‘blunted’’ up to

conditions when the tip radius was 3:3mm. From this tip,
FEE current of 4.12A (at a voltage pulse amplitude of
153 kV and pulse duration of 2ms) was obtained.
Multi-tip thermo-field-processed systems that are not

thermally smoothed are quite promising. This is due to the
following reason.
It has already been noted that exposure of a highly

heated emitter tip to a strong electric field (of non-emissive
direction for electrons) results in changes in the tip shape—
so-called ‘‘build-up’’.
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In the ‘‘build-up’’ process the emitter consecutively runs
some quasistable phases with corresponding changes in
emission images (which may be obtained using Müller’s

projector, ‘‘�’’ onto the tip) and the voltage needed for
fixed FEE current extraction [5]. During this process, steps
are generated on the emitter tip, and emission centres
corresponding to the corners of these steps become visible
in the emission images.
In Fig. 2 photographs of emitter tips at different stages

of ‘‘build-up’’ are presented, taken using a scanning
microscope.
It follows from the emission images, shadows and

scanning micrographs that the characteristic scale para-
meters of these centres (such as the effective ‘‘radius’’, and
tip ‘‘cone angle’’) are of an order that can provide high
FEE current densities and magnitudes for ‘‘built-up’’
emitters.
One of the systems investigated [6,7] consisted of two

fixed, parallel P-shaped arrays (see Fig. 1) carrying 20 tips
on each array. After thermo-field processing, many
emission centres appeared on the surface of each separate
tip (which was proved by the emission images), which were
rather uniformly distributed over the surface (Fig. 3).

3. Theoretical background

It is well known [1] that the dependence of FEE current I

on voltage U (between the cathode and anode) has an
exponential shape.
The current–voltage characteristics of the FEA described

are presented in Fig. 4. The solid line corresponds to
the theoretical curve I ¼ C1U

2 expð�C2=UÞ, where C1 ¼

1:88A= kV2, C2 ¼ 184:5 kV for the geometry of the

ARTICLE IN PRESS

Fig. 1. Linear field-emission cathode arrays.

Fig. 2. Emitter tips at different ‘‘build-up’’ stages: (a,b) early stages after

relatively short thermo-field treatment; and (c,d) after a long treatment

time.

Fig. 3. Emission images of FEAs. Stationary mode: (a) before pulse FEE

current extraction; and (b) after explosive rupture of some emission

centres. Pulse mode: (c) at 50 A of FEE current; and (d) at 75 A of FEE

current.
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multi-tip cathode and the plane anode. The good
coincidence between the theoretical and experimental
curves may be explained by the contribution of the
adjoining emission-centre parts of the tips to the FEE
current, despite blunting of the individual centres in the
emission process.

4. Conclusion

The highest FEE current obtained was 175A at a voltage
square-pulse duration of 20 ns and a voltage amplitude of
53.5 kV [7]. From a single emitter at t ¼ 20 ns and
U ¼ 44 kV, FEE current of 5.5A was obtained [6].
These values have not been exceeded by other research-

ers.
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Abstract

The Ensemble Model takes advantage of an approach to express the phase space particle distribution function in terms of the first,

second and higher order moments instead of considering individual particles. Based on a new flexible implementation, an arbitrary

number of orders can be processed and automatically converted into proper update equations for the simulation program V-Code. In this

paper the influence of the introduction of higher order moments on the beam dynamics simulation is investigated. The achievable

accuracy and the numerical efforts are compared with the ones obtained from the lower order calculations.
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1. Ensemble Model

To characterize the particle density distribution function
f in the space of coordinates and normalized momenta, the
Ensemble Model utilizes an approximation of the multi-
dimensional FOURIER transformation of the particle dis-
tribution instead of the density function itself [3]. The
phase space coordinates fx; y; z; px; py; pzg are composed of
~r ¼ fx; y; zg and ~p ¼ m~v=m0c ¼ fpx; py; pzg where all vector
components are given in cartesian coordinates. Since the
principal behaviour of the Ensemble Model can still be
traced using a simplified description, it is convenient to
limit the derivation of the method to the 2D case. All
necessary relations can then be obtained for the real model
by expanding the corresponding fundamental equations to
the 6D space.

In the first instance it is advisable to consider the 2D-
FOURIER transformation

F ðu; vÞ ¼

Z 1
�1

Z 1
�1

f ðx; yÞ

�
X1
k¼0

X1
l¼0

ðjuxÞk

k!

ðjvyÞl

l!
dxdy ð1Þ

with the common kernel exponential function expanded as
a power series. Due to the fact that the infinite expression is
uniformly convergent, the order of summation and
integration can be interchanged. The FOURIER transformed
function is therefore given by

F ðu; vÞ ¼
X1
k¼0

X1
l¼0

jkþl

k! l!
Mklu

kvl

Mkl ¼

Z 1
�1

Z 1
�1

xkylf ðx; yÞdxdy ð2Þ

where the coefficients Mkl ¼ hx
kyli are called the moments

of the distribution function. In practice the series in Eqs.
(1) and (2) are not expanded to infinity but are rather
truncated at a given maximum order. The approximated
FOURIER transformed function is then used in a computer
code to describe the characteristics of a real particle beam.
In most cases it is sufficient to concentrate on the different
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kinds of moments without the necessity to go back to the
actual particle distribution. This is due to the fact that the
moments instantaneously describe such physical identities
like mean values

m̄ ¼ hmi; m 2 fx; y; z; px; py; pzg (3)

or variances

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm2i � hmi2

q
; m 2 fx; y; z; px; py; pzg. (4)

In statistics all moments are given in two forms: in addition
to the already introduced raw moments, centralized
moments of the form

M̄kl :¼hðm� hmiÞ
k
ðn� hniÞli; m; n 2 fx; y; z; px; py; pzg (5)

are also in use. Any raw moment of the distribution function
depends on the real location of the particles and they are
typically used to describe the average positions whereas the
centralized moments are commonly translatory invariant and
therefore employed to determine the shape of the particle
distribution function regardless of the actual position.

The amount of involved moments is linked ultimately to
the employed order and can be determined by the binomial
coefficients

6þ k þ l � 1

k þ l

 !

in 6D space. To solve the initial value problem on the basis
of the ensemble model, a set of consistent initial conditions
has to be applied. The time evolution of either raw or
central moments can then be derived by integrating the first
order differential equations

qhmi
cqt
¼

q
cqt

Z
mf d~rd~p ¼

Z
qmf

cqt
d~rd~p

¼

Z
f
qm
cqt
þ m

qf

cqt

� �
d~rd~p ð6Þ

where the notations hmi ¼
R
mf d~rd~p with m 2

fx; y; z; px; py; pz;x
2; . . .g for the raw and with m 2 fðx�

hxiÞ2; ðx� hxiÞðy� hyiÞ; . . .g for the central moments are
used. Application of a partial integration together with a
proper ordering of the different integrals allows then to
rewrite the fundamental differential equations in the
compact form

qhmi
cqt
¼ hgradh~riðmÞi

~p

g

� �
þ hgradh~piðmÞi

~F

m0c2

* +

þ grad~rðmÞ
~p

g

� �
þ grad~pðmÞ

~F

m0c2

* +
ð7Þ

which, however, cannot be used directly for a systematic
implementation. In order to proceed, it is necessary to
express the right-hand side in such a way that it consists of
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Fig. 1. Calculated kinetic energy and transversal emittance for the cavity part: (a) space charge forces are omitted; (b) space charge forces are included.
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the time-dependent ensemble parameters only, i.e. the
underlying moments. This is achieved by providing a series
expansion of 1=g as well as by a series expansion of the
applied forces ~F in a given operating point and utilizing a
truncation which is strongly related to the regarded order
of moments. If the energy spread is small enough compared
to the mean energy of the whole particle ensemble, it is
reasonable to use just a linear approximation of 1=g; in all
other cases higher order approximations are required. The
series expansion for the forces can be formally performed
by dividing them into the internal space charge motivated
forces and those due to external fields.

2. Simulation

The described formalism for the Ensemble Model has
been implemented into the beam dynamics simulation
program V-Code and is already in use [1,2]. To study the
influence of different orders of moments, a representative
beam line layout of the PITZ gun has been chosen. For test
simulations, a TESLA 9-cell-cavity has been placed
subsequent to a gun. After the gun simulation, the
calculations for the cavity part of the model have been
performed. The operating conditions were adjusted in such
a way that at the end of the gun a bunched beam with a
minimum transversal emittance was obtained. The cavities

mechanical dimensions range from z ¼ 1:6 to z ¼ 3:0m
and an electrical field with a strength of E ¼ 25MV=m at
f ¼ 1:3GHz was excited.

3. Conclusion

The principal behaviour of the moment based approach
can be traced from the simulated results presented in Fig. 1.
The diagrams for kinetic energy and transversal emittance
show different tracking capabilities when either external
forces or space charge forces are considered. The simula-
tions demonstrate that the bunch dimensions as well as the
energy are properly reproduceable even with lower order
moments. Due to the implemented linear space charge
model, the evolution of the sensitive emittance can be
correctly performed with increasing order of moments in
the presence of only external forces.
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Abstract

Analysis and numerical modeling show the possibility of the confinement of semi-relativistic electron motion in large

(dimensionsbwavelength) cylindrical optical traps for low-density (np/ncrit�0.01) plasmoids. The traps are based on circular polarized

cylindrical waves TEmnðr;jÞ. Perspectives of other forms and volume variation of traps are briefly discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Analysis

High-frequency traps or RF potential wells [1] are based
on the alternating gradient (AG) principle (ponderomotive
force, light pressure). A simple system has been described
[2,3] as a collective accelerator with small traps (dimen-
sions5wavelength l). The present investigation of the
semi-relativistic electron dynamics in higher types of
vacuum strong (e.g., �100GV/m) cylindrical waves in
oversized (dimensionsbwavelength l) volumes shows
possibilities of synthesis, acceleration and compression of
large (dimensions of many l) optical traps for underdense
plasmoids (np/ncrit�0.01). These waves may be filtered out
from an ultra-short pulse of a powerful laser by means of a
surrounding hologram.

In the case of cylindrical waves, a 2-D trap is based on a
circularly polarized wave TEmnðr;jÞ [4]:

Ez ¼ 0; Er ¼ Êx�1JnðxÞ sin c;

Ej ¼ �n�1ÊJ 0nðxÞ cos c;

c ¼ ot� kzz� nj; k2
¼ k2

z þ k2
r ¼ o2=c2 ð1Þ

where E is the field amplitude and kr ¼ Amn=R is the ratio
of the mth root derivative of a Bessel function to the wave-
guide radius. The formulas for the magnetic field are

omitted. Large Rbl gives high Ê�0:2mc2=el � 0:1MV=l
in the focal zone. It ensures good AG focusing of electrons
near x � n, which can trap the plasma ions.
Substitution of the field [Eq. (1)] into the equation of

motion

dðm~vÞ=dt ¼ eð~E þ~v� ~BÞ (2)

gives a system of connected linear equations with period-
ical coefficients for small oscillations DrðtÞ;DjðtÞ;DzðtÞ of
an electron around an arbitrary point r0;j0; z0 near the
point x � n. If the velocities are also small, the equations
reduce to separated equations with periodic coefficients;
then the z-motion is inertial, and the transversal motion is
described by two non-uniform Mathieu equations:

ðm=eÞD€r ¼ Er0 þ E0r0Dr ¼ Ex�10 Jnðx0Þ sin c0

þ Eq=qx½x�1JnðxÞ�x¼x0 sin c0Dx,

ðm=eÞD €j ¼ � n�1EJ 0nðx0Þ cos c0Dj. ð3Þ

The radial motion DrðtÞ consists of forced harmonic
oscillation of frequency o around the point r ¼ r0, and a
relatively slow free betatron or ‘‘Mathieu’’ oscillation
around the same point; both oscillations depend on the
initial conditions r0; _r0. The azimuthal motion DjðtÞ is a
free ‘‘Mathieu’’ oscillation around j0. Its amplitude is
defined by the initial conditions. Thus, we have a large 2-D
trap (hose) with a diameter of �2nl for electrons. The

ARTICLE IN PRESS

www.elsevier.com/locate/nima

0168-9002/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.nima.2005.11.023

�Corresponding author.

E-mail address: adzergatch@mtu-net.ru (A.I. Dzergatch).



Coulomb force of the electrons can hold positive ions of
the plasmoid, as in the case in Refs. [2,3].

2. Numerical modeling

Numerical modeling was carried out using the precise
Eqs. (1) and (2). Modeling of the case kz ¼ 0, n ¼ 14 has
confirmed the above analysis for small and large oscilla-
tions. Preliminary studies were carried out for the cases of
two almost parallel crossed plane waves and of a Gaussian
beam; the new results are shown in Figs. 1–4.

Fig. 1 shows the computed transversal (in coordinates x,
y) motion of an electron during 12384 periods of the HF
field (1). An electron with energy of 2.5 keV (bg ¼ 0:1)
begins its motion from the wave axis, moves in the radial
direction and, after reflections from the area of relatively
high field near the trap boundary r ¼ R0 ¼ 2:5l, returns
back to the center. The focusing tube field acts like a
mirror, returning the particle to the center after each
reflection. This was observed for 106 periods, practically
without change of the pulse near the axis. The difference
with respect to a mirror is that after each two reflections
the pulse deviates counterclockwise at 0.781 in the direction
of the wave field rotation. Fig. 1 shows 115 radial
oscillations during 12384 periods of the HF field. During
this time the direction of the oscillations turns by 901. The
trajectories fill the first and third quadrants (only the first is
shown).

Fig. 2 shows the phase plane for one such radial
oscillation, which lasts for 107 periods of HF. At radius
values of up to half of the trap radius, the particle moves
uniformly. Then the field sharply increases, causing an
increase in the amplitude of the radial oscillations and their
complication near the caustic boundary. The oscillations of

the radial pulse are first accompanied by a decrease in its
mean value and then by a change in sign of the radial pulse.
The oscillations are obviously non-linear. For an increase
in the initial pulse bg from 0.04 to 0.1, the period of radial
motion of the electron only increases from 93.7 to 107 HF
periods, despite the fact that in the central region with a
weak field, particles with higher energy pass 2.5-fold faster.
Fig. 3 shows (in coordinates x, y during 752 HF periods)

the trajectory of the electron starting with the same pulse
along a straight line shifted by 0.5l from the axis, i.e. it has
a pulse momentum relative to the axis. Its trajectory is also
straight inside the central area and there are almost mirror
reflections from the strong field region at caustic boundary.
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The trajectory is similar to a star break line with smoothed
edges. The values of the pulse and pulse momentum in the
central area are constant, as well as the minimal and
maximal radii from the axis. This takes place in all 106

periods of calculation. There is a small difference from the
trajectory of the electron with the same value, but with
pulse momentum in the opposite direction. The angle
variations for reflections differ to some degree, i.e. of the
same order as pulse direction deviations for reflections in
Fig. 1.

Fig. 4 shows the trajectory of an electron starting with
the same pulse along a straight line shifted at 1.4l from the
axis during 7511 HF periods. It differs from the previous
case by a 3-fold larger pulse momentum and minimal
radius and a slightly larger maximum radius. In both cases,
the rings denoting possible radius values are filled with
trajectories. All cases demonstrate the reliable trapping of
particles with transverse energy of up to 2.5 keV inside a
tube wave (1) without notable variation of the parameters
during 106 HF periods.

3. Discussion and conclusion

Relatively low values of index n (up to 14) in the
modeling were defined by standard programs. A transition
from the present idealized case of cylindrical traps to finite
traps can be made by bending the cylinder into a tor of
small curvature, or by using spherical circular polarized
waves. Compression of traps may be based on the use of
overlapped intervals of Bessel functions near their first
maximum. The supposed process includes a series of steps
from one multipole with n pairs of poles to another with
n–1 pairs of poles at the corresponding frequencies on and
on–1.
Thus, the analysis and numerical modeling of non-

interacting electron dynamics in a cylindrical trap show
that the motion of electrons is confined by the rotating
wave; the particles move inertially within a field-free
cylinder, and are reflected by the AG of the field near the
inner field caustic.
Taking into account the results of Refs. [1–3], we might

expect that plasmoids would be held during several ten
thousand periods of the field in the case of weakly
interacting plasma particles, np�0:01me0o2=e2. Collective
centripetal acceleration of underdense plasmoids in the
varying volume traps can be useful in various systems for
collective acceleration and colliding beams. Realization of
the traps is possible in a general case on the base of volume
holograms.
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Abstract

The bunching part optimization results of an on-axis-coupled biperiodic accelerating structure for electron linac with high-frequency

focusing are presented. System is intended for operation in the continuous regime at operating frequency of 2856MHz and input power

5.5MW. The basic development challenge for such installations on average input currents is the effective beam transfer through the

structure. Some variants of the bunching sections distinguished by number of bunching cells were considered. The optimum capture ratio

and an acceptable spectrum are provided by structure with five bunching cells. Optimization was carried out by means of dynamics

simulation code PARMELA and a package of applied programs for the axial symmetric structures calculation SUPERFISH. Taking

into account, space-charge limitation, the maximum capture ratio is 55%.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.25.Bx

Keywords: Buncher; Linac

1. Introduction

In this paper [1] four variants of the accelerating
structures consisting of a buncher with varied number
of cells and regular section of 20 cells were surveyed.
Feed power and average effective shunt impedance
was 5.5MW and 70MOhm/m. From the point of view
of capture efficiency were of interest the third and
fourth variants at which bunchers comprised of three
and four cells, accordingly. In the given work, the
problem consist in optimization of a bunching section
of accelerating structure, with the goal to increase the
greatest possible capturing at a beam injection current
of 0.5A.

2. Calculation results

Initially the task was solved without taking into account
a space-charge effect. The beam with energy W in ¼

0:040MeV, radius Rin ¼ 0:059 cm and emittance
e ¼ 0.002 pi rad cm was injected. In a crossover, on distance
Lw ¼ 0:8 cm from a plane of a cell wall, it had radius
Rw ¼ 0:05 cm. By varying number and geometry of
bunching cells, the fifth variant of structure in which the
buncher will consist of five cells has been made. The first
cell has the small relative phase velocity 0.4 close to a
relative phase velocity of injected electrons, performing
klystron buncher function. In Table 1, cells relative phase
velocity bw and normalized to a rest energy field am are
listed. Number of a variant corresponds to number of
bunching cells in the accelerating structure. The maximum
capture ratio obtained at modeling a beam dynamics, was
69.7% i.e., 18% higher than for three- and four-cell
bunchers.
By the following step of beam dynamic it was modeled in

view of a beam space charge. In Table 2 the capture ratio
coefficient K , target current Iout, average energy W av and
relative power spread dW are presented. Phase and power
distribution of the beam particles obtained on the
accelerator end are represented in Fig. 1.
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3. Conclusion

Capture in five-cell buncher is 13.5% higher in compar-
ison with two other alternatives at comparable average
energy and energy spread. Thus, by insignificant increase

length of a buncher, the target current of a beam enlarged
by 13%.
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Table 1

Linac parameters

Variant Ncell

1 2 3 4 5

1 bw 0.64 0.99 0.99 0.99 0.99

am 2.88 2.88 2.88 2.88 2.88

2 bw 0.66 0.76 0.99 0.99 0.99

am 1.23 2.88 2.88 2.88 2.88

3 bw 0.66 0.68 0.84 0.99 0.99

am 0.82 2.67 2.88 2.88 2.88

4 bw 0.66 0.74 0.86 0.98 0.99

am 0.92 2.67 2.88 2.88 2.88

5 bw 0.40 0.66 0.80 0.86 0.90

am 0.31 1.13 1.64 2.05 2.47

Table 2

Beam dynamics calculation results

Variant K Iout (A) Wav (MeV) dW (%)

1 0.38 0.19 10.78 22.1

2 0.46 0.23 11.20 20.5

3 0.48 0.24 12.05 13.9

4 0.48 0.24 12.61 15.0

5 0.55 0.27 11.81 15.4
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Fig. 1. Phase and energy distribution of particles for variant number 5: (a)

phase spectrum, (b) y vs. x cross-section, (c) phase energy space, (d) energy

spectrum.
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Abstract

All schemes to produce intense sources of high-energy muons—Neutrino factories, beta beams, Colliders—require collection, RF

capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial

emittances must be reduced or ‘‘cooled’’ both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV

energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked

and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling

channel, depends on the choice of acceleration. In the current US baseline scenario, the cooling required for acceleration is about a factor

of 10 in transverse emittance per plane. Longitudinal cooling is also required. In the proposed Japanese scenario, using an alternative

acceleration scheme, no cooling is presumed. This work discusses two basic, but different approaches to a Neutrino Factory and how the

optimal strategy depends on beam parameters and method of acceleration.

Published by Elsevier B.V.

PACS: 41.75�i; 41.85Ja; 07.77Ka

Keywords: Neutrino Factory; Muon acceleration; FFAGs

1. Introduction

The important stages in the US scheme for a Muon
Collider [1] and Neutrino Factory [2–4] are outlined in
Fig. 1 (left and right, respectively). Muons are created via
the decay of pions, and pions are produced by directing an
intense beam of protons onto a production target. The
initial stage of a muon facility is considered to be a proton
driver capable of delivering an ultra-short (3 ns long), high-
intensity (1014 p/pulse) beam. Collection, capture and
bunching of pions and muons following the production
target are the next major systems. First, a 50m long
channel allows the majority of pions with momentum less
than �1GeV/c to decay into muons; the muons are then
captured and bunched into 200MHz RF buckets. Just after
production, the captured particle distribution exhibits an
enormous rms momentum spread of 755%. The tremen-

dous energy spread of the muons is reduced through phase
rotation in an induction linac or, more recently, in
consecutive RF stations with varying frequencies. The
combined bunching and phase rotation process produces a
train of approximately a hundred 200MHz bunches with a
reduced dp/p and a final rms value of about 10 cm in bunch
length. (Both the induction linac and the RF-based
bunching and rotation schemes produce similar final
momentum spreads and bunch lengths so the criterion in
choice of technique is merely cost.) The transverse
emittance successfully captured is approximately 16 cm rad
(full, normalized) at a momentum of 200MeV/c (mainly
due to the strong, large-aperture solenoid surrounding the
production target). The effective range in momentum,
however, of captured particles extends from approximately
25MeV/c up to a cut off near 1GeV/c. Since these large
emittances cannot be efficiently accelerated, a ‘‘cooling
stage’’ for emittance reduction precedes acceleration. To be
effective, a cooling channel must be able to accept not only
large transverse emittances (implying large-apertures com-
mon to both magnetic and RF components), but also a
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large (full) momentum spread of at least 40% dp/p
(generally quoted as 720% dp/p about a reference energy).
The acceleration and storage rings—although nonconven-
tional due to the large admittance and rapid cycle
requirements that are imposed by large emittances and
short muon lifetimes—represent the final stages of these
facilities.

In all of the scenarios developed for Neutrino Factories
and Muon Colliders, the captured transverse and long-
itudinal beam emittances are unprecedented. In compar-
ison with high-energy hadron facilities, the transverse
emittance is a factor of 1000 larger in each plane and the
longitudinal emittance is 20–100� larger even after bunch-
ing and phase rotation. Acceleration and collision of
intense muon beams becomes impractical without a
significant reduction, or cooling, of incipient emittances—
transversely by a factor of 2.5–10 per plane for a Neutrino
Factory [2–4] and at least a factor of 1000 for a Muon
Collider [1]. (In the Neutrino Factory the required
emittance reduction is tailored to the conditions for
acceleration and in the Collider for the storage or collision
ring.) Longitudinally, the degree of cooling differs drasti-
cally depending on the acceleration method, which is
discussed here. The challenge in the design of these
facilities, in particular the Neutrino Factory, lies primarily
in accelerating the large beam emittances, a task which is
further complicated by the short muon lifetime, or time-
scale on which these facilities must operate.

2. The acceleration stage

In a Neutrino Factory, the ability of, or limits to,
accelerating large-emittance beams determines the specifi-
cations which upstream systems must meet, particularly the
cooling. The downstream storage rings and experiments
are presently not the limiting constraint. Acceleration

proves, then, not only a difficult stage to develop, it
becomes the pivotal one in the path to this facility. To
further complicate issues, acceleration must occur rapidly
because of potentially heavy losses from decay [1]. Linear
accelerators are the optimal choice in this respect, but,
above a few GeV, they become prohibitively expensive.
Conventional synchrotrons cannot be used because normal
conducting magnets cannot readily cycle in the ramping
times [1] required by muon decay, nor do they support
ultra-large beam emittances. In the past, the US baseline
relied on recirculating linacs (RLAs) with separate, fixed-
field arcs for each acceleration turn. Separate arcs allow
control over the pathlength as a function of energy,
allowing traversal times to be matched to the RF phase
requirements for stable acceleration. Alternative ap-
proaches have focused on adapting the Fixed-Field
Alternating Gradient (FFAG) accelerator first developed
and tested at MURA [6], primarily because of its inherently
large longitudinal acceptance. The Japanese approach
(KEK) [7], for example, supports a radial-sector FFAG
accelerator, but only in the context of a single-muon bunch
and low frequency, broadband RF. Recent breakthroughs
and improvements have demonstrated a new design for a
FFAG accelerator [8,9] that can support stable, multi-turn
acceleration for a high-frequency bunch train—the US
scenario.
Transverse cooling (the upstream stage is termed

precooling) is preferable in any approach after collection
and capture to avoid enhanced component apertures,
power levels, and, hence, cost of acceleration systems.
However, it is the choice of accelerator that determines the
longitudinal emittance that can be effectively accelerated
and, therefore, also the degree of, or even the need for,
longitudinal cooling. At a very fundamental level the
overall design and staging of a muon facility depends on
the method of acceleration chosen, and, for RLAs vs.
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FFAGs, the longitudinal acceptance of the two machines
embodies the most significant difference between the two
scenarios. Since the RLA approach has been discussed
extensively in past feasibility studies, and the intent of this
paper is to focus on larger-acceptance accelerators, the
RLA system requirements will be discussed only briefly.
Instead this paper focuses on the FFAG approach,
addressing the relaxed cooling requirements and re-
formulation of upstream stages relative to the RLA.
Additional references to FFAG acceleration are included
in Ref. [10] for a more complete overview.

The acceleration stage is composed of two subsystems: a
linear pre-accelerator and a recirculating-beam accelerator
(in this case either the RLA or the FFAG machine). The
preaccelerator will not be discussed in any detail here, but
certain assumptions in its parameters are required to
extrapolate to the next stage of acceleration.

2.1. Pre-accelerator

A linear accelerator is optimal for the first acceleration
stage in order to bring the low-energy muon beam
delivered by the cooling stage to an energy at which it
becomes feasible to inject into a re-circulating-beam
accelerator. It is advantageous to initiate acceleration after
moderate cooling (the precooling stage) in order to
mitigate aperture-related costs with components and
power. Without precooling, the 16p cm rad emittance (full,
normalized) which is captured gives rise to meter-scale
apertures at 200MeV/c, since peak beta functions can
assumed to be �3m (characteristic of 1–2T solenoidal
confinement [2] or quadrupole confinement in a short, 2m,
901 FODO cell [11]). Even with minimal cooling (defined
here as a factor of 2.5 per plane in transverse emittance),
linac apertures decrease by 40%, which is a substantial
reduction when applied to a meter.

3. Recirculating accelerators

Efficient injection into a recirculating accelerator pre-
cludes an extended transverse beam size; one-half to meter
beam sizes are definitely problematic. The beam size at
injection into the recirculating acceleration stage depends
most strongly on the performance of the cooling stage in
combination with the capability or acceleration installed in
the pre-accelerator. Without the pre-accelerator, and even
assuming the maximum cooling factor of 10, the beam size
remains large: 70.15m (full) for a beta function of 3m.
Furthermore, recirculating accelerator designs have peak
beta functions near 10m, which implies apertures must
reach at least 0.5m to accommodate injected beam. Clearly
adiabatic cooling by accelerating to 2.5GeV (implying a
further reduction in geometric emittance relative to
200MeV/c by a factor of 12) reduces the beam size
substantially, by factor of 3.5. In order to achieve injection
and more reasonable component apertures in the second
acceleration system, a 2.5GeV pre-accelerator is always

assumed in this work. When combined with modest
transverse cooling, the maximum beam size in the second
accelerator becomes less than, or approximately,
78–16 cm (full) at 2.5GeV, where the smaller number
assumes a factor of 10 and the larger number a factor of 2.5
in cooling per plane. Beam sizes in the injection straight are
lower than the maximum by about 25%, so injection
remains challenging.
The transverse acceptance of the two proposed recircu-

lators is described in the following sections. The emittance
reduction factors are quoted relative to normalized units
for convenience; they were calculated based on a 2.5-GeV
pre-accelerator (which sets the injection energy) along with
lattice design and practical assumptions for component
apertures in the RLA and the FFAG cases, respectively. It
is further assumed that a pre-accelerator can be designed
that is capable of linearly accelerating both large transverse
and large longitudinal emittances, with the latter particu-
larly relevant to the FFAG scenario. (Linear acceleration
implies that the effective normalized transverse emittance
and the absolute momentum spread do not dilute
significantly.)

3.1. Recirculating linear accelerator (RLA)

In an RLA, the beam is injected into a linac, accelerated,
and returned by separate, fixed-field arcs on each accel-
eration turn, thereby achieving multiple passes of accel-
eration through the same linac. At the exit of each linac,
the beam is sorted by energy and directed into a separate
arc for transport on each acceleration pass. At the end of
each arc, the trajectories from all arcs are recombined for
acceleration in the opposing linac.
In spite of separate transport channels, however, the

need to match to and maintain the RF bunching imposes
the ultimate constraint on momentum acceptance within an
arc and, indirectly, on its transverse acceptance. The
implied condition on the longitudinal motion is that the
value for M56 in each arc remain approximately constant
over the accepted momentum range. For this purpose,
strong families of sextupoles are used in the arcs, thereby
achieving and fixing a maximum momentum acceptance in
dp/p of75–10% for an RLA for a Neutrino Factory. Since
sextupoles produce geometric aberrations, they also limit
the useful dynamic aperture although with only a few
turns, this is not a strong effect. Simply increasing the
dispersion, thereby decreasing the strength of chromatic
correction, does not appear to be effective in increasing
either the longitudinal or the transverse acceptance of the
RLA beyond this value due to aperture limitations and
difficulty with high-order dispersion suppression in the
linac sections.
Another, major difficulty in the design of the recirculat-

ing linacs lies in directing a beam with both a large
transverse emittance and a large momentum spread into
separate arcs on each acceleration pass. Clearly, to separate
cleanly in a passive magnetic system (the only option for
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the microsecond circulation times), the energy width must
be less than the energy difference between consecutive
acceleration passes. A large transverse beam size implies a
further increase in the distance required for achieving clean
separation, promoting an unavoidable conflict between
longitudinal and transverse acceptance. Transversely, the
full acceptance achieved so far in the recirculating linac
approach lies between 1.5p and 2p cm rad for the momen-
tum spread quoted. The ability to separate this beam
passively into independent component channels then sets
the minimum acceleration requirement per turn and,
therefore, the maximum number of recirculation turns
achievable. Given these transverse emittances and quoted
beam sizes (78 cm), the momentum spread that can be
practically accelerated to extraction energy appears to be
71% for each 400MeV of acceleration per turn until the
710% limit set by chromatic correction is reached.
Correspondingly, only 4 acceleration turns have been
reported for RLAs in order to accommodate large
momentum spreads: �75% dp/p for a 3–11GeV RLA
and �710% for a 3–20GeV RLA [2]. The corresponding
momentum spreads, 250 and 500MeV/c, can be compared
to the useful momentum width of the muon beam after
bunching and phase rotation, which appears to be
�600–700MeV/c. (Much below 100MeV/c beam is lost
due to decay and above 700MeV/c, the number of muons
captured decreases rapidly.)

In conclusion, since the full initial normalized beam
emittance, as defined by the present bunching scheme, is
about 16p cm rad, this incipient emittance must be reduced
or cooled by a factor of 8–10 transversely and at least 1.4–3
longitudinally before acceleration can be accomplished in
an RLA designed for a Neutrino Factory.

3.2. FFAG acceleration option

Alternatively, a circular accelerator system can be
devised with magnetic fields that remain constant during
acceleration by adopting an alternating gradient focusing
lattice. The arcs of such machines, composed of large
aperture magnets, can be designed to accommodate the
large-energy range in acceleration. The beam centroid orbit
is not fixed as in a ramped machine, but rather moves
across the magnet aperture during acceleration. Lattices
have been developed which can contain an energy change
of at least a factor of four, although current lattices have
converged on a factor of 2 as most feasible technically. In a
FFAG accelerator orbit length unavoidably changes with
energy; this change can be substantial and can result in a
significant phase-slip relative to the RF waveform (unless
low-frequency RF is employed). The phase slip accumu-
lates on a per turn basis and eventually prevents accelera-
tion to the extraction energy. This effect limits the number
of turns that can be supported under conditions of rapid
acceleration when the RF phase cannot be adjusted on a
corresponding timescale. Recent improvements in lattice
design, however, have resulted in significant enhancement

of the number of acceleration turns that can be supported
over the RLA, 10–15 as compared with 4–5 turns for the
same energy gain. A larger number of turns (420) is not
desirable in muon applications because of decay, especially
at the lower energies. Consequently, a dramatic reduction
in RF voltage is not gained using the FFAG, but there is
significant cost reduction over its RLA counterpart.
There are several classifications of FFAGs which refer to

the lattice and momentum dependence of the optics. Since
the concern here is with machine admittance, only this
general property will be advanced for the different
machines. The so-called scaling FFAG accelerators, such
as the radial or spiral sector, display an almost unlimited
momentum acceptance, but transverse acceptance remains
somewhat restricted. Another approach to FFAGs, re-
ferred to as nonscaling, employs only linear magnetic
elements [12] (quadrupoles and dipoles). Although the
transverse optics changes slowly with energy, this latest
type of FFAG demonstrates both strong momentum
acceptance and unlimited dynamic aperture (limited only
by the physical restrictions of the components). However,
conditions of rapid acceleration are required to avoid beam
loss from betatron resonances, a condition which also
applies to muon acceleration.
The scaling FFAG designs have successfully achieved

dynamic apertures of a few centimeter-radians (full),
thereby mitigating the transverse cooling requirements by
about a factor of 2 relative to the RLA and yielding an
overall transverse reduction factor of �5. Nonscaling

FFAG designs exist with component apertures of
30–40 cm (�20 cm) horizontally (vertically) that accept a
value of 6.4p cm rad for the full normalized emittance at
the 2.5GeV injection energy. The demonstrated emittance
reduction factor is modest: only 2.5 in cooling prior to
acceleration. Another advantage in both the scaling and
nonscaling cases is total elimination of longitudinal cooling.
In recent nonscaling FFAG designs, component apertures
are now comparable to the RLAs, both horizontally and
vertically. This is mainly due to the fact that the large
dispersion in the RLA (�2–3m required to separate beam
with75–10% dp/p into different arcs) is comparable to the
shifts of the beam centroid during acceleration in the
FFAG, even in the presence of lower transverse cooling
where beam sizes increase by 40–100%. (Beta functions are
similar in the RLA and the FFAG.) To fully realize the
reduced transverse cooling factor, however, the pre-
accelerator must be capable of linearly accelerating both
large transverse and large longitudinal emittances. (Again,
linear acceleration implies that normalized emittances
remain reasonably unchanged by the acceleration.)
At injection the momentum acceptance of the FFAG is,

practically, about 714%, or 7350MeV/c. This limit is set
by optimizing the FFAG design parameters which places
the injection energy at a cell phase advance of 0.7p. The
upper limit to phase advance for injection is about 0.8p in
order to keep the injection optics stable and away from the
p stability limit (the optics of the FFAG are FODO-like).
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This upper limit on phase advance effectively sets the
lowest momentum accepted for injection. Assuming an
even spread about the central energy, gives the 714% in
dp/p. Even with a lattice optimized for acceleration and
cost, the FFAG scheme does not appear to require any
longitudinal cooling.

A simplistic view of cooling for a Neutrino Factory is
illustrated in Fig. 2 including reference to different
acceleration schemes. The technique of ionization cooling
permits reduction of transverse emittances (4D phase
space), or beam sizes, to levels acceptable for injection
into accelerators with large momentum acceptance, or into
ring coolers [4]. Ring coolers are multi-turn cooling
channels designed to further reduce the transverse plus
longitudinal emittance (6D phase space) to the smaller
values required by a Neutrino Factory based on a RLA
accelerator or by a Muon Collider.

3.3. Acceleration summary

Elimination of all longitudinal cooling, involving further
muon decay, inevitable transmission losses, injection and
extraction difficulties, and general R&D issues associated
with both the optics and component design of advanced
cooling channels, makes a persuasive argument to adopt
the FFAG as the acceleration stage. Simple adiabatic
damping during acceleration (if the dynamics are ade-
quately conserving) is sufficient for the final transmitted
emittances to meet the requirements of the storage ring and
experiment. The present FFAG designs appear to satisfy
this criterion, and, therefore, it appears sufficient to
consider only a simple cooling stage for an FFAG: a
straight or linear channel for transverse cooling (bends are
required only for emittance exchange or longitudinal
cooling). Such a linear channel must bring the initial,
precooled emittance of 16p cm rad down to 3.2p cm rad for
the scaling FFAG and 6.4p cm rad for the nonscaling

FFAG accelerator. It should be noted, that a linear
transverse precooler stage is relevant not only for the
FFAG scenario, it is needed in RLAs and Muon Colliders
as well with ring coolers representing a later stage of

cooling. (Ring coolers also require ‘‘precooled’’ beam since
their present design cannot accept large transverse emit-
tances.)

4. The cooling stage

4.1. Ionization cooling

Emittance reduction, or ionization cooling, occurs
because the muon beam loses momentum in all directions
when traversing a target, or so-called absorber, and this
energy loss can be replaced solely in the longitudinal
direction by re-acceleration in an RF cavity; thus decreas-
ing the beam’s divergence for a given transverse dimension.
The designs of stable optical configurations for cooling
channels are particularly challenging because the straight-
forward cooling dynamics described above compete with
the stochastic processes in the absorber; predominately
multiple, or Coulomb, scattering which re-heat the beam.
A net cooling effect can be achieved only if the cooling
terms surpass the reheating ones, a state achieved through
proper optics design in a cooling channel. The equation
which follows represents the emittance increase in an
absorber due to multiple scattering and, in the presence of
cooling (reacceleration by an RF cavity), the minimum
emittance [1] achievable for a specific channel design. From
an optics standpoint, it is clear from equation 1 that the
lower the average beta across the target, the proportionally
lower the emittance increase from re-heating (multiple
scattering), and therefore, the lower the achievable
equilibrium emittance.

eN;min ¼
b?ð14MeVÞ2

ð2bmmLR dE=dSÞ
(1)

where b? is the transverse beta function at the absorber, b
the relativistic velocity, mm the mass of the muon, LR the
radiation length of the absorber material, and dE/ds the
energy lost per meter in the absorber.
Therefore, the performance of a cooling channel

depends not only on the beta functions at the absorber
and on their constancy across a large momentum range,
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but, as important, also on the relative value of the
starting emittance to the equilibrium emittance; the ratio
needs only to be larger than �1.5 for effective cooling.
This observation indicates that the extremely low beta
functions required in the latter stages of cooling are
not a prerequisite during the early stages and may actually
be less optimal from both a technical and nonlinear
standpoint. Relaxing the low-beta conditions at the
absorber impacts tremendously the design, stability and
strength of the elements used in the upstream cooling. This
observation will later be used to optimize the design of the
cooling channels and adapt to the mode of acceleration
chosen.

4.2. Cooling channel specifications

Assuming that a full transverse acceptance of 1.5p to
2p cm rad, as required for an RLA, corresponds to 2.5s of
a Gaussian beam profile, the rms normalized emittance
demanded from transverse cooling is 2.4p to 3.2pmmrad.
This degree of cooling (according to Eq. (1)) corresponds
to a cooling channel with an average beta function of
o0.5m at the absorber. In the FFAGs, the relaxed
transverse conditions allow betas at the absorber to
increase to p1 and p2.5m for scaling and nonscaling

machines, respectively.
In momentum the practical range for ionization cooling

extends roughly from 100MeV/c to a cutoff between 800
and 900GeV/c. Application of all or a fraction of this
range in the specification and design of a cooling channel
depends on the longitudinal emittance capability of the
acceleration system. The 75% momentum acceptance of
an RLA, for example, translates into a 250MeV/c total
width at an injection energy of 2.5GeV, implying the
optimal cooling range should potentially encompass
150–400MeV/c. Early cooling channels [2,3] based on
large-aperture solenoids with a 155–245MeV/c cooling
acceptance clearly were not optimally matched even to the
requirements of the RLA.

In the case of FFAG acceleration one argues for a
cooling channel which can accept and cool over as much of
this momentum range as possible. The 714% momentum
spread accepted by current FFAG designs translates easily
into an absolute momentum range of 700MeV/c at the
2.5GeV injection energy. Assuming no or slight increase in
this spread, then all of the effective momentum spread of
beam from the bunching/phase rotator stage can be
utilized. In light of the relaxed transverse specifications
and no prerequisites for longitudinal cooling, a simple,
quadrupole-based channel [11] is found to be well-suited to
FFAG acceleration. The concepts for this channel will be
described in the following sections. (Such a channel could
also serve as a precooling stage for RLA acceleration.)
Since the baseline has been solenoidal, not quadrupole
cooling, first a brief discussion of solenoidal cooling will be
presented along with comparative arguments for quadru-
pole cooling.

4.3. Solenoidal cooling channel

The transverse cooling stages described in the feasibility
studies have been based on extremely large aperture
solenoids with strong, sometimes superconducting, fields
(1.25–5 T), one baseline example being the sFOFO channel.
This channel is well documented and will not be revisited in
any detail [2,3]. The sFOFO channel is capable of achieving
a value for beta at the absorber of about 0.4m across a
momentum range of 150–250GeV/c. Substituting in the
above equation produces an equilibrium emittance value of
1.7pmmmr (normalized, rms). The channel can be
expected practically to deliver a muon beam with an rms
normalized emittance of 2.5pmmmr (1.5 above equili-
brium), clearly sufficient to drive an RLA acceleration
stage.
For this value of low-beta, however, the momentum

range is constricted to lying between the momentum limits
of 155 and 250GeV/c, with these two limits representing
strong channel resonances, 2p and p, respectively [3]. Beam
is essentially captured up to a momentum of close to a
GeV, but in this channel the majority cannot be cooled or
even transmitted. (In fact, the minimum in the re-heating
terms which contribute to Eq. (1) actually occurs at a
momentum of 400MeV/c.) These and other concerns listed
below exist with the solenoidal channels.

� discrete liquid hydrogen absorbers and RF cavities are
housed physically within the solenoidal aperture in-
creasing component aperture, cost, field nonlinearities,
and power requirements;
� strong longitudinal to transverse correlations develop in

solenoids;
� nonlinear dynamics increase dramatically with solenoid

aperture–simple or low-order models are found to be
inadequate[ ];
� strong, especially superconducting field strengths pro-

mote increased sensitivity of beam parameters at such
low energies (0.1–1GeV);
� the momentum reach (155–250MeV/c) of the sFOFO is

limited relative to beam from the bunching and phase
rotation stage (later designs have improved acceptance
[5]);
� operational problems have been discovered experimen-

tally in the R&D of RF cavities operated in a strong
solenoidal field.

These beam control issues and technical difficulties provide
incentive to develop a channel based on more conventional
magnetic elements: large-aperture quadrupoles rather than
solenoids. Some of the technical motivations for a
quadrupole-based channel are as follows:

� liquid hydrogen absorbers and RF cavities extracted
from magnetic apertures;
� recent developments indicate the entire channel could be

pressured with gaseous hydrogen (windowless absorber)
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including the RF cavity which halves the length of
the channel and increases dramatically the cavity
gradient [13];
� magnetic fields are reduced to nonsuperconducting

levels, with more stable beam dynamics, and less
sensitivity to field imperfections and nonlinearities;
� quadrupoles are strong-focusing rather than ‘‘soft-

focusing’’ elements with reduced nonlinear contribu-
tions from nonparaxial terms or kinematical effects.

4.4. Linear quadrupole precooler

When beta functions at the absorber exceed or approach
1m, the focusing strength is dramatically reduced and the
absorber no longer has to be located at the lowest or a
very-low beta point, allowing more flexibility in the choice
of optical structure and focusing elements. This observa-
tion represents the basis for designing a competitive
cooling channel based on normal-conducting quadrupoles
in a simple lens, or FODO-cell configuration. Its applica-
tion is solely as an upstream stage of cooling and, being a
linear channel with no bends, serves to reduce the large
transverse beam size in preparation for acceleration in an
FFAG or for injection into ring coolers.

4.4.1. Optical structure

With a sufficiently relaxed beta at the absorber, one can
consider a short, alternating quadrupole lens structure. The
advantages of a short FODO cell structure over a doublet
or triplet quadrupole telescope are primarily in the
acceptance and stability of optical parameters over a
tremendous chromatic range. The dynamical range in
telescope structures is about 75% dp/p, beyond which
there is no closed-orbit solution for off-axis beam. The
limited momentum acceptance of the triplet/doublet
quadrupole channels restrict their implementation to after
longitudinal, or momentum, cooling has occurred and are

not considered further here. However, in standard (imply-
ing repetitive) FODO-cell optics, the minimum beta in one
plane is located at the maximum beta in the other. A
minimum beta or beam size cannot be established
simultaneously in both planes, and, therefore, the absorber
cannot be located at the lowest beta point in this type of
channel. The smallest beta for both planes combined is
found halfway between the quadrupoles, at the ‘‘crossing
point’’ in bx and by. Due to this limitation, the valid
application of a FODO-based cooling channel is just after
capture and phase rotation.

4.4.2. Transverse cooling

For a short FODO cell, the average beta in both planes
is equal and lies between 1 and 2m for normal conducting
quadrupoles and short (�0.5m) spacing between them.
The value of the beta functions at the crossing point is
unusually stable over a large momentum range: from
�20% to almost +100% if the phase advance is adjusted
properly. The optics rationale for its design and stability
will be discussed after a presenting the physical parameters
chosen for this channel.
The physical parameters chosen for this channel shown

in Fig. 3 were initially chosen to be comparable, or
competitive with the sFOFO channel [2]. The aperture of
the quadrupole was chosen somewhat conservatively—its
length is constrained to be equal to its aperture—in order
that the quadrupole field profile and therefore the optics
are not fringe-field dominated.
The average beta achieved at the absorber in this channel

is 1.6m at 200MeV/c (this is the defined central momentum
of the sFOFO channel [2]). This absorber beta yields a
design equilibrium emittance (rms, normalized) of
6.8pmmrad, or a practical rms final beam emittance of
10.2pmmmrad (factor of 1.5 above equilibrium). Assuming
a 2.5s Gaussian, the full final transverse beam emittance is
then 6.4p cm rad, or a factor of 2.5 below the 16p cm rad
emittance arriving from the upstream bunching stage.
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4.4.3. Momentum acceptance

With the extreme demands placed on momentum
performance, it is instructive to examine the FODO cell
under the precepts of thin-lens conditions. First, it is useful
to choose a reference momentum, p0, and study the phase
advance as a function of momentum relative to this
reference in order to evaluate performance limits. For such
a study, it becomes practical to assign a working point, or
initial cell phase advance, to this reference momentum and
one which is centrally located between stability limits: 01
and 1801. Clearly 901 is an obvious choice, hopefully
optimizing the momentum reach of the channel. This
choice of phase advance was applied to a p0 of 200MeV/c,
a value chosen to be comparative with current cooling
channel designs. The phase advance dependence, j, on
momentum can now be obtained in the thin-lens approx-
imation (see reference)

sin
j
2
¼
ð1=

ffiffiffi
2
p
Þp0

p
with a clear lower limit of stability,

p ¼
1ffiffiffi
2
p p0. ð2Þ

Differentiating gives

1

2
cos

j
2
dj ¼ �

p0ffiffiffi
2
p

p2
dp or

dj
dp
¼

ffiffiffi
2
p

p0

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

0=2p2

q . (3)

Notice that for a p0 of 200MeV/c, the above analysis
(Eq. (2)) gives a lower momentum cutoff for the channel of
�140MeV/c and, at large p, the phase advance varies more
and more slowly, as 1/p2. The results of this analysis are
graphed in Fig. 4 clearly demonstrating the large play in
momentum of the simple-lens FODO cell. When compared
with calculations, an almost constant factor of 0.8 was
needed to translate the changes in phase advance from the
thin-lens model to ones accurate for the channel as
designed.

The slow variation in phase advance does not set
restrictions on the length of the cell, but the variation of
the peak beta function with momentum does. Using the
definitions above, the peak beta function[ ] for a FODO cell

is given by

bmax ¼ L
kðkþ 1Þ

ðk2 � 1Þ1=2
,

dbmax

dp
¼ L

ðk2 � k� 1Þ

ðk� 1Þ3=2ðkþ 1Þ1=2
dk
dp
¼ 0 for a minimum: ð4Þ

The variable k is defined by the following thin-lens
equation.

sin
j
2
¼ 1=B where B ¼ f =L ðthin lensÞ. (5)

Here j is the phase advance of the FODO cell, f is the focal
length of 1

2
of a full quadrupole, and L is the length of a

half-cell from quadrupole center to center (see, for example
references listed in Ref. [14]).
In the above Eq. (4), ðk2 � k� 1Þ can only be set to 0

locally (at �761), but this does not guarantee stability in
the beta function over a large range in momentum. The
only approach that minimizes dbmax/dp over a broad
spectrum is to let L approach 0. No drift between
quadrupoles is optimal, but the choice of a short drift of
�0.5m (which corresponds here to a half-cell length of 1m)
intentionally slows the variation of the maximum beam size
with energy and at the same time insures a more feasible
technical channel design. (Here absorbers and RF cavities
are not installed inside magnet apertures.) The variation of
the maximum beta with momentum for this design is
shown below.
When the momentum dependence of the average beta at

the absorber was studied, the change was found to increase
slowly with energy and slowly relative to the increase in
normalized admittance of the channel with energy (which is
due to slowly varying peak beta values as a function of
momentum). This increase in normalized emittance in-
dicates cooling takes place over a large momentum range
despite the increase in b? at the absorber.
Both the sFOFO and quadrupole cooling channels were

fully modeled and tracked to high-order using the code
COSY [15]. The simulation included:

� full nonlinear terms;
� with full solenoidal [16] and quadrupole fringe fields

[17–19] (including different models);
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� multiple scattering (absorbers+windows);
� energy loss including straggling and spin;
� dE/dx as a function of energy;
� 200MHz sinusoidal RF;
� full quadrupole fringe fields (both Enge representation[ ]

and actual measured fields[ ]).

For the tracking, particles were launched in 2 cm steps
along both axes and along the diagonal starting at the
center of the absorber with and without the cooling (the
hydrogen absorber). With cooling turned on, the transmis-
sion losses in the quadrupole channel exclusive of muon
decay were almost negligible—less than 1% over the
momentum range accepted by the sFOFO channel
(155–245MeV/c). (This transmission corresponds to an
rms bunch length of 7.5 cm, a sE of 12MeV, js ¼ 601,
Djs ¼ �541, which corresponds to the 200MHz RF
bucket being about half filled.) Since the cooling rapidly
reduces the emittance, the dynamic aperture is almost not
relevant because a beam that fills the entire quadrupole
aperture is cooled and is not lost even in the presence of
fringe fields.

The predicted cooling behavior was observed; if a
Gaussian distribution is launched which fills the quadru-
pole aperture, then the final rms of the distribution was
found to be near 6.8mm rad (normalized) for this specific
channel (Fig. 5). The longitudinal losses of the quadrupole
channel appear to be less than the solenoidal channel, the
reason being the absence of longitudinal transverse
correlations that plague solenoids.

As mentioned it is important to calibrate the expanded
momentum reach of the quadrupole cooling channel. As
noted above, the geometrical acceptance is almost con-
stant, therefore, the normalized acceptance is increasing
(since the relativistic velocity is not changing significantly).
Hence, the absorber beta can be allowed to track the

increase in normalized emittance acceptance. When bench-
marked against the full cooling simulation performed at a
p0 of 200MeV/c, the channel cools beyond 400MeV/c. The
momentum reach of the cooling in the quadrupole channel
appears to be significantly larger than in the sFOFO, which
extends from 155 to 245MeV/c. Current effort is underway
to launch a realistic beam from the bunching/phase
rotation stage with varying momentum cuts to determine
accurately the extent of the momentum cooling achieved in
this channel.

4.5. Cooling summary

It is clear that a simple quadrupole cooling channel can
be considered as the only cooling stage necessary for
FFAG acceleration in a Neutrino Factory. At 200MeV/c
and a 60 cm diameter bore, it first appears that the aperture
is insufficient to accommodate the full 16p cm rad emit-
tance delivered by the upstream bunching and phase
rotation system (assuming �3m peak beta function in
the quadrupole). However, an elliptical beam pipe can be
installed in the quadrupole which extends beyond the
poletip diameter by 50% and still maintain good field
quality if the poletips are properly designed and separated
(F. Mills, private communication). This would accommo-
date full beam using FODO channel optics. It is also
interesting to note that the 200MeV/c central beam
momentum was chosen due to the already strong
solenoidal fields employed in the sFOFO channel and
any increase in the central momentum implied an increase
in field strength which is limited in this particular channel
design. There is no reason not to accommodate a larger
central momentum, and one which is more optimally
matched to the production spectrum which extends from
�100MeV/c up to �1GeV/c. Moreover, the minimum of
the sum of the re-heating terms (multiple scattering plus
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straggling) actually occurs at 400MeV/c. For the quadru-
pole channel design, the poletip field is not near a technical
limit and can be increased. However, an increase in
quadrupole strength is not required as this channel cools
efficiently and well beyond the momentum reach of the
sFOFO channel, from 150 to 4400MeV/c, so its central
momentum is actually closer to 300MeV/c. Further there
are gains to be made by reducing losses from muon decay
by propagating higher momenta, on average, through the
channel.

5. Conclusions

In this paper, optimizing the stages in a Neutrino
Factory has been presented. Clearly the staging and
optimization are critically dependent on the choice and
format of accelerator. It has been demonstrated that
possibly the simplest, lowest-cost scenario is a nonscaling

FFAG machine coupled to a linear (no bending) transverse
cooling channel constructed from the simplest quadrupole
lens system, a FODO cell. Transverse cooling demands are
reduced by a factor of 4 and no longitudinal cooling is
required relative to the RLA option. Detailed simulations
further show that a quadrupole-based channel cools
efficiently and much beyond the momentum range of a
sFOFO [2] cooling channel with similar magnetic aper-
tures. Current effort is underway to characterize the exact
energy extent of the cooling. Applying different—both
assumed and measured fringe fields—to represent the
quadrupole elements fully has been an integral part of
the simulations and ensures feasibility in quadrupole design
and performance. One important observation is that such a
channel cools effectively over a large variation in the
fringe-field profile. Extensive design and simulation work
are currently in progress on the proposed nonscaling FFAG
and results are also encouraging. This cooling/acceleration
scheme potentially represents the baseline scenario for the
next US feasibility study.
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Abstract

Discrete systems of equations have been often used when considering charged particle dynamics in accelerating and focusing

structures. In this paper, a discrete optimization approach is considered for a problem in beam dynamics. The conventional approach

for the design of various controlled systems involves the initial calculation of programmed motion (e.g. motion of a synchronous

particle) and subsequent examination of perturbed motion with the use of equations for deviations. This approach, however, does

not always lead to satisfactory results. Thus, when analyzing perturbed motions significantly dependent on programmed motions, it

can happen that the dynamic characteristics of the perturbed motions obtained are not satisfactory from one point of view or another.

A mathematical model that allows simultaneous optimization of programmed motion and an ensemble of perturbed motions in

discrete systems is suggested.

r 2005 Elsevier B.V. All rights reserved.

PACS: 02.30.Xx; 02.30.Yy; 29.27.�a

Keywords: Controlled systems; Optimization; Functional; Discrete system

1. Introduction

The problem considered is a non-standard problem of
the theory of optimal control in discrete systems. The
problem of control of a particle trajectory and ensembles of
trajectories (beams of trajectories) has been considered
under various quality criteria. Along the trajectories of the
system, we consider functions characterizing the dynamics
of programmed motion and the dynamics of perturbed
motion. The mathematical model suggested in this work
also allows calculation of the density of particle distribu-
tions in phase space. A method for solving this problem is
proposed. Analytical expressions for functional variations
that help in constructing various directed methods of
simultaneous optimization are suggested. The mathema-
tical apparatus given can be effectively used in the
optimization of the dynamics of charged particles in linear
accelerators.

2. Statement of the problem

Let us consider the following system of discrete
equations:

xðk þ 1Þ ¼ f ðk; xðkÞ; uðkÞÞ, (1)

yðk þ 1Þ ¼ F ðk; xðkÞ; yðkÞ; uðkÞÞ (2)

for k ¼ 0,y,N�1, where x(k) is the n-dimensional phase
vector defining programmed motion, y(k) is the m-
dimensional phase vector defining perturbed motion, u(k)
is the r-dimensional control vector, and f(k, x(k), u(k)) is
the n-dimensional vector function defining the process
dynamics at each step. For all kA{0,1,y,N}, the vector
function f(k) ¼ f(k, x(k), u(k)) is assumed to be definite and
continuous on Ox�U(k) in all its arguments (x(k), u(k)),
along with partial derivatives with respect to these
variables. F(k) ¼ F(k, x(k)y(k), u(k)) is the m-dimensional
vector function; for all kA{0,1,y,N}, it is assumed to be
definite and continuous on Ox�Oy�U(k) in all its
arguments (x(k)y(k), u(k)), along with the partial deriva-
tives with respect to these variables and second partial
derivatives. Ox is the domain in Rn, Oy is the domain in Rm,
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and U(k), k ¼ 0,1,y,N�1, is a compact set in Rr. In this
case, we consider the Jacobian function

JðkÞ ¼ Jðk; xðkÞ; yðkÞ; uðkÞÞ ¼
@F ðkÞ

@yðkÞ

����
����

to be non-zero for all changes of k, x(k), y(k) and u(k).
Eq. (1) describes the dynamics of programmed motion.

Eq. (2) is the equation for deviations, which describes
perturbed motions.

We assume that x(0) ¼ x0 is fixed and the initial state of
system (2) is described by set M0—a compact set of non-
zero measures in Rm. We call the sequence of vectors
fuð0Þ; uð1Þ; . . . ; uðN � 1Þg the control of the system de-
scribed by Eqs. (1) and (2) and denote it by u for brevity.
We call the corresponding sequence of vectors
fxð0Þ; xð1Þ; . . . ; xðNÞg the trajectory of programmed mo-
tion and denote it by x ¼ x(x0,u). We denote the phase
state of a programmed particle for the kth step by
x(k) ¼ x(k, x0, u). Similarly, we call the sequence of
vectors fyð0Þ; yð1Þ; . . . ; yðNÞg the trajectory of perturbed
motion and denote it by y ¼ y(x, y0, u). We denote the
phase state of the particle for the kth step by
yðkÞ ¼ yðk; xðkÞ; y0; uðkÞÞ.

The set of trajectories y(x, y0, u) corresponding to the
initial state x0, the control u and different states y0AM0 are
referred to as an ensemble of trajectories, or the beam of
trajectories. The phase state of the beam at the kth step is
also called the cross-section of the beam of trajectories and
is denoted by Mk,u, i.e.,

Mk;u ¼ fyðkÞ : yðkÞ ¼ yðk; y0; xðkÞ; uðkÞÞ; y0 2M0g,

and the controls satisfying conditions u(k)AU(k),
k ¼ 0,1,y,N�1 are admissible.

Let x0 be the initial u(k)AU(k), k ¼ 0,1,y,N�1, of a
synchronous particle and M0 be the set of initial phase
states of charged particles with density distribution
r0(y0) ¼ r(0, y0). We would like to determine how the
distribution density function along the beam trajectories
transforms. Let us fix an instant k þ 1 and the point
ȳkþ1 2Mkþ1; u. Let ȳðk þ 1Þ be an image of the point ȳðkÞ

in view of Eq. (2). We denote by G(y(k)) the set of points
yiðkÞ 2Mk; u, such that the trajectories of the system
emanating at the instant k from yi(k) at the step k+1 fall
within a certain r-neighborhood Srðȳðk þ 1ÞÞ of the point
ȳðk þ 1Þ.

By the distribution density of trajectories from Eq. (2) at
the point ȳðk þ 1Þ on the k þ 1th step, we mean the limit

r ðk þ 1; ȳkþ1Þ ¼ lim
r!0

1

mes ðSrðȳðk þ 1ÞÞÞ

�

�

Z
GðyðkÞÞ

rðk; ykÞdyk

�
ð3Þ

where

mes ðSrðȳ ðk þ 1ÞÞÞ ¼

Z
Srðȳðkþ1ÞÞ

dy ðk þ 1Þ. (4)

From the one-to-one correspondence of the sets G(y(k))
and Srðȳðk þ 1ÞÞ, the integral in Eq. (3) transforms to the
formZ

Srðȳðkþ1ÞÞ

rðk; ykÞJ
�1
k dyðk þ 1Þ

where yk ¼ y(k) and

J�1k ¼ J�1ðk; xðkÞ; yðkÞ; uðkÞÞ ¼ det
qyðkÞ

qyðk þ 1Þ

� �

¼ det�1
qF ðk; xðkÞ; yðkÞ; uðkÞÞ

qyðkÞ

� �
.

In view of this and the form mes ðSrðȳðk þ 1ÞÞÞ, we obtain
the following equation for r(k,yk):

rðk þ 1; yðk þ 1ÞÞ ¼ J�1k rðk; ykÞ; rð0; y0Þ ¼ r0ðy0Þ. (5)

The function r(k) ¼ r(k,yk) denotes the distribution
density functional for the kth step.
We introduce the following function:

IðuÞ ¼
XN�1
k¼1

Z
Mk;u

jkðxk; yk; rðk; ykÞ; ukÞdyk

þ

Z
MN;u

gðyN; rðN; yN ÞÞdyN ð6Þ

where xk ¼ x(k), jk and g are continuously differentiable
functions.
The functional (6) allows the simultaneous estimation of

programmed and perturbed motions, as well as their
simultaneous optimization and calculation of the density
of particle distribution in phase space.

3. Functional variation

Let us rewrite Eqs. (1) and (2) and an equation for the
distribution density along trajectories of the system (2):

xðk þ 1Þ ¼ f ðk; xðkÞ; uðkÞÞ;

yðk þ 1Þ ¼ F ðk; xðkÞ; yðkÞ; uðkÞÞ;

rðk þ 1Þ ¼ J�1 k; xðkÞ; yðkÞ; uðkÞð ÞrðkÞ
(7)

for k ¼ 0,y,N–1.
Let us denote variations of trajectories of system (7) as

dx(k), dy(k) and dr(k), with admissible variation of control
Du and a given u.
Now, we define the corresponding equations for varia-

tions:

dxðk þ 1Þ ¼
qf ðkÞ

qxðkÞ
dxðkÞ þ

qf ðkÞ

quðkÞ
DuðkÞ, (8)

dyðk þ 1Þ ¼
qF ðkÞ

qxðkÞ
dxðkÞ þ

qF ðkÞ

qyðkÞ
dyðkÞ

þ
qF ðkÞ

quðkÞ
DuðkÞ, ð9Þ
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drðk þ 1Þ ¼ rðkÞ
qJ�1ðkÞ

qxðkÞ
dxðkÞ þ rðkÞ

qJ�1ðkÞ

qyðkÞ
dyðkÞ

þ J�1ðkÞdrðkÞ þ rðkÞ
qJ�1ðkÞ

quðkÞ
DuðkÞ. ð10Þ

We also have the following equation [4]:

divy dyðk þ 1Þ ¼ divy dyðkÞ þ J�1ðkÞ
qJðkÞ

qyðkÞ
dyðkÞ

�

þ
qJðkÞ

qxðkÞ
dxðkÞ þ

qJðkÞ

quðkÞ
DuðkÞ

�
ð11Þ

where divy dyðkÞ ¼
Pm
i¼1

qdyiðkÞ
qyiðkÞ

:

Taking into account Eqs. (8)–(11), the initial values of
variations dx(0) ¼ 0, dy(0) ¼ 0, dr(0) ¼ 0, divy dy(0) ¼ 0,
and using methods of investigation for functionals of type
(6) [1], variation of functional (6) (for admissible variation
of control Du) can be represented in the following form:

dI ¼
XN�1
k¼0

Z
Mk;u

JðkÞpTðk þ 1Þ
qF ðkÞ

quðkÞ

�

þ JðkÞgTðk þ 1Þ
qf ðkÞ

quðkÞ

þ Jkxðk þ 1ÞrðkÞ
qJ�1ðkÞ

quðkÞ

þ qðk þ 1Þ
qJðkÞ

quðkÞ
þ

qjðkÞ
quðkÞ

�
dyk DuðkÞ ð12Þ

where p(k), g(k), x(k) and q(k) are the following auxiliary
functions:

pTðNÞ ¼
qgðyN ; rNÞ

qyðNÞ

� �
,

xðNÞ ¼
qgðyN ; rNÞ

qrðNÞ

� �
,

qðNÞ ¼ gðyN ;rNÞ; gðNÞ ¼ 0,

qðkÞ ¼ JðkÞqðk þ 1Þ þ jðkÞ; xðkÞ ¼ xðk þ 1Þ þ
qjðkÞ
qrðkÞ

,

pTðkÞ ¼ JðkÞpTðk þ 1Þ
qF ðkÞ

qyðkÞ

þ JðkÞ xðk þ 1ÞrðkÞ
qJ�1ðkÞ

qyðkÞ

þ qðk þ 1Þ
qJðkÞ

qyðkÞ
þ

qjðkÞ
qyðkÞ

gTðkÞ ¼ JðkÞpTðk þ 1Þ
qF ðkÞ

qxðkÞ
þ JðkÞgTðk þ 1Þ

qf ðkÞ

qxðkÞ

þ JðkÞ xðk þ 1ÞrðkÞ
qJ�1ðkÞ

qxðkÞ

þ qðk þ 1Þ
qJðkÞ

qxðkÞ
þ

qjðkÞ
qxðkÞ

for k ¼ 1,y,N�1.
Eq. (12) for functional variation allows the construction

of various methods of optimization of the function in
Eq. (6).

4. Conclusion

Simultaneous optimization of programmed and per-
turbed motions under various quality criteria was con-
sidered in previous works [2–4] and the results were applied
to the optimization of beam dynamics in linear-tube
accelerators [3]. The analytical representation obtained in
this paper for variation of the functional examined allows
simultaneous optimization and calculation of the distribu-
tion density of trajectories in the beam.
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Abstract

A code for computer simulation and optimization of beam dynamics in 3D or rotationally symmetric electrostatic fields is considered.

It is based on a physical model that takes into account the beam space charge. The theoretical framework used for both formulation of

the model and interpretation of the results of numerical experiments is a formalism of the charged particle dynamics in phase space.

The code can be used as an effective tool for computer-aided design and optimization of electrostatic accelerating and focusing systems.

The operation of the code is illustrated with a typical example.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Up until now, the methods of the optimal control theory
have been widely applied for optimization of charged
particle dynamics in accelerating and focusing structures.
The optimization problem of accelerated particle’s dy-
namics is well investigated if it reduces to minimization of
some functional on the ordinary differential equations
trajectories [1,2]. Usually the field problem is not solved in
this case and the control functions are estimated according
to a certain algorithm, which is determined by an applied
method in the presence of physical limitations.

However, the problem becomes much more complicated
if control functions are expressed in terms of physical
parameters of the system realizing these functions. In other
words, the field problem is solved simultaneously with the
trajectory optimization. An attempt at simultaneous
optimization of the particle trajectories in the electrostatic
fields and the electrode system creating these fields may be
considered to be the first step in solving the problem in
point. An example of such an electrostatic system is the

injector of a linear accelerator for electrons or ions [3],
which is usually called a low-energy beam transport
(LEBT) system.
The present paper considers a code for computer

simulation and optimization of beam dynamics in 3D or
rotationally symmetric electrostatic fields, taking into
account the beam space charge. It can be used for the
analysis and optimization of various LEBT systems
consisting of electrodes of the thick washer type. An
example of the optimization of a five-electrode LEBT
illustrates possible applications of the code.

2. Computational models

In the Cartesian coordinate system (X,Y,Z) the electro-
static potential distribution u ¼ u(x,y,z) in a domain D

with boundary G, composed of NG piecewise-smooth
sections Gi is related through the Laplace equation

q2u=qx2 þ q2u=qy2 þ q2u=qz2 ¼ 0; ðx; y; zÞ 2 D. (1)

The boundary conditions are given by the formulae

ujGi
¼ Ui; i ¼ 1;NG

1

qu=qnjGj
¼ Uj ; j ¼ NG

1 þ 1;NG:
(2)
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The Laplace Eq. (1) with boundary conditions Eq. (2) is
solved by the finite-difference method with successive over-
relaxation (SOR) [4,5] using a seven-point finite difference
approximation on a grid of cubic meshes of step h [4].

This paper considers non-relativistic elliptical or rota-
tionally symmetrical ion beams. This allows the self-
magnetic field of the space charge flow to be ignored.
The dynamics of the real beam is simulated by the method
of ‘large’ particles, namely by the ensemble of Nmod5Nreal

uniformly charged balls, each of radius amod, mass mmod

and charge qmod [2].
Using the method of ‘large’ particles, we assume the

equality of total masses and charges of the ensembles of
real and ‘large’ particles. Here we also consider the
additional criterion

W
pot
real ¼W

pot
mod (3)

where W
pot
real and W

pot
mod are the potential energy of the

ensembles of real and ‘large’ particles, respectively. For the
method of ‘large’ particles—balls [2], Eq. (3) may not be
valid.

For modeling in a given volume V0 of the ensemble of
Nreal point charged particles by means of Nmod ‘large’
particles with the same total charge and mass and
NmodoNreal, W

pot
modoW

pot
real is valid. The dynamics of the

ensembles of real and ‘large’ particles must be the same in
the sense of validity of some given criterions, so

W
pot
real ¼ K0 W

pot
mod (4)

must be valid, where K041. For Eq. (4) to be valid, we
propose in this paper to consider the ‘large’ particles as
point ones with mass mmod and charge qmod, where coupled
interactions between them are expressed by the formula

Fij ¼ K0ð1=4pe0Þðq2
mod=r3ijÞrij ; K041. (5)

Some numerical simulations of the 3D beam dynamics in
a five-electrode LEBT (see Fig. 2) have been made using
Eq. (5), with K0E1.12.

For numerical simulation of beam dynamics in an
electrostatic field, taking into account the beam space
charge, the following initial value problem is considered:

d ~R
i
ðtÞ

dt
¼ ~V

i
ðtÞ; d ~V

i
ðtÞ

dt
¼

qmod

mmod
Ei þ

Fi
pI

mmod

~R
i
ðt0Þ ¼ ~R

i

0;
~V

i
ðt0Þ ¼ ~V

i

0; i ¼ 1;Nmod

(6)

where ~R
i
¼ ð ~X

i
; ~Y

i
; ~Z

i
Þ, ~V

i
¼ ~V

i

x; ~V
i

y; ~V
i

z

� �
; ~R

i

0,
~V

i

0 are
given for the input of the electrostatic system; Ei ¼

ðEi
x;E

i
y;E

i
zÞ is the external electrostatic field strength; and

Fi
pI ¼ F i

pI_x;F
i
pI_y;F

i
pI_z

� �
is the total force acting on

‘large’ particle number i from the remaining ‘large’
particles; For numerical solution of Eq. (6) the Runge–
Kutta method [5] is applied.

3. General description of the code

The code is intended for joint simulation and optimiza-
tion of the electrostatic fields and the charged particle

dynamics in LEBT, taking into account the beam space
charge. It consists of several subroutine modules (Fig. 1)
combined to solve a variety of problems encountered in the
analysis, design and optimization of a 3D or rotationally
symmetrical electrostatic LEBT consisting of electrodes of
the thick washer type (Fig. 2).
The code was designed in object Pascal language in

Delphi 5/7 using the object-oriented approach. It consists
of several interacting user-defined structures (records and
classes in object Pascal). Each program module (Fig. 1)
includes one or more structures. The main structures of the
code are as follows. The structure NODE (field simulation
module) describes the electrostatic field potential at a single
node in coordinates (x,y,z) of the 3D grid. The structure
ION (beam dynamics simulation module) describes a single
computational particle in the point of phase space. The
structure FIELD (field simulation module) is used for both
the simulation and description of the 3D or rotationally
symmetrical electrostatic fields in a given LEBT. The
structure MBD (beam dynamics simulation module) is
involved in both the simulation and description of the
behavior of the entire 3D beam in phase space. FIELD
and MBD also contain subroutines necessary for graphical
and numerical output of the results. The structures:
BWmethod1cv, BWmethod2cv and BWmethod3cv (opti-
mization module) contain subroutines and data for solving
one-, two- and three-parameter optimization problems,
respectively, by the Box–Wilson method [6]. The structures
Rmethod1cv, Rmethod2cv and Rmethod3cv (optimization
module) contain subroutines and data for solving one-,
two- and three-parameter optimization problems, respec-
tively, by the ‘ravine’ method. The structure CDmethod
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(optimization module) contains a subroutine and data for
solving multi-parameter optimization problems of LEBT
systems by the coordinate descent method. The structures:
AGmethod2cv and AGmethod3cv (optimization module)
contain subroutines and data for solving two- and three-
parameter optimization problems, respectively, by the
‘averaged’ gradient method [1]. The code also contains a
number of modules and structures containing auxiliary
data and subroutines. The code was applied to numerical
solution of a multi-parameter optimization problem on a
Pentium 4/1.7 PC, as described in the next section.

4. Optimization problem solving

For optimization of the ion-optical performance of a
given LEBT, the aim is to choose physical parameters so as
to obtain desirable beam characteristics and to ensure high
transmission efficiency. As an illustrative example, we
present some results of the numerical experiments per-
formed for analysis and optimization of an LEBT
consisting of ne ¼ 5 elliptical electrodes of the thick washer
type (Fig. 2). The aim of such optimization is the creation
of an optimized LEBT system, producing a final beam
with given characteristics and energy Wout ¼ 100 keV
for subsequent injection into the RFQ. The ion source
[3] produces an elliptical beam of H– ions with energy
of 17 keV and current of 15mA. The quality of the
LEBT is defined by the function Km ¼ Kmðv; p;
Exx0

out;E
yy0

out;Fa;N
l
b;WoutÞ where Exx0

out and E
yy0

out are the

normalized beam emittance for the LEBT output in the
XX0 and YY0 planes, respectively; v ¼ ðv1 . . . vn1 Þ is the
vector for the optimization parameters; Fa is the function
defining the RFQ acceptance (same for the XX0 and YY0

planes); Nl
b is the beam losses in the LEBT; Wout is the

beam energy for the LEBT output; and p ¼ ðp1 . . . pn2
Þ are

parameters different from v, Exx0

out, E
yy0

out, Nl
b, Fa and Wout.

The function Km characterizes matching of the beam
emittance for the LEBT output and the given acceptance of
the subsequent RFQ. In particular, it determines the
number of particles NRFQ

b in the final beam, which may
be involved in subsequent acceleration processes in the
RFQ (NRFQ

b pNbpN0
b;Nb ¼ N0

b �Nl
b, where N0

b and Nb

are the number of beam particles in the LEBT input and
output, respectively). The physical parameters of the
LEBT, namely the electrode potentials ui, the large ai

e

and small bi
e semi-axes of the electrode minimal elliptical

cross-sections, and the interelectrode distances zj
e, i ¼ 1; ne,

j ¼ 1; ne � 1 are considered as optimization parameters
(n1 ¼ 19). Parameters of the LEBT different from v were
fixed during the optimization.
Consider an optimization problem of the form

Kopt
m ¼ max

v
Km;Eqs:ð1Þ and ð2Þ;Eq:ð6Þ

v1j jpA1; . . . v19j jpA19; Wout ¼ 100; Nl
bp0:1 N0

b

B0oN
RFQ
b pN0

b; Exx0

out

�� ��pB1; E
yy0

out

��� ���pB2; Faj jpB3

(7)

where A1,y,A19, B0, B1, B2 and B3 are given values.
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Fig. 3. Matching of the beam for five-electrode LEBT output and given RFQ acceptance. The solid sloped ellipse is the RFQ acceptance.
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The time for solution of Eq. (7) on a Pentium 4/1.7 PC
by the coordinate descent method is approximately 18 h.
The 3D dynamics of the real beam in a 3D electrostatic
field, together with the beam space charge, has been
simulated with help of an ensemble of Nb

0
¼ 2000 ‘large’

particles—uniformly charged balls. The 3D electrostatic
field was simulated on a space grid with approximately
Nsg
¼ 2000000 nodes.

The optimized LEBT configuration is shown in Fig. 3,
where u1 ¼ 12 kV, u2 ¼ 7 kV, u3 ¼ 100 kV, u4 ¼ 45 kV and
u5 ¼ 83 kV, which produces a final beam with Nl

b ¼ 0 and
78% of particles involved in the subsequent acceleration
process in the RFQ (Fig. 3).

5. Conclusion

The code presented allows determination of the optimal
construction and physical parameters for injection and
transport systems. The 3D field modeling subroutines of
the code give the possibility of optimizing the injection
systems for both rotationally symmetrical and 3D beams.

However, there are limitations on n1 and Nsg when solving
optimization problems on a PC.
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Abstract

The optics measurements have played important role in improving the performance of Tevatron collider. Until recently, most of them

were based on the differential orbit measurements with data analysis, which neglects measurement inaccuracies such as differences in

differential responses of beam position monitors, their rolls, etc. To address these complications we have used a method based on the

analysis of many differential orbits. That creates the redundancy in the data allowing to get more detailed understanding of the machine.

In this article, we discuss the progress with Tevatron optics correction, its present status and future improvements.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.20; 29.27; 41.85.�p

Keywords: Beam optics

1. Introduction

The commissioning of Tevatron Run II began in the
spring of 2001 with the first luminosity seen in June. By the
year’s end the luminosity was in the range of
(5–10)� 1030 cm�2 s�1. Although the luminosity growth
was significantly slower than expected, steady growth of
luminosity has been demonstrated during last 3 years with
the peak luminosity of 1.02� 1032 cm�2 s�1 achieved in
July 2004. This luminosity growth would not be possible
without thorough understanding of the accelerator physics
problems, which have restricted the machine operation.
Understanding and tuning the Tevatron optics was one of
the main contributors to the success. Two problems have
been encountered: the emittance growth due to optics
mismatch at injection, and optics mismatch for the

collision optics with subsequent increase of beta-functions
in the interaction points (IP).
The collider is filled from Main Injector (MI) by protons

and antiprotons through two different transfer lines. To
maximize the luminosity the optics of each line has to be
matched to both rings. Although, in principle, emittance
growth related to each transfer could be measured using
the emittance monitors of each ring, in reality, this method
does not work because of uncertainty in calibration of
emittance monitors. To exclude this uncertainty the round
trip emittance measurement has been used. In this case, the
proton beam is sent from MI to Tevatron through the
proton transfer line and then sent back to MI through the
antiproton line. The MI emittance monitor is used to
measure the total emittance growth for both transfers. The
measurements performed in 2002 exhibited the round trip
emittance growth of about 50%. After linear optics
correction in both transfer lines this value was only slightly
improved and still stayed well above the emittance growth
related to the betatron oscillations due to injection errors.
Initial estimates of possible coupling effects yielded that
small coupling cannot be a reason of such emittance
growth. Soon we learned that the coupling in Tevatron is
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not small and leads to the significant emittance growth.
The source of the coupling has been the regular skew-
quadrupole component in all Tevatron dipoles. It origi-
nated from settling down the superconducting coil relative
to the iron core due to compression of thermo-insulating
coil support by �150 mm. Although the value of skew
quadrupole gradient, Gs, for a single dipole does not look
large (GsA/B0�(1.5–2)� 10�4, where A ¼ 2:54 cm and B0 is
the dipole field) summing the contributions of all 772
dipoles yields the uncompensated tune split �0.3. This
value is usually compensated to better than 5� 10�3 by
machine skew quadrupoles but it still leaves large local
coupling through the entire machine. Hundred and twelve
dipoles, which did not have nearby machine skew quadru-
poles, were main source of this local coupling. During
the 2003 shutdown their skew quadrupole fields were
corrected by restoring thickness of the thermo-insulating
supports (shimming of the dipoles). That resulted in a
significant reduction of x–y coupling on the emittance
growth.

Optics measurements performed in 2003 showed that the
Tevatron low-beta optics has been strongly mismatched.
That resulted in a beta-wave through the entire machine
and increased beta-functions in IPs with the corresponding
luminosity loss of �15–20%. Optics correction in IPs was
performed in the spring of 2004. It also yielded some
reduction of optics mismatch in arcs but further improve-
ments are still required.

2. Emittance growth due to x–y coupling

To find the emittance growth due to x–y coupling at
injection we will parameterize the eigen vectors of coupled
betatron motion in the following form:

v1 ¼

ffiffiffiffiffiffiffi
b1x

p
�

ið1�uÞþa1xffiffiffiffiffi
b1x

p

ffiffiffiffiffiffiffi
b1y

p
ein1

�
iuþa1yffiffiffiffiffi

b1y

p ein1

2
66666664

3
77777775
; v2 ¼

ffiffiffiffiffiffiffi
b2x

p
ein2

� iuþa2xffiffiffiffiffi
b2x

p ein2

ffiffiffiffiffiffiffi
b2y

p
�

ið1�uÞþa2yffiffiffiffiffi
b2y

p

2
66666664

3
77777775
. (1)

where bnx,ny and anx,ny are the generalized beta- and alpha-
functions, and parameters u, n1 and n2 are determined by
the symplecticity conditions. Then, the particle motion can
be written as,

x ¼
1

2

ffiffiffiffiffiffiffi
2e1

p
ðv1e

im1 þ v�1e
�im1 Þ þ

ffiffiffiffiffiffiffi
2e2

p
ðv2e

im2 þ v�2e
�im2Þ

� �
,

(2)

where e1 and e2 are the rms single particle emittances, and
m1 and m2 are the betatron phase advances. Multiplying
each side of Eq. (2) by vþ1 U or vþ2 U and using orthogonality
conditions for eigen vectors we obtain

e1 ¼
1

2
ðvþ1 UxÞ2; e2 ¼

1

2
ðvþ2 UxÞ2. (3)

Here + denotes the Hermite conjugate vector, and U is the
symplectic unit matrix:

U ¼
0 u

u 0

� �
; u ¼

0 1

�1 0

� �
. (4)

For Gaussian distribution the beam distribution func-
tion at the injection point can be written in the following
form:

f ðxÞ ¼
1

4p2e1e2
exp �

1

2
xTNx

� �
, (5)

where matrix N is determined by the eigen vectors, vt1 and
vt2, of the incoming beam

N ¼ UVtN
0VT

t U; X
0 ¼

e�11 I 0

0 e�12 I

" #
; I ¼

1 0

0 1

" #
,

Vt ¼ ½Re vt1; �Im vt1; Re vt2; �Im vt2�. ð6Þ

If the injected beam is not matched to the ring lattice the
decoherence of beam envelope oscillations leads to the
emittance growth. After few thousand turns the system
comes to equilibrium, and the emittance of the injected
beam is determined by the following equation:

e0i ¼
1

8p2e1e2

Z
dx4ðvþi UxÞ2 exp �

1

2
xTNx

� �
; i ¼ 1; 2.

(7)

For initially uncoupled beam characterized by bx, ax, by

and ay that yields

e01 ¼ e1A11 þ e2A12

e02 ¼ e1A21 þ e2A22

A12 ¼
1

2

by

b1y

½u2 þ a21y� þ
b1y

by

½1þ a2y� � 2a1yay

 !
,

A11 ¼
1

2

bx

b1x

½ð1� uÞ2 þ a21x� þ
b1x

bx

½1þ a2x� � 2a1xax

� �
,

A21 ¼
1

2

bx

b2x

½u2 þ a22x� þ
b2x

bx

½1þ a2x� � 2a2xax

� �
,

A22 ¼
1

2

by

b2y

½ð1� uÞ2 þ a22y� þ
b2y

by

½1þ a2y� � 2a2yay

 !
. ð8Þ

The developed Tevatron optics model is based on the
results of differential optics measurements and takes
coupling into account. In addition to coherent skew-
quadrupole component in dipoles it also includes a few
dozen local focusing and coupling errors scattered through
the entire ring. Table 1 presents coupled Twiss parameters
predicted by the model (see Section 3). Substituting these
parameters into Eq. (8) yields that the emittance growth
due to coupling was about 15% for each of two transfers
before shimming of dipoles. This value dropped to about
3% after the shimming of dipoles.
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3. Optics measurements and correction

Optics correction have been complicated by limited time
for optics measurements and the poor performance of the
30-year-old beam position monitors (BPM), in particular,
by their low accuracy (�150 mm rms resolution) and
malfunctioning ring-wide turn-by-turn mode. Presently,
the only reliable way for optics measurements is the
differential optics measurements, i.e. the orbit response to a
single corrector bump. During the last 2 years we mainly
used the fast measurements, where only four correctors and
an energy change are exercised. In this case, the measure-
ment takes about 5min and getting time for the measure-
ments is not a problem. The measurements are fully
automated. Software records the reference orbit and its
change in both planes due to a perturbation. Two
correctors in each plane are chosen so that the betatron
phase advance between them would be close to p/2. Such
set of measurements provides minimum information
sufficient to restore all details of linear details. Off-line
analysis yielded quad and skew-quad optics corrections
matching the measured and computed orbits. The accuracy
of the model has been tested by measurements of tune
shifts due to small focusing change of a few single power
supply quads. An agreement within �15% has been found
for beta-function measurements. Comparatively large
discrepancy is related to the fact that Tevatron tunes
(Qx ¼ 20:585, Qy ¼ 20:575) are quite close to half integer
resonance. That additionally amplifies effects of optics
errors on the beta-functions.

Data analysis at injection yielded the following results.
There is a systematic difference between main bus super-
conducting dipoles and quads. As compared to 30-year old
magnetic measurements the quads are �0.15% stronger.
There is aforementioned systematic skew-quad field in
dipoles GsA/B0�1.4� 10�4 for A ¼ 2:54 cm. It is in good
agreement with the measured displacement of coils,
�150 mm. There are significant non-systematic (point-like)
focusing and skew-focusing errors scattered through the
entire machine. We used �30 quad and/or skew-quad
corrections with strengths [0.5–2%] of the main bus quad
strength. The most striking finding was that focusing errors
are about 0.5% for the final focus quadrupoles.

Similar to the injection we performed optics measure-
ments for collision optics (low beta), where errors of
focusing in the interaction region quads dominate errors in
the sectors. The following conclusions were drawn out.
There is a systematic difference between main bus super-
conducting dipoles and quads (�0.18%) consistent with
measured at the injection energy. Systematic skew-quad
field in dipoles GsA/B0�2.1� 10�4 for A ¼ 2:54 cm which
is 1.5 times higher than at injection. The origin of this
discrepancy is unknown. Similar to the injection energy
there are significant non-systematic (point-like) focusing
and skew-focusing errors scattered throughout the entire
machine. Although there is good correlation for large
optics errors it is clearly different in details. Interaction
region quads need to be fudged up to 1%. It is well above
what one would expect. Additionally, there is about 0.1%
difference for quads of the same design. Model exhibited
that due to optics mismatches the beta-functions in IPs
were �30% above design value and there was significant
betatron function mismatch through entire machine.
Optics measurements proved that the resonance pertur-

bation of beta-function dominated other optics discrepan-
cies. Taking into account that analysis of differential orbit
data is slow for on-line optics correction we used the optics
measurements based on the measurements of tune shifts
due to strength changes of one of four designated quads
while the optics correction was performed using four other
quads. Injection optics was corrected in 2003. The first step
of the collision optics correction was carried out to correct
optics mismatches in the IPs but there is still considerable
mismatch in arcs.

4. Extended differential orbit measurements

Although the differential optics measurements are fast,
data analysis is tedious and the results are not sufficiently
accurate. Recently, we introduced the extended measure-
ments using Linear Optics from Closed Orbit (LOCO)
technique [1–3], where the single corrector orbit bumps are
produced using about half of available correctors. That
large redundancy in the data results in significant
improvement of optics model accuracy. In this case, a
single measurement takes much longer (1–2 h) and getting
time for measurements is a problem but it is paid by
improvement of the machine model. The effort has been
built as collaboration between FNAL and ANL and aimed
to upgrade the ANL software developed for APS [3]. The
major objectives are software integration with FNAL data
structures and optics software, taking into account strong
x–y coupling, and fitting data of dispersion measurements.
The idea of the method is to acquire large amount of

data so that the systematic errors in the measurements
could be determined. The unknowns are strengths and rolls
of quads, strengths and rolls of correctors, and BPM
responses and rolls. That amounts to about 800 unknowns.
To have sufficient redundancy we perform measurements
with �100 correctors which yields �20,000 equations. The
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Table 1

Twiss parameters at proton and antiproton injection points before

shimming of dipoles

Proton injection Antiproton injection

Mode 1 Mode 2 Mode 1 Mode 2

bx 102.0m 4.71m 84.34m 4.04

ax �0.8348 �0.0321 �0.6825 �0.03233

by 2.96m 65.42m 3.77m 75.64m

ay 0.0126 0.2019 0.0294 0.5227

n �110.91 �112.471 �128.51 �126.91

u �0.0609 0.0539
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singular value decomposition [4] (SVD) is used to find
unknowns from the measured data.

The first results of data analyses have been recently
obtained. Further work is required to finish the project.
Data analysis performed for collision optics yielded
significant improvement of the fit accuracy. Compared to
the model obtained before with differential orbit measure-
ments the rms difference between measured and predicted
differential orbits has been decreased from 10% to 1.5% of
orbit oscillation amplitude. Fig. 1 presents the computed
errors for differential BPM response and corrector
calibration errors.

5. Conclusions

We built a reliable model of Tevatron optics based on
the differential orbit measurements. The model includes
actual power supply currents and has global and local
focusing corrections to match the model to the measure-
ments. It has been used to correct Tevatron optics and x–y

coupling. That resulted in a smaller emittance growth at
injection (�10–15%), and reducing beta-functions in IPs
from �45 cm to the design values of 35 cm. These optics
corrections contributed to collider luminosity growth of
�20–30%. Presently, further improvements of the model
are limited by poor accuracy of BPMs and sufficiently long

measurement time. To address it we are upgrading BPM
electronics. That will boost BPM accuracy from �150 mm
to 20 mm rms and will allow to acquire turn-by-turn data
for all BPMs. Turn-by-turn measurements will significantly
reduce the measurement time, but their effective use implies
development of software to fully utilize redundancy in their
data. In addition the turn-by-turn measurements will allow
us to measure lattice non-linearities.
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Abstract

Achieving very low temperatures in the beam rest frame can present new possibilities in accelerator physics. Increasing luminosity in

the collider and in experiments with targets is a very important asset for investigating rare radioactive isotopes. The ordered state of

circulating ion beams was observed at several storage rings: NAP-M [Budker, et al., in: Proceedings of the 4th All-Union Conference on

Charged-Particle Accelerators [in Russian], vol. 2, Nauka, Moscow, 1975, p. 309; Budker et al., Part. Accel. 7 (1976) 197; Budker et al.,

At. Energ. 40 (1976) 49. E. Dementev, N. Dykansky, A. Medvedko et al., Prep. CERN/PS/AA 79-41, Geneva, 1979] (Novosibirsk), ESR

[M. Steck et al., Phys. Rev. Lett. 77 (1996) 3803] and SIS [Hasse and Steck, Ordered ion beams, in: Proceeding of EPAC ’2000]

(Darmstadt), CRYRING [Danared et al., Observation of ordered ion beams in CRYRING, in: Proceeding of PAC ’2001] (Stockholm)

and PALLAS [Schramm et al., in: J.L. Duggan (Eds.), Proceedings of the Conference on Appl. of Acc. in Research and Industry AIP

Conference Proceedings, p. 576 (to be published)] (Munich). In this report, the simulation of 1D crystalline beams with BETACOOL

code is presented. The sudden reduction of momentum spread in the ESR experiment is described with this code. Simulation shows good

agreement with experimental results and also with the intrabeam scattering (IBS) theory [Martini, Intrabeam scattering in the ACOOL-

AA machines, CERN PS/84-9 AA, Geneva, 1984]. The code was used to calculate characteristics of the ordered state of ion beams for the

TARN-II [Katayama, TARN II project, in: Proceedings of the IUCF workshop on nuclear physics with stored cooled beams, Spencer,

IN, USA, 1984].

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.27. Bd

Keywords: Electron cooling; Crystalline ion beams

1. Introduction

1.1. Motion equations

To calculate crystalline beams, pairs of canonical
variables are chosen. Transverse motion is described by
the traditional variables: coordinate and transverse mo-
mentum normalized on the longitudinal momentum.
Longitudinal motion is defined as arrival time and long-

itudinal momentum as spread. The vector of canonical
variables is as follows:

X ¼ x; px ¼
PX

PS

; y; py ¼
PY

PS

;

�

z ¼ �ðt� t0Þb0c; pz ¼
E � E0

PSb0c

�
, ð1Þ

where x, y are the horizontal and vertical positions, px, py

are the corresponding normalized momenta, z is the arrival
time of the particle times �cb0, pz is the normalized
momentum spread pz ¼ DP=PS.
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A Hamiltonian for ordered state simulation is used with
independent variable s:

H ¼ �
xpz

r
þ

p2
z

2g20
þ

p2
x þ p2
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2
þ

1

2

1
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� �
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þ
l
6
ðx3 � 3xy2Þ

þ
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g20b
2
0

X
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ

2
þ ðy� yiÞ

2
þ g20ðz� ziÞ

2
q , ð2Þ

where r is the curvature radius of the reference orbit. The
effect of multipole components of the magnets is included
with parameters K and l, which are defined by

K �
1

Br
qBy

qx
; l �

1

Br
q2By

qx2
; rion ¼

Z2

A

e2

4pe0muc2
, (3)

where Br ¼ p0=q is the magnetic rigidity.

1.2. Molecular dynamics

The last element in Eq. (2) describes the Coulomb
interaction between particles. Since the calculation of the
space–charge effect is time consuming, a molecular
dynamics (MD) technique, with periodic boundary condi-
tion, is used. When ions of charge q ¼ Ze are put at
position (s, r) ¼ (0,0),(7L,0),(72L,0),y (Fig. 1), the last
element in the region |s|oL/2 is [1–8]

U scðs; rÞ ¼
1

4pe0

q

a
þ

2q

L

Z 1
0

J0ðkr=LÞ coshðks=LÞ � 1

expðkÞ � 1
dk

� �
,

(4)

where q is particle charge, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ r2
p

is distance between

particles, s ¼ z� zi, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ

2
þ ðy� yiÞ

2
q

, L is MD

cell size, J0 is the Bessel function of 0th order. The
space–charge force vector from the ith particle, with the
MD technique, can be derived from Eq. (4)

Fpx ¼
1

4pe0

q2ðx� xiÞ

m0c2g20b
2
0

1

a3
�

2I1

rL2

� �
,

F py ¼
1

4pe0

q2ðy� yiÞ

m0c2g20b
2
0

1

a3
�

2I1

rL2

� �
,

Fpz ¼
1

4pe0

q2ðz� ziÞ

m0c2g20b
2
0

1

a3
�

2I0

sL2

� �
, ð5Þ

where

I1 ¼ �

Z 1
0

kJ1ðkr=LÞ sinhðks=LÞ � 1

expðkÞ � 1
dk,

I0 ¼ �

Z 1
0

kJ0ðkr=LÞ coshðks=LÞ � 1

expðkÞ � 1
dk,

J1 is the Bessel function of first order, m0c
2 is ion rest mass.

Integrals I1 and I0 were numerically calculated and are used
in the program as table values. With this MD technique,
the dynamics of the ordered state of ions in a storage ring is
usually simulated with Np ¼ 10=100 particles.

1.3. Crystallization conditions

The main criterion for beam crystallization (orderliness)
is a decrease in particle temperature, lower than inter-
particle potential energy, which can be described by the
plasma parameter:

G ¼
U

T
¼

1

4pe0

Z2e2

aT
41, (6)

where U and T are potential energy and temperature of the
ion beam, respectively. Ze is the charge of particles, a is
average inter-particle distance. 3D crystals are obtained for
plasma parameter Gb150.
The next condition is related to the optical structure of

the storage ring. The storage ring must be alternating-
gradient (AG) focusing and the beam energy must be less
than the transition energy of the ring [9]:

gogT. (7)

Another condition defines the periodicity of the ion
storage ring. The ring lattice periodicity should be at least
four times as high as the maximum betatron value [9]:

4maxfQx;QygoPeriodicity: (8)

These conditions (Eqs. (6)–(8)) need to be satisfied for
3D crystalline beams. In the case of 1D ordered beam,
other criteria were formulated [10]. The main criterion
defines the situation where particles cannot pass each other
in a longitudinal direction:

G2 ¼
1

4pe0

Z2e2

T jjs?
4p, (9)

where TJ is longitudinal temperature and s? is transverse
size of the ion beam. As will be shown below, the criterion
G2 plays a very important role in the process of beam
ordering.
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Fig. 1. Periodic distribution of five particles in MD cells.
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2. Ordered beams in storage rings

2.1. ESR experiments

Since the sudden reduction in momentum spread of a
circulating proton beam was observed in NAP-M [1], the
ordered state of ion beams has also been achieved on
several storage rings. The most extensive experimental
program was perfomed on the ESR [2]. The momentum
spread reduction was observed for a wide range of ion
species, except for very light ions.

On the ESR, the momentum spread of a uranium beam
at 400MeV/u, cooled by a 0.25A electron beam, drops
around 1000 stored ions, from a value of Dp/p ¼ 5� 10�6

to Dp/p ¼ 5� 10�7, corresponding to a change in long-
itudinal temperature of two orders of magnitude (Fig. 2)
[11]. The scraper measurement allows derivation of the
momentum spread and the beam radius as a function of the
number of stored ions (Fig. 2). For the horizontal degree of
freedom, a radius reduction from 0.2mm to less than
0.01mm is obvious. Despite the limited resolution, even for
the vertical beam radius, a reduction is suggested by the
data points at the transition point of the longitudinal
momentum spread and the horizontal radius.

The behavior of ion beam values can be explained using
3D diagrams of beam parameter growth rates due to
intrabeam scattering, which were calculated using a
generalized Piwinski model [6]. The model presumes a

sufficient number of particles and Gaussian distribution of
the particles in all degrees of freedom. Horizontal and
vertical emittances were chosen to be equal.
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Fig. 2. Beam behavior in the ESR experiment showing the anomalous

temperature reduction at low intensity. Momentum spread and beam size

are given as functions of number of stored ions. 238U92+ 400MeV/u.
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Fig. 3. Theoretical dependence of IBS growth rates on beam emittance

and momentum spread for ESR: (a) horizontal and (b) longitudinal

components of IBS growth rates. Results of MD calculations (c):

evolution of ion beam parameters during cooling. Solid black line

corresponds to cooling rate of 4� 104Hz. Grey circles correspond to

cooling rate of 104Hz. Straight line is criterion G2 ¼ p (N ¼ 5� 105).

Open squares are ESR experiment (see Fig. 2).
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The condition G2 ¼ p (Eq. (9)) describes the following
relationship between beam emittance and momentum
spread: e�(Dp/p)�4. In the twice-logarithmic scale, this
dependence is presented in Fig. 3(c) as a black solid line,
where the theoretical dependence of intrabeam scattering
(IBS) on beam values at high particle numbers is compared
with the results of numerical simulation using the MD
method [12]. In ESR experiments, the magnitude of beam
emittances and momentum spread before momentum
reduction are defined by equilibrium between IBS growth
and cooling rates (series of square points on Fig. 3(c)). The
experimental points lie on the line, which approximately
corresponds to equal values of longitudinal and transverse
growth rates. Particle numbers decrease with time and,
when the G2 value exceeds p, cooling forces suppress the
IBS forces and the beam reaches an ordered state (last
experimental point in Fig. 3(c)).

The calculated results, using the MD technique
(Fig. 3(c)), are in good qualitative agreement with the 3D
diagram (Figs. 3(a) and (b)). Calculations were performed
using the same particle numbers, i.e. 5� 10�5, which is
three orders of magnitude larger than in the ESR
experiments. Cooling rates were also chosen as three
orders larger, in comparison with real electron cooling
systems. In the first stage of beam cooling, all the lines have
the same angular inclination, determined by the ratio
between cooling rates in transverse and longitudinal
degrees of freedom. In the case of uniform cooling
(e�(Dp/p)2), one can see this dependence in the initial part
of the beam phase trajectory, independent of initial point.
This means that at a large initial phase, space of the beam
IBS process does not effect the cooling process.

Prior to the ordered state, MD calculations are in good
agreement with the position of maximum IBS growth rates,
as predicted by the Piwinski model. No other additional
heating was used in these simulations. In the ordered state,
IBS growth rates, calculated using the MD method, are
substantially less than predicted by the Piwinski model. At
a cooling rate of 4� 104 Hz and higher, beam emittance
and momentum spread decrease to very small values.

2.2. Simulation for TARN-II

The 3D phase diagrams of IBS heating rates, in
accordance with the Martitni model for the TARN-II ring
[7], display the same behavior as the ESR ring (Figs. 3(a)
and (b)). To study intrabeam scattering in the ordered
state, the 3D phase diagram of heating rates was
numerically simulated using the MD technique. Initial
distribution was generated with the same distance between
particles in a longitudinal direction. Transverse emittance
and momentum are generated with a Gaussian distribu-
tion. This means that particles initially have only kinetic
energy in the longitudinal plane. Growth rates are
calculated after a few hundred cycles, when relaxation
between kinetic and potential energies in the longitudinal
plane occurs. The solid black line in Fig. 4 corresponds to

criterion G2 ¼ p; the gray line is the equilibrium between
longitudinal and transverse temperatures. The intersection
between criterion G2 and temperature equilibrium is the
final point before the sudden reduction of momentum
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Fig. 4. MD simulation: (a) Horizontal component of IBS growth rates,

(b) longitudinal component of IBS and (c) evolution of beam parameters

during cooling process. Iecool ¼ 5A, 132Sn50+ 220MeV/u, N ¼ 105.
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spread, which has been experimentally observed in a few
storage rings.

The simulation result (Fig. 4) displays a number of
differences from the theoretical model of IBS heating
(Figs. 3(a) and (b)). Transverse components have very low
heating rates for the range of momentum spread, which are
located below the temperature equilibrium. Another big
difference is the shape of the longitudinal component of
IBS heating rate. It is divided into two parts. The first is
defined by heating from an optic structure. The second part
resembles an island whose height is linearly dependent on
particle number and is well described by the IBS theory.
The maximum of the IBS island is located near the
intersection between criterion G2 ¼ p and temperature
equilibrium.

The longitudinal component of IBS heating breaks up
when heating rates have very small values compared to the
theoretical prediction. If the initial ion beam values are
chosen near the break-up, then the ordered state for a large
number of particle N ¼ 105 can be achieved for a real
cooling system with electron beam current Iecool ¼ 5A
(Fig. 4(c)).

To achieve ordered ion beams with a large number of
particles and a realistic cooling force, a special strategy for
the cooling process should be elaborated. When the ion
beam remains in equilibrium between IBS and cooling,
additional heating may be applied in the transverse
direction. For example, heating by an RF-kicker can be
used. Initially, the momentum spread will continue to
decrease and emittances will increase. When the beam
parameters have to satisfy the condition T?bTJ, the
additional heating can be switched off and the ion beam
will continue to cool down to the ordered state. The same
idea is projected for other storage rings. Experimental
verification of the new strategy for achieving an ordered
ion beam with a large density can open new possibilities in
accelerator physics.

3. Conclusion

Ion beam parameters, before momentum reduction, are
defined by the equilibrium between cooling force and IBS.
When cooling rate exceeds maximum IBS growth rate, the
ion beam reaches an ordered state. The ESR case is studied
in detail and simulation shows very good agreement with
experimental results. Numerical simulation shows a large

difference in the behavior of IBS heating in the ordered-
state compared with the theoretical model. To increase
particle numbers in the ordered state, a new strategy of
cooling process is proposed. Additional heating in the
transverse direction should be applied during the cooling
process. For real cooling systems, the ordered state can be
achieved with number of particles up to 105.
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Abstract

Stability analysis of the coherent motion of multibunch beams (including counter-rotating beams) should involve expressions

analogous to the effective impedance—the series over harmonics of the revolution frequency of the impedance of the RF structure at the

side frequencies to these harmonics—with certain factors depending on the harmonic number, such as the bunch line-density spectrum,

the phase factor and the factor describing the order of multipole synchrotron oscillations. In this paper, we present a method for

analytical summation of these series for resonant impedance, which does not seem to have been carried out previously for the general

case including all the factors mentioned. Comparison of the expressions obtained with formulae used in previous papers shows the limits

of validity of simpler approaches. The expressions obtained are used in the computer codes MBIM1 and MBIM2 presented at this

conference, which calculate coherent oscillation stability for arbitrary multibunch beams.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.27.Bd
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1. The series to be considered

The following series is summarized:

SðN; yÞ ¼
X1

m¼�1

mNeimye�m2f2
0Zþm (1)

where Zþm ¼ Zð�iðmo0 þ OÞÞ, Zð�ioÞ is the RF cavity
impedance, O is the frequency of coherent oscillations, o0

is the revolution frequency, y is the angular distance
between two bunches of the beam, and f0 is the angular
root mean square (rms) length of a Gaussian bunch. The
power order N is a positive integer, and for different
problems can be both odd and even.

Such a series differs from those considered, for example,
in Ref. [1], first, by the factor e�m2f2

0 , which describes the
square of the spectral density of a Gaussian bunch, and
second, by the fact that the order of the numerator of the

algebraic factor of a term of the series is higher than that of
the denominator.
The formulae for summation of the series (1) are given

below for the impedance with characteristic resistance r,
resonant frequency or ¼ o0mr and quality factor Q, as
follows:

ZðsÞ ¼
rsor

ðs� s1Þðs� s2Þ
¼ Z1ðsÞ þ Z2ðsÞ (2)

Z1;2ðsÞ ¼
rors1;2

ðs1;2 � s2;1Þðs� s1;2Þ

s ¼ �io; s1;2 ¼ or �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=2QÞ2

q
� ð1=2QÞ

� �
.

The impedance equation (2) contains two resonant
summands. It is sufficient to carry out summation for the
first of them, Z1ðsÞ.
The details of these derivations are given in Ref. [4].
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2. Separation of the series into convenient parts

For summation, the series in Eq. (1) should be separated
into two parts:

S1ðN; yÞ ¼
X1

m¼�1

mNeimye�m2f2
0ðZ1Þ

þ
m

¼ S1
PðN; yÞ þ S1

W ðN; yÞ

S1
PðN ; yÞ ¼ iR1

X1
m¼�1

ðmN �mN
1 Þ

eimy�m2f2
0

m�m1
(3)

S1
W ðN; yÞ ¼ iR1

X1
m¼�1

mN
1

eimy�m2f2
0

m�m1
(4)

where m1;2 ¼ iðs1;2 þ iOÞ=o0, R1 ¼ rs1mr=ðs1 � s2Þ.
The series S1

W ðN; yÞ, containing all the poles and
decreasing sufficiently quickly at harmonic numbers
jmj ! 1, can be summed analytically, similar to the
Watson–Sommerfeld transformation [2]. The second series,
S1

PðN ; yÞ, containing no poles, with the help of the Poisson
formula [3], can be transformed into an exponentially
converging series, from which in most cases it is possible to
retain only one or two terms.

3. Summation of the term containing poles

The series in Eq. (4) can be summed with the help of the
Watson–Sommerfeld transformation [2] with some modifica-
tions. For this, auxiliary functions f�ðzÞ ¼ f ðzÞe�ipz= sinðpzÞ

should be considered, where f ðzÞ ¼ eizy�z2f2
0=ðz�m1Þ,

and their integrals over the contours of integration C�,
consisting of the real axis and semicircles of infinite radius in
the upper and lower semi-planes S�. In Ref. [2], the integrals
over S� had zero limits at infinity, but here they have finite
limits, which were calculated in Ref. [4]. For 0pyo2p,
we obtain

X1
m¼�1

eiym�m2f2
0

m�m1

¼ pe�m2
1
f2
0eiym1

� �ðctgðm1pÞ � iÞ � i � erfc im1f0 þ
y

2f0

� ��

þ
1

2
e2ipm1 erfc im1f0 þ

ð2pþ yÞ
2f0

� �

�
1

2
e�2ipm1erfc �im1f0 þ

ð2p� yÞ
2f0

� ��
. ð5Þ

Usually, f0 is much less than ymin, the minimal angular
distance between bunches, which is why, with erf expansion
([5], Section 7.1.6) at f05ymin, we can simplify Eq. (5) and

finally obtain

S1
W ðN; yÞ ¼ � pR1m

N
1 eiym1�m2

1
f2
0ðctgðm1pÞ

(

�ið1� dy;0ÞÞ þ dy;0
2m1f0ffiffiffi

p
p

X1
k¼0

ð�2m2
1f

2
0Þ

k

ð2k þ 1Þ!!

)
. ð6Þ

In the limit f0! 0, at N ¼ 0, the expression obtained
(Eq. (6)) coincides with that obtained in Ref. [1]. Eq. (6)
shows that at y ¼ 0, the correcting term (in comparison with
[1]) obtained here depends on the ratio of the bunch length to
the wavelength of the resonant impedance considered. For
wavelengths comparable to the bunch length, it is necessary
to take into account this correcting term. The sum over k in
Eq. (6) converges very quickly and usually only a few of its
terms can be retained.

4. Summation of the term containing no poles

The series in Eq. (3) can be written in the form

S1
PðN; yÞ ¼ iR1

XN�1
k¼0

mN�k�1
1 Ck (7)

Ck ¼ Ckðy;f0Þ ¼
X1

m¼�1

mke�m2f2
0eiym. (8)

For calculation of Eq. (8) we can apply the Poisson
formula (see, for example, Ref. [3, Eq. (11.1)], for which the
conditions of applicability are fulfilled. According to
Section 2.3.15.9 in Ref. [6],

Ck ¼
X1

n¼�1

Pðyþ 2pn; kÞ (9)

Pðyþ 2pn; kÞ ¼

Z 1
�1

xkeixðyþ2pnÞ�x2f2
0 dx

¼ k!

ffiffiffiffiffiffi
2p
p

ðf0

ffiffiffi
2
p
Þ
kþ1

e�ðyþ2pnÞ2=4f2
0

�
X½k=2�
l¼0

ð�iðyþ 2pnÞ=ðf0

ffiffiffi
2
p
ÞÞ

k�2l

ð2lÞ!!ðk � 2lÞ!!
. ð10Þ

As f052p, at y ¼ 0 it is possible to drop from Eq. (9)
the terms with na0, and at y40, all terms except those for
n ¼ 0;�1.
The total expression for the sum of the series in Eq. (1) is

calculated by substituting Eqs. (9) and (10) into Eq. (7),
adding Eq. (6) (or Eq. (5)) and summing the terms for Z1ðsÞ

and Z2ðsÞ.

5. Additional notes

1. The same method can be applied to series in terms of
normal symmetric modes, analogous to Eq. (1), but with
replacement of

P
m f ðmÞ !

P
p f ðpNb þ kÞ (Nb is the

number of bunches in a symmetric beam and k is the
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number of the normal mode). The details are given in
Ref. [4].

2. The same method can be applied in the case of
transverse oscillations for N ¼ 0 and for the transverse
impedance ZtðsÞ ¼ irto

2
r=ðs� s1Þðs� s2Þ. In this case,

first, the size of a bunch can be neglected because the
impedance quickly decreases with increasing jmj, and
second, the summable function decreases sufficiently
quickly at jmj ! 1, so summation formulae similar to
those given in Ref. [1] can be applied, as well as direct
application of the Watson–Sommerfeld formula.

6. Contribution of the non-resonant summand

The expression for the sum of the series in Eq. (1)
contains two different parts: the resonant summand,
containing ðctgðmjpÞ � ið1� dy;0ÞÞ (see Eq. (6)) and the
non-resonant summand (all other terms).

Usually, papers devoted to the summation of similar
series take into account only the first of these summands,
as, for example, in Ref. [7].

Using the formulae given in this paper, we can show that
the contribution of the second (non-resonant) summand at
N40 should not be neglected if mr essentially differs from
integer numbers and at low quality factors.
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Abstract

In this paper, we describe the beam distribution in particle accelerators in the framework of a Vlasov–Poisson scheme. A new approach

to the investigation and numerical simulation is based on the property of an universality of Maxwell equations, and Ł-moment problem.

In this scheme, it is possible to reduce a problem of an optimal stabilization of the given motion to the Ł-moment problem using its

regular approximation technique and well developed computational procedures.

r 2006 Elsevier B.V. All rights reserved.
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1. The problem

A new approach to studying a nonlinear bunched beam
dynamics based on the self-consistent Vlasov–Poisson
equations

qtf þ v � qxf þ F � qvf ¼ 0 (1)

where

F ¼
q

m
gradU þ

e

mc
ðv�HÞ

is the self-consistent force.
As known, the Vlasov equation is used for a description

of collisionless plasma in which charged particles motion is
given by a set of Maxwell equation for the electromagnetic
field. Many special and approximate (wave-like) solution
to the Vlasov equation are known and they describe
important physical effects. One of the most well-known
effects is the Landau damping which is found from the
dispersion equation. The Landau damping is thermodyna-
mically reversible effect, and it is not accompanied with an
entropy increase.

Here, it is assumed that the magnetic field H is small in
comparison with the electric field gradU so that we can
ignore it. Because we consider Poisson’s equation as
follows:

div gradU ¼ �4pq

Z
f ðx; vÞdv (2)

where q is a charge of a particle.
Thus the system (1)–(2) is Vlasov–Poisson system and

looking for nontrivial solution of it in the form

f ¼
XN

0

Ckckðx; vÞe
iot; Np1 (3)

where Ck are some constant that can be found from
boundary conditions.
Next, for convenience, write down Eq. (1) in the form

qtf þ Lf ¼ 0. (4)

Let a spectrum sðLÞ of the operator L be such that
o0 ¼ 0 2 sðLÞ. Assume that there exists a function f 0 ¼PN

0 Ckck satisfying Eq. (4). Obviously, it is a stationary
solution to Eq. (4). It is therefore, reasonable to ask for
which classes of perturbations the one will be stable.
The solution f 0 is called stable in respect to the norms
k � ki, i ¼ 1; 2 if for any �0 and each t00 it is possible to find
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a number d0 such that for kf 0k1}d we have kf � f 0k2}�
for tXt0, where f ¼

Pn
1 Ckcke

iot is solution of Eq. (1)
satisfying the initial condition f ð0Þ ¼ f ðt0;x0; vÞ. Here k � ki,
i ¼ 1; 2 are same given norms and x0 ¼ xðt0Þ such thatP3

1 x2
i ðt0Þpa and a is a radius of the domain for initial

value of x0 ¼ fx1ðt0Þ;x2ðt0Þ; x3ðt0Þg:
We will use some arguments from optimal control theory

for construction of an optimal electric field. An interesting
property of Maxwell equations is employed in the
following. Given a specified beam motion in R3 there exist
electric fields which realize this motion. This property
along with some mathematical aspect of optimal control
theory with a given quality criterion allows to construct in
certain cases a solution to the problem of focusing and
acceleration for charged particle beams.

This reasoning leads to the following main steps:

� We have to find the Vlasov distribution function
f ðt;x; vÞ so that the given transport conditions are
satisfied. Those may include requirements on an
acceleration, current density, value of focus, minimum
of some criterion and so on. The idea is to look at this
problem as to some optimal control problem [1]. The
Vlasov equation is transformed into a Fredholm
equation [2,3] and here we find f ðt;x; vÞ and dispersion
waves.
� Now we can construct a beam density rðt; xÞ and a beam
current density jðt;xÞ according to equations. Thus,
there exist such fields E Poisson which provide a motion
of a beam according to the fixed law of motion.

Based on results of e.g. Zubov [1] and Halmos this
approach makes it feasible to apply the direct Lyapunov
method to nonlinear problems for which an empirical
method of constructing a Lyapunov function generates a
certain kernel operator in a domain of its stability, and
then the Lyapunov equation yields a well known Fredholm
equation. The self-focused and accelerating particle beams
are studied using an analytic solution to the self-consistent
Vlasov equation. A Lorentz force is treated as a control
parameter (a control vector describing control fields),
where a problem of optimal control is resolved. According
to the Poisson equations charge and current densities are
studied in the framework of a programming problem in an
usual form.

2. Main result

The most convenient for the kinetic description of a
beam particle behavior in an electrostatic field is the
Vlasov–Poisson system (VPS) (1). The VPS problem
consists in proving the existence of a C1 or Lp solution
f ðt;x; vÞ for all tX0 where f ð0; x; vÞ ¼ xðx; vÞ is a given
function. Here f ¼ f ðt; x; vÞ is a distribution of particles in
a phase space fx; vg depending on the time t; x 2 R3,

v 2 R3, E ¼ Eðt;xÞ is an electric field, and

r ¼ q

Z
f ðt;x; vÞdv; j ¼ q

Z
vf ðt;x; vÞdv

are the charge density and the current density respectively.
The standard argument (e.g. see Ref. [7] and references

therein) implies that we have characteristic of the nonlinear
dynamical system. Thus the distribution have a random
behavior which is not well defined [8]. Here we only briefly
describe how the L-moment problem (e.g. see Refs.
[4,9,10]) reduces questions of choice of needed field EðxÞ

to an approximation problem.
Let us represent the solution f as a sum

f ¼
XN

1

Ckckðx; vÞe
iot; k ¼ 1; 2; . . . ; Np1

where ck, k ¼ 1; 2; . . . are functions that be given as
follows:

iock þ Eqvck ¼

Z
qxFðx� yÞckðyÞdy

where Fðx� yÞ is a Chezaro kernel. It is an integral
equation with the kernel qxFðx� yÞ ¼

P
mnine

inðx�yÞ. The
calculation can be carried out and a solution will be a
unique one iffZ
Ox

Eqvck � c
�
k dy ¼ 0. (5)

Here c�k is a conjugate function to ck, the latter is a
solution to a uniform equation

iock ¼

Z
v
XN

1

ineinðx�yÞckðyÞdy

where ck ¼
P

hk
ne

inx, hk
n ¼

R
e�inxckðx; vÞdx: This reason-

ing yields a simple equation ðio� invÞhk
nðvÞ ¼ 0:

Putting n ¼ e � n1; e � e ¼ 1; for the sake of simplicity.
Consequently hk

nðvÞ ¼ dðo� k1vÞ is the delta function and
o is a point of the continuous spectrum.
In order to construct the EðxÞ we can use relation (5). L-

moment problem for a continuous medium the physical
system is considered at a defined mesh point fYag, a ¼ 1;M
may be written down as follows:

XN

a¼1

EðYaÞZkðYaÞ ¼ 0; k ¼ 1;N

XN

a¼1

EðYaÞf 0ðYaÞ ¼ 1.

Here fYag is a set of special given random points, Np1,
ZkðYaÞ ¼ c�kqck=qx, and f 0 is some optimal process, such
that

qt ¼ 0) qxf 0 ¼ �qvf 0.

This technique allows to provide a precise numerical
calculation of the dynamics of charged particle beams.
The L-moment method allows studying the detailed
characteristics of bunched beams, taking into account a
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distribution of particles, real self and external fields,
construct optimal fields, and others. It is obvious that
function the EðxÞ is such that the known equations are
valid. More precisely, the function EðxÞ given above must
be such that the following conditions hold true

rEðxÞ ¼ 4pq

Z
f ðt; x; vÞdv ð6Þ

rotEðxÞ ¼ 0 ð7Þ

are satisfied. This system is overdetermined and for this
reason we consider the following approach [5].

The second equation, the system (6), (7) is unresolved for
any vector field E. Indeed, let rotE ¼ $, $ 2 L2,

R
f dv 2

L2 and from here we have got the following condition
div rotE ¼ 0 thus we go to equation div$ ¼ 0. But all
fields in L2 form a subspace S � L2. Thus the system (5),
(6) may be resolved in the subspace S � L2 of the space
L2 � L2 only. But an orthogonal supplement to subspace S

in L2 is the gradient functions which is equal zero on the
boundary qO: In this connection we shall associate some
scalar function P. This reasoning yields the following
system

rEðxÞ ¼ 4pq

Z
f ðt; x; vÞdv

rotEðxÞ þ gradP ¼ 0 ð8Þ

with condition PqO ¼ 0 and other condition on the
boundary qOx : bEqOx

¼ a. The system (8) is the elliptic
system and it can be resolved (e.g. see Ref. [6]).
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Abstract

We report the results of simulations made as a part of the plasma wakefield acceleration project based on VEPP-5 injection complex at

Budker INP. Beam dynamics in the transport line and in 1-m-long plasma section is studied. At the designed facility, the efficient regime

of plasma wakefield acceleration can be demonstrated. This regime is realized in the case of two properly shaped electron microbunches

with a high peak current. To find the required beam shape and plasma parameters, a multiparametric optimization is carried out, which

includes end-to-end simulations of beam dynamics in the plasma section as elementary steps. With the drive beam from the VEPP-5

injection complex, it will be possible to accelerate, in 1-m-long plasma, up to 3� 109 particles with 30% driver-to-witness efficiency,

energy spread lower than 10%, and acceleration rate 600MeV/m.

r 2005 Elsevier B.V. All rights reserved.

PACS: 52.40.Mj; 41.75.Lx; 52.35.Mw

Keywords: Plasma wakefield acceleration; Simulation; Relativistic beam modulation

1. Introduction

Plasmas can sustain very large electric fields that are
many orders of magnitude higher than those in conven-
tional accelerating structures. This property is used in
plasma wakefield accelerators (PWFA), in which one
electron beam drives the high amplitude field in the
plasma, and another beam (witness) is accelerated by this
field (see reviews [1,2] and references therein).

In search of a good PWFA regime, several beam
configurations were proposed and studied. One of them is
the blowout regime [2,3] in which all the plasma electrons
are ejected off the beam propagation channel, and an
electron-free region (the cavern) is formed around the drive
beam. For high beam currents and moderate beam lengths,
the efficient blowout regime [4] is realized, at which high
efficiency of the beam-to-beam energy exchange, high
acceleration rate, and low energy spread can be achieved
simultaneously.

To demonstrate the efficient blowout regime, a high-
quality high-energy electron beam from a conventional
accelerator must be longitudinally compressed, properly
shaped, and injected into a plasma section that is long
enough to completely decelerate some parts of the driver.
All this possibilities will be available at the experimental
facility based on the VEPP-5 injection complex [5]. The
results of simulations made as a part of the experimental
project are reported.
VEPP-5 injection complex is currently under construc-

tion at Budker Institute of Nuclear Physics to provide
VEPP-4 and VEPP-2000 colliders with high-quality elec-
tron and positron beams. The complex consists of 510MeV
linear accelerator followed by the damping ring. Beam
parameters after the damping ring are shown in Table 1.
These beams can be also used for experiments on plasma
wakefield acceleration.
For excitation of a high-amplitude plasma wave, the

beam is to be compressed and shaped before the plasma
chamber (Fig. 1). To this end, a linear correlation between
energy and longitudinal position is induced in the beam by
passing an RF structure at the zero-crossing phase. Then
follow two 45� bending magnets where particles with
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different energies have different path lengths, so the bunch
is compressed longitudinally. In the region of maximum
dispersion, a collimator is placed to cut out some parts of
the beam, so the bunch is modulated. Beam line tracing
(Fig. 2) shows that this system can produce electron or
positron bunches of various shapes, for example, a single
short bunch (0.2mm-long) with peak current up to 3 kA,

two 0.2mm-long microbunches with peak currents of
1–2 kA, or a long train of microbunches with the peak
current about 100A. The tracing code does not take into
account coherent synchrotron radiation (CSR) effects and
edge magnetic fields. These effects are important only for
maximum compression rates that are not necessary for the
regimes discussed below.

2. Simulation results

The designed facility will be flexible enough to study
various regimes of plasma wakefield acceleration. Here we
describe only the efficient two-bunch regime which is of a
prime interest for possible collider applications of PWFA.
In the efficient blowout regime, the plasma response to

the beam is essentially nonlinear and allows no detailed
analytical study. The account of beam dynamics compli-
cates the problem further. Therefore, for optimization of
the system, we use two-dimensional hybrid code LCODE
[6,7] to make end-to-end simulations of beam propagation
through the whole plasma section.
In simulations, we take the initial beam density at the

entrance to the plasma in the form

nb ¼ A e�r2=2s2r 1� cos
2pz

L

� �� �
,

0ozoL; L ¼ 2
ffiffiffiffiffiffi
2p
p

sz

A ¼
Nbðgðz; z2Þ þ 2� gðz; z1ÞÞ

4ð2pÞ3=2s2rsz

ð1Þ

gðz; ziÞ ¼

2; zozi � dz

1� sin
pðz� ziÞ

2dz
; jz� zijodz

0; z4zi þ dz

8>><
>>:

where z is the longitudinal coordinate, z1 and z2 are the
locations of driver and witness inward fronts, correspond-
ingly, dz ¼ 0:125mm is the blur of these fronts determined
by initial energy spread dW of the beam; other notation is
common.
The initial angular spread is Da ¼ �x=sr for both

transverse coordinates to stay within the axisymmetric
approximation, so the six-dimensional distribution func-
tion of beam particles is

f ð~r;~pÞ / nbðr; zÞ exp �
p2

r þ p2
j

2Da2p2
z0

 !
dðpz � pz0Þ

where pz0 is the initial beam momentum ðpz0 ¼ 1000mcÞ,
and d is the delta-function.
The process of optimization involves the adjustment of

sr, sz, z1, z2, as well as plasma density ni and length L to
maximize the witness energy gain and witness charge at
moderate ðt10%Þ energy spread.
The result of optimization is shown in Fig. 3. The beam

that initially comprises 2� 1010 electrons is to be com-
pressed to sz ¼ 0:3mm, focused to sr ¼ 0:026mm, and
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Table 1

Beam from VEPP-5 injection complex

Energy, W 0 510MeV

Number of particles in bunch, Nb ð2C5Þ � 1010

rms bunch length, sz 4mm

Transverse rms size, sx � sy 1:5� 0:03mm

x-Emittance, �x 2:3� 10�3 mrad cm

y-Emittance, �y 0:5� 10�3 mrad cm

Energy spread, dW=W 0 0.05%

8 mm

1 mm
Lens

Plasma Spectrometer

Bend

Collimator

Sextupole

RF-structure

Beam from

complex
injection
VEPP-5

0 1 m 2 m

Fig. 1. General layout of designed facility. Insets show the beam portraits

at different positions.
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Fig. 2. Beam line tracing example. Arrow shows the direction of beam

propagation.
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collimated to create the double-hump density distribution
(Fig. 3a). After passage of 95 cm in the plasma of density
1:7� 1015 cm�3, the first bunch (1010 electrons) loses 54%
of its energy and decelerates in average from 510 to
240MeV (Fig. 3b). The second bunch takes 63% of the

plasma energy and accelerates to 1.1GeV. This corre-
sponds to 34% bunch-to-bunch efficiency and the accel-
eration rate of 600MeV=m. The final energy spread of
accelerated bunch is 9% (Fig. 3b), the angular spread is
lower than 0:3�. Fig. 3c shows the plasma wave structure
and beam portrait at the midway of the plasma section.
Here we can see that the tail of the witness is already
defocused by plasma wake and the beam becomes shorter.
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(c)

Fig. 3. Results of simulations: (a) the profile of beam current before the

entrance to the plasma, dashed line shows the current profile with no

collimation, the beam propagates toward positive z-direction; (b) energy

spectrum of the beam after the plasma; (c) plasma wave structure and the

beam portrait at the midway of the plasma section. Black dots show driver

particles, gray dots show witness particles.
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Abstract

The finite particle methods are widely applied for the numerical simulation of a continuous medium including continuum

electrodynamics and simulation of charged particle beams. This method allows studying the detailed beam and plasma characteristics,

the distribution function of particles, the nonlinear self and external fields. The so-called ‘‘particle-in-cell’’ method is the most effective

for simulations in the physics of plasma and charged particle beams.

Two examples illustrate the application of the particle-in-cell method in beam dynamics and plasma physics. The first is a program

library for numerical simulation and optimization of multi-component ion beam transportation from ion sources where RFQ

accelerators are presented. The latest version of the library was applied for simulations of transverse dynamics of an argon ion beam in

the beam line from the 18GHz ECR Ion Source to the linear RFQ accelerator of the RIKEN Beam Factory. A partial neutralization of

ion beam charge due to secondary electrons was assumed to realize the real experimental conditions in the beam line and was used in

simulation. The second is a summary of recent development of physical and mathematical basements and the first version of a computer

code library aimed for the three-dimensional (3D) simulation of the ECR plasma and ion production in the ECR ion source.

r 2005 Elsevier B.V. All rights reserved.

PACS: 02.60.Cb; 29.25.Ni; 52.50.�b; 52.20.�j
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0. Introduction

Mathematical modeling and numerical simulation of
beam dynamics and multicomponent plasma with con-
sideration of space charge effects are of great important in
connection with modern trends of investigations in the
physics of particle accelerators and ion sources. These
problems belong to the electrodynamics of a continuous
medium.

The distribution of particles within the phase–space of
co-ordinate ~r; and velocities ~v; is described by the
distribution function f ð~r; ;~v; ; tÞ. In consideration of the
particles’ electromagnetic space fields and of impact
processes that take place in ion sources and beams, the

movement of charged particles is described in a generalized
form by a system of self-consistent kinetic equations
completed by Maxwell equations [1].
The particle-in-cell is one of the finite particle methods

for the simulation of multicomponent plasma and particle
beams [2]. These methods are the most powerful methods
for the numerical simulation of motion of continuous
medium, gas and plasma dynamics, dynamics of charged
particle beams. The finite particle method allows studying
the detailed characteristics of continuous medium, taking
into account the distribution functions of particles (spatial,
velocity and energy distributions), real self and external
fields, particle–particle interactions and many other effects.
This technique allows providing very precise numerical
simulations of the plasma and beam dynamics.
The electrostatic potential U for the medium simulation

performed in quasi-static approximation is described by the
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Poisson’s equation:

DU ¼ �
r
e0
, (1)

where r is the particle density.
Particles of all masses and charge states are available in

the consideration—ions of all charge states of all elements,
different kinds of neutrals (atoms ore molecules) or
electrons. Each finite particle represents the group of
physical particles. Thus, every finite particle species has a
mass and charge accordingly to the type of ions, neutrals or
electron.

1. Beam dynamics

A program library based on the macro particle method
(MCC code) [3] was applied for simulations of transverse
dynamics of an argon ion beam in the beam line from the
18GHz ECR Ion Source to the linear RFQ accelerator of
the RIKEN Beam Factory [4]. The line consists of an
Einzel lens (EL), a horizontal bending magnet (BM) with
poles, removable Faraday cup (FC) and a solenoid
(SRFQ), and it is presented in Fig. 1.

The results of numerical simulation of the multi-
component ion beam dynamics in this channel were
published in the Ref. [5]. A new beam line with a solenoid
S2 instead of EL is proposed, simulated and optimized.
A partial neutralization of ion beam charge due to
secondary electrons was assumed to realize the real
experimental conditions in the beam line, and was used
in the simulation.

The particle motion in a solenoid field was integrated in
the rotating co-ordinate system Xr to improve the accuracy
of the calculations:

X r ¼
xr

yr

 !
; X ¼

x

y

 !
; Y r ¼ QX ,

Q ¼
cosFðzÞ sinFðzÞ

�sinFðzÞ cosFðzÞ

 !
, ð2Þ

X 0r ¼ QX 0 þQ0X ; F0 ¼ kðzÞ ¼ �
1

2

ZeBz

cpz

,

where symbol ‘‘0‘‘means the derivative on longitudinal
co-ordinate z, pz is the longitudinal particle momentum and
Bz—the longitudinal component of the induction of
magnetic field. The equations of particle motion in this
co-ordinate system are as follows:

X 00r þ k2X r ¼
Ze

cpzbz

QEs; Es ¼
Exs

Eys

 !
.

Here bz ¼ vz=c is the relative velocity of ion and Es—
the space electric field of the ion beam in laboratory
co-ordinate system. Since ions with different charges have
different angular velocities, so the space electric field of the
beam is calculated in the laboratory co-ordinate system.
Ions with different charge states move along different

orbits. The ion of charge state Z is shifted from the
equilibrium orbit for the charge state Z0 in the x direction
according to the equation

x00 þ
1

r20
x ¼

1

r0
�

1

r
þ

Ze

cpzbz

Exs,

1

r0
¼ �

Z0eB

cpz0

,

1

r
¼ �

ZeB

cpz

.

Here pz0 is the longitudinal momentum for equilibrium
particle and B—the induction of magnetic field in BM.
It should be noted here that the orbit of an equilibrium

particle is shifted after BM. The unsymmetrical influence of
the beam space charge on an equilibrium trajectory is a
cause of this effect during separation if the beam current is
not negligible. These shifts of the center of mass and the
angle of trajectory bending for the equilibrium particle are
corrected automatically on the exit of BM in our
calculations. This correction can be done by a small tuning
of magnetic field induction B or by using an additional
dipole magnet in the real experimental conditions.
The simulation of ion beam dynamic was carried out for

the beam of argon ions of five species—Ar6+–Ar10+. The
experimental charge state distribution of the ion beam
measured after BM was used as the initial one. The ion
beam emittance at the channel entrance was assumed to be
equal 100mmmrad and the initial momentum spread
Dp=p ¼ 0. Particles in the phase planes were generated
according to the micro-canonical distribution. The kinetic
energy of ions was 11 Z keV (here Z is the ion charge). The
magnetic field in BM corresponds to the equilibrium orbit
for Ar8+.
Secondary electrons are accumulated in the beam if there

is no external transverse magnetic or electric field in the
beam line [5]. The beam neutralization is not full due to the
initial energy of secondary electrons. The process of
neutralization stops when the beam potential becomes less
that the electron energy. Nevertheless, according to
simulation and all experimental data, an ion beam
produces a channel of secondary electrons in the linear
beam line sections without external transverse fields and,
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in this way, the beam fields are reduced and the beam
transition is improved. A so-called factor of neutralization
FN was introduced in simulations for taking into account the
influence of secondary electrons on the beam transmission.

The optimization of S2 parameters (location and
magnetic field) was carried out to achieve the maximum
capture of beam current into the RFQ acceptance. The
dependence of accepted current on the neutralization factor
FN was studied. The magnetic field induction was varied in
the limits—0.15,y,0.3 T in S2 and 0.25,y,0.35 T in
SRFQ. The results of simulation for Iext ¼ 6mA and
various NF are presented in Figs. 2–4. Fig. 2 corresponds
to the results for the existent beam line (without S2). The
following data are presented at the figures:

� Main windows: particle trajectories in vertical (above)
and in horizontal (below) planes, left curve is the
residual magnetic field of ECRIS;
� Upper window: schematic drawing of the channel, boxes

1 are the regions with magnetic field of the ECRIS

solenoids and S2 (left) and SRFQ (right), box ‘‘0’’ is the
BM;
� Left and right panels: initial and final ion beam

parameters correspondently.

The simulations have shown that the experimental ratio
(�80%) of beam current captured into the RFQ accep-
tance and beam current on FC is also achieved for
FN ¼ 0.9. The focus spots can differ in the horizontal
and vertical planes, and it is difficult to obtain and adjust
poperly the RFQ acceptance with the beam emittance in
this case. The maximum value of IRFQ is possible only if the
beam envelope has the double waist near FC. It is possible
to avoid such a situation by a small (o1%) variation of the
magnetic field of BM in practice.

1.1. Results of beam line simulation and optimization

� The results of numerical simulation with NF�0.9 of the
beam are in the good coincidence with experimental data.
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Fig. 2. Beam trajectory for Bsol.1 ¼ 0; Ar8+ ion currents are 1.25mA at FC and 0.95mA at RFQ.

Fig. 3. Beam trajectory for Bsol.1 ¼ 0.203T at 68 cm; Ar8+ ion currents are 3.7mA at FC and 2.7mA at RFQ.
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� The maximum acceptance of ion beam current into the
RFQ is about 70–80% of the beam current on FC.
� The maximum beam current into the RFQ acceptance

can be provided by the beam with double waist envelope
in the FC region of the line.
� The solenoid S2 instead of Einzel lens EL is able to

increase the beam current in the RFQ acceptance by a
factor of 2.5–3. The first test of S2 without any
optimization has improved the beam current by a factor
of 1.6.

2. Multicomponent plasma of ECR ion source

The project ‘‘Numerical simulation and optimization of
ion accumulation and production in multicharged ion
sources’’ was fulfilled in 1999–2001 at the International
Science and Technology Center (ISTC). This project was
carried out in the frame of the Radioactive Isotope (RI)
Beam Factory at RIKEN [6]. The factory consists of a
cascade of ion accelerators and is aimed at providing RI
beams over the whole atomic mass range with a high level
of intensity in a wide range of energies up to several
hundreds MeV/nucl. The first section of the accelerator
chain is a new superconducting ECR ion source. The
physical substantiation of the ISTC project was prepared
and published in RIKEN in 1997 [2].

The goal of the project is the creation of a new
generation 3D model and codes for the numerical
simulation based on the ‘‘particle-in-cell’’ method. This
technique allows providing very precise numerical simula-
tions of the ECR plasma and optimizations of ECR ion
sources in this way.

2.1. Physical and mathematical models [7]

The velocities of electrons and ions are different by 2–3
orders of magnitudes due to different masses and energies
in the plasma. The integration of the equations of motion
for the electron component requires a time step of about
10
�12

–10
�11

s. This is the main limitation for the computer

simulation of ion accumulation in plasmas with a time
scale of 10ms.
The electron motion consists of fast Larmor rotation

with frequencies of about 1010Hz and relatively slow drift
of the electron trajectory in the magnetic trap of the ECR
source. The Larmor rotation does not determine peculia-
rities of slow rate processes of ion production and
accumulation in the ECR source. Therefore, it is possible
to exclude fast rotation of a particle around a small
Larmor circle from the equations of motion, with the aim
to sufficiently increase the integration step of the problem
to be solved. This can be done by substitution of particle
motion by the motion of the center of Larmor rotation.
The theory providing the description of charged particle

motion in an electromagnetic field in that way, called
‘‘guiding center theory’’ or ‘‘guiding center approximation’’

[8], was developed and applied in computer codes for
simulation of the ECR plasma.
Electrical and magnetic fields are created by a system of

coils, permanent magnets and special electrodes in the
ECRIS. These fields can be calculated analytically or
numerically, or can be fixed as an experimental data table.
A quadratic interpolation is used to calculate fields in every
point inside of cells. The following models and procedures
have been chosen for the simulations:

� Analytical equations to calculate the fields of typical

elements: solenoids, quadrupole or multipole lenses,
horizontal and vertical bending magnets, accelerating
and drift cavities;
� POISSON/SUPERFISH Group of Codes [9] to calculate

the fields from user defined sources: permanent magnets,
solenoids with iron, ‘‘Einzel’’ lenses, electrodes of a
complex configuration, etc.
� Data tables of experimental fields.

The physical model is based on differential equations of
motion for the charged particles and the Poisson equations
for the self and external fields [2]. The self-field of particles
is obtained from a direct solution of the Poisson’s equation
for an electrostatic potential at every time step, in a
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cylindrical system of co-ordinates with Dirichlet boundary
conditions at the conductive surface, and with Neumann
conditions at the axis. The double Fourier transformation
is used to solve the Poisson’s equation. The procedure of
quadratic interpolation is used to calculate the values of
self-fields in every point of every particle position. The
density distributions of every plasma component are
calculated at every integration step on these mesh cells, in
order to provide self-consistent solutions of equations of
particle motion and fields in the plasma.

Particles of all masses and charge states are available in
the consideration—ions of all charge states of all elements,
different kinds of neutrals, electrons, etc. Each finite
particle represents the group of physical particles. Thus,
every finite particle species has a mass and charge
according to the type of ions, neutrals or electrons.

Simulation of processes in a multicomponent plasma
must take into account the geometry of the real set-up and
the parameters of its elements. The data to describe an
initial condition of a system of interacting particles should
be given as well.

The following model conceptions of ECR plasma
components are used in Refs. [10,11]:

� The electrons have a complicated distribution of a few

components: cold primary electrons of tens or hundreds
of eV; a main electron component of keV energy which
produces highly charged ions and, according to the
experimental data, a component of superhot electrons of
tens or hundreds of keV;
� Electrons undergo the RF heating on a surface with

ECR conditions in the magnetic field;
� ECR plasma is neutral or quasi-neutral in every point of

the volume.
� All ion components have Maxwellian energy distribu-

tion, with a common temperature in the plasma due to
intensive elastic Coulomb collisions.

The basic inelastic atomic processes providing the
change of a charged particle distribution are ionization of
neutral atoms and ions by electron impact, charge
exchange of ions with neutral atoms and recombination
among ions and electrons.

The balance equations for ion densities are a basis of the
algorithm to simulate inelastic processes in the ECR
plasma. The balance equations are a consequence of the
kinetic equations for the ion distribution function. These
equations take into account all processes determining
production and loss of ions and have a probabilistic
character. It is quite straight forward to use a Monte-Carlo
method of statistical modeling to find a solution of the
balance equations in each cell of the mesh in simulations.

The complete amount of finite size particles in the mesh
should be much greater than the amount of cells.
Supposing that the amount of macro particles—ions of
each charge state in an elementary cell is equal to 10–15,
and that the amount of various ions species does not

exceed 10–20, we fixed that the macro particle amount
must be in the order of (2–3)� 105 for the adequate plasma
description in the 2D model. The relative error in the
definition of a plasma field should not exceed the value of
1/N1/2

¼ 1/[(2–3)� 105]1/2E2� 10�3, i.e. less than 1%. In
a 3D case, the number of the finite size particles will not be
less then (3–5)� 106.
Each finite particle has six co-ordinates in total—three

space co-ordinates (x, y, z in Cartesian co-ordinates) and
three velocity or momentum co-ordinates. Equations of
motion describe the changes in time of the entire set of
phase co-ordinates. The equations of motion can be
integrated by numerical methods, the most economic with
regard to computing resources, being a ‘‘leap-frog’’ method
of the second order.
It takes at least several thousand integration steps to

perform the integration of one ion oscillation due to the
large difference in Larmor frequencies of electrons and ions
in the plasma. This is one of the main difficulties of plasma
simulation that can be solved via the macroparticle
method, at least in two ways—a computation model with
increased electron mass, and the averaging of fast
oscillating motion of electrons in a magnetic field (see
above).

2.2. Testing of the library of computer codes

The code library with the name ECR source particle
code (EPC) to simulate ECR sources has been prepared.
The complex includes earlier developed blocks of programs
[7] for realizing procedures of different processes men-
tioned above using Delphi 5.
The common WINDOWS interface of the library is

aimed to set parameters and initial conditions, to start the
program of the ECR ion source simulation and to control
the calculation process. The main menu of the program
(Fig. 5) includes the following items—parameters, initial

conditions, viewand calculations.

The programs have been united by the user interface that
allows investigating various phases of processes proceeding
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Fig. 5. Main menu of the library with schematic view of ECR source.
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in ECR ion source. First tests of the computer code library
are presented in Figs. 5–8. These figures show results of a
model simulation of nitrogen ion production and accumu-
lation during about 50 ms. These figures have been taken
directly from the computer screen and can give some
impressions of the user interface—numbers of macropar-
ticles, items of the user menu, charge states of ions, etc. The
initial data for this numerical experiment for the 18GHz
ECR source were as follows:

� density of nitrogen neutrals was equal to 2� 1010 cm�3,
and kept constant;
� average initial energies of electrons and neutrals were 10

and 0.03 eV, correspondingly;
� longitudinal magnetic field with trap longitudinal

configuration (Bz ¼ 0.47T at the center of chamber—

Z ¼ 0 and Bz ¼ 1.5 T at Z ¼712 cm), and sextupole
magnetic fields were used in computations;
� initial amount of macroparticles was 50,000;
� mesh sizes on X-, Y- and Z-axes were 4mm� 4mm�

8mm.

The typical rate of calculations was 1 ms of plasma time
for 1 h of simulation time using a Pentium III PC.
The spatial distributions of two electron components are

shown in Fig. 6: (a) for X-Y plane and (b) for X-Z plane.
The blue color of macroparticles corresponds to a low
energy electron component and the green color corre-
sponds to high-energy species. Fig. 7 presents the ioniza-
tion dynamics of nitrogen ions. Fig. 8 shows spatial
distributions in the X-Y plane for nitrogen ions of different
charged state.
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Fig. 6. Distributions of electrons in XY (a) and XZ (b) planes.

Fig. 7. Ionization dynamics of nitrogen ions.
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3. Results of ECRIS plasma simulations

The physical basement and mathematical methods for
simulation of ECR plasmas with the particle-in-cell model
have been developed. A first version of a computer code
library was created and tested in simulations of processes in
a real ECR ion source. It has been shown:

� detailed and exhaustive spatial description of fields and
particle motion and interaction in the ECR source
plasma requires a full-scale 3D task to be solved;
� computer executing time of simulation is mostly

determined by the time step of integration (�10�10 s)
of electron equations of motion and by the number
of macroparticles for the electron component
representation;
� time range of production and accumulation of heavy

highly charged ions is about 1–10ms and it requires
about 108 time steps of simulation;

� 2D task requires at least 2–3� 105, and full-scale 3D
task requires at least of 3–5� 106macroparticles in the
simulation.

The most significant difficulty of 3D problems is a large
computation time. High-power multiprocessor computers
with parallel computation only are able to satisfy the
requirements of a 3D simulation. The development and
adaptation of numerical methods and computer codes for
parallel computations at a multiprocessor computer are
necessary for the full-scale 3D task.
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Abstract

The BETACOOL program developed by the JINR electron cooling group is a package of algorithms based on a common format for

input and output files. The program is oriented to simulation of the ion beam dynamics in a storage ring in the presence of cooling and

heating effects. The version presented in this report includes three basic algorithms: simulation of RMS parameters of the evolution of

the ion distribution function over time; simulation of the distribution function evolution using a Monte-Carlo method; and a tracking

algorithm based on a molecular dynamics technique. General processes to be investigated with the program include intrabeam scattering

in the ion beam, electron cooling, and interaction with the residual gas and the internal target.

r 2005 Elsevier B.V. All rights reserved.

PACS: 34.70.+e; 36.10�k; 29.27.Bd

Keywords: Storage ring; Beam cooling; Electron cooling

1. Introduction

Electron cooling is widely used for ion-beam parameter
control in storage rings. At present there are approximately
20 storage rings in operation and under construction that
are equipped with electron cooling devices. The BETA-
COOL program developed for simulation of electron
cooling processes [1] is actively used for the design and
simulation of electron cooling systems in several research
centers: JINR, ITEP, Jülich-FZ, GSI, RIKEN and BNL
[2–6]. BETACOOL is programmed with an object-oriented
method using the C++ language. The interface with the
Windows operating system was developed on the basis of a
BOLIDE system (Builder Object Library & Interface
Development Environment), which is dedicated to fast
elaboration of the physics and mathematics applications.

The general goal of the BETACOOL program is to
simulate long-term processes (in comparison with the ion
revolution period) leading to variation of the ion distribu-
tion function in six-dimensional phase space. The ion beam
motion inside the ring is supposed to be stable and is
treated by a linear approximation.

The structure of the program allows simulation of the
evolution of the ion distribution function using a few
independent numerical algorithms. Each algorithm simu-
lates the ion beam dynamics for the same input beam and
ring parameters and uses the same set of effects acting on
the beam distribution function in simulations.
This report discusses the latest version of the BETA-

COOL program, which includes three algorithms for beam
dynamics simulation and takes into account the following
processes: electron cooling, intrabeam scattering, ion
scattering on residual gas atoms, and interaction of the
ion beam with the internal target, among others.

2. BETACOOL algorithms

Three basic algorithms for simulation of the evolution of
the ion distribution function are now included in the
program:

� RMS dynamics simulation;
� simulation of distribution function evolution using a

Monte-Carlo method (model beam algorithm); and
� multi-particle tracking based on a molecular dynamics

technique.
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The physical model used in the RMS dynamics simula-
tion is based on the following general assumptions:

(1) The ion beam has Gaussian distribution over all
degrees of freedom, and is not changed during the
process.

(2) The algorithm for analysis of the problem is considered
as a solution of the equations for RMS values of
volumes of the beam phase space for three degrees of
freedom.

(3) The maxima of all the distribution functions coincide
with the equilibrium orbit.

The evolution of the ion beam parameters during its
motion inside the storage ring is described by the following
system of four differential equations:

dN

dt
¼ N

X
j

1

tlife;j
;

deh
dt
¼ eh

X
j

1

th;j
;

dev
dt
¼ ev

X
j

1

tv;j
;

delon
dt
¼ elon

X
j

1

tlon;j

(1)

where N is the particle number, and eh, ev and elon are the
RMS values of the horizontal, vertical and longitudinal
beam emittance, respectively. Characteristic times are
functions of all three emittance values and the particle
number and have a positive sign for a heating process and a
negative sign for a cooling process. A negative sign for the
lifetime corresponds to particle loss and the sign of the
lifetime can be positive in the presence of particle injection,
when the particle number increases. Index j in Eq. (1)
indicates the number of processes involved in the calcula-
tions. The algorithm structure is designed in such a way
that allows the inclusion of any process into calculation
that can be described by cooling or heating rates. The
numerical solution of Eq. (1) is performed using a Euler
method with automatic step variation. The result of the
simulation gives the time dependence of the emittance and
the particle number. An ion ring optic structure is
necessary only for intrabeam scattering (IBS) simulation.
The IBS growth rates are calculated in accordance with an
analytical model using ring lattice functions imported from
the output file of the MAD program [7].

Step of the integration of Eq. (1) over time is determined
by the characteristic times of the effects investigated
and the calculation speed can be very fast. However, in
some cases the basic physical model cannot provide
realistic simulation, mainly due to basic assumptions
about the Gaussian shape of the ion distribution function.
This assumption is more or less realistic in an equilibrium
state of the ion beam, when the equilibrium is determined
by many processes of a stochastic nature. If equilibrium
does not exist due to fast particle loss or in the initial stage
of beam cooling, the ion distribution function can be far
from Gaussian. The same situation occurs in an experiment
with internal targets for which the dimensions do not
coincide with the ion beam dimensions. In addition, the

ionization energy losses of the ion beam in the target
cannot be correctly calculated within the framework of this
model.
Investigation of the ion beam dynamics for an arbitrary

shape of the distribution function is performed using multi-
particle simulation within the framework of the model
beam algorithm. In this algorithm the ion beam is
represented by an array of model particles. The heating
and cooling processes involved in the simulation lead to
changes in the particle momentum components and
particle number, which are calculated in accordance with
the dynamics simulation step over time. Each effect is
located at some position of the ring characterized by the
ring lattice functions. Transformation of the beam inside
the ring is carried out using a linear matrix for random
phase advance between the effect locations. The simulation
results can be presented both as a beam profile evolution
over time or as the time dependence of the beam emittance
and particle number.
The real ion-ring optic structure is only necessary for IBS

diffusion power calculation. The change in particle
momentum due to IBS is calculated on the basis of one
of the analytical models, as in the case of RMS dynamics
simulation.
For simulation of the IBS process through Coulomb

interaction between ions, the tracking algorithm is used.
One of the goals of this algorithm is to simulate the
formation of a crystalline state of the ion beam. In this
crystalline state, the IBS process cannot be treated within
the framework of analytical models, which are based on the
assumption of an ion distribution function of Gaussian
shape. To speed up calculations in the tracking algorithm,
IBS simulations are performed using a molecular dynamics
technique. In this case the motion equations are solved for
a small number of particles located inside a short cell. The
influence of all other particles is taken into account
through periodic boundary conditions in the longitudinal
direction for the particle distribution function, and the use
of Evald’s sum for calculation of the Coulomb forces.
Therefore, this algorithm can only be used for a coasting
beam.
Within the framework of the tracking algorithm, the

particle motion equations are integrated in the real optical
structure of the ring. The ring structure is imported from
the MAD input file. Each cooling or heating effect involved
in the calculations, together with the IBS, is located in
some optical element. Calculation of the variation of
particle co-ordinates due to any effect is achieved using the
MAP effect. The effect position in the ring is described in
the MAD input file using special marks.
The structure of basic objects in the BETACOOL

program, namely, the models of the ion ring and the ion
beam, are developed in such a way that allows realization
of all three algorithms with the same input parameters. The
heating and cooling effects are realized on the basis of a
common standard and the same parameters can be used in
each algorithm.
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3. Structure of the effects

In the present version of the program, the ion beam
dynamics can be investigated taking into account one or a
few effects from the following list:

(1) Electron cooling;
(2) Intrabeam scattering;
(3) Scattering on residual gas;
(4) Interaction with the internal target;
(5) Collisions with another beam in the collider mode of

the ring operation; and
(6) External heating of the ion beam.

Algorithms for simulation of beam–beam effect, sto-
chastic and laser cooling are under development.

The effect structure permits the uniform use of each
effect in all basic algorithms. For this purpose, each effect
is represented by three models: a transformation map, a
kick of the ion momentum, and characteristic time
calculation.

The effect used as a transformation map is associated
with some optical element of the ring and its position is
marked in the input file. The map transforms the particle
co-ordinates from the entrance to the exit of the element
and calculates the particle loss probability.

On the basis of the transformation map for each effect
the procedures for calculation of the particle momentum
kick and of the characteristic time are developed. Calcula-
tion of the momentum kick is used in the model beam
algorithm and characteristic times are necessary for RMS
dynamics simulation.

4. Electron cooling simulation

The structure of the effects can be illustrated in an
example of an electron cooler model.

Usually the action of electron cooling on the ion
dynamics inside a storage ring is described using a few
standard simplifications:

(1) Angular deviation of the longitudinal magnetic field
line is substantially less than the ion beam angular
spread.

(2) Ion transverse displacement inside the cooling section is
substantially less than the electron beam radius.

(3) The ion beam temperature is substantially greater than
the electron temperature and ion diffusion in the
electron beam can be neglected.

(4) The electron beam has a round cross-section and a
uniform density distribution in the radial direction.

Under these assumptions and using an asymptotic of the
analytical friction force, formulae were obtained for the
characteristic times for the emittance and momentum
spread decrease on electron cooling [8]. In the first version
of the BETACOOL program, electron cooling was

simulated in accordance with this model [1]. This model
is also used in a few programs dedicated to electron cooling
simulation. However, this model cannot cover all possible
versions of electron cooling designs.
Recently, modifications of the usual configuration of the

electron cooling system were proposed. To avoid instability
of the ion beam related to the extremely high density of the
cooled beam, use of a so-called ‘‘hollow’’ electron beam—
a beam with low density in the central part—was proposed.
Extension of the electron cooling method in the region of
electron energy of a few MeV is related to RF acceleration
of the electrons. In this case a Gaussian distribution of
the electrons can be expected in the radial plane and, if the
electron bunch is shorter than the ion bunch, in the
longitudinal direction too. Calculation of the cooling times
in this case requires modification of both the electron beam
model and the base physical model.
Another expected peculiarity of a medium-energy cool-

ing system is the great length of the cooling section of up to
approximately 20–50m. To obtain very high accuracy of
the magnetic field is a difficult technical task and the cost of
the cooling system will strongly depend on the required
level of accuracy. Therefore, before design of the cooling
section solenoid, the influence of the magnetic field line
curvature on the cooling process needs to be investigated.
All the effects can be taken into account by numerical
solution of the ion equations of motion in the cooling
section.
To solve all the problems related to simulation of the

cooling process, a hierarchy of objects was deve-
loped within the framework of the BETACOOL program.
The structure of the electron cooler presentation allows
the extraction of procedures of different levels and their
inclusion in calculations for cooling processes in other
programs. The cooling simulation is based on a fric-
tion force calculation in the particle rest frame. The friction
force can be calculated in accordance with an analy-
tical model from a library or using results of numerical
calculations imported from an external file. The next
layer of the simulation is related to a cooler represen-
tation as a map, transforming particle coordinates from
the entrance to the exit of the cooling section and
calculating the ion loss probability due to recombina-
tion with electrons. Calculation of the cooler map is based
on a model of the electron beam that provides transfor-
mation of the ion velocity to the frame related to the
electron beam and takes into account the real geometry
of the cooler. Currently, BETACOOL has three elec-
tron beam models available for simulations: a uniform
cylinder, a Gaussian cylinder and a Gaussian bunch.
A model of a hollow beam will be realized in the near
future. The cooler model takes into account variation of
the magnetic field in the cooling section. For this aim the
co-ordinates of the electron beam trajectory inside the
cooling section are input from an additional file and the
ion equations of motion inside the cooler are solved
numerically.
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The map of the cooler can be used directly within the
framework of the molecular dynamics algorithm or
another tracking procedure. On the basis of the map, the
kick in ion momentum after crossing the cooling section
can be calculated, which is necessary for simulation of the
ion distribution evolution in the model beam algorithm.
The map of the cooler is also used for the cooling rate
calculation necessary for RMS dynamics simulation. The
cooling rate calculation can be carried out using two
models of the ion beam: the cooling rates for ‘‘rms
particles’’, or cooling rates for an ion beam with Gaussian
distribution in all degrees of freedom.

5. Software structure

The BETACOOL program is a part of the software
developed for electron cooling simulation. The software is
divided into two independent parts: a physical code, which
is written using only standard C++ syntax; and an
interface, which is an executable program working under
the Windows environment. Connection between the two
parts of the program is provided using three types of files:
input, output and files used for control of the calculation
process. On one hand, such a structure allows the program
to be used on a PC to control the calculation process and
analyze results during simulations. On the other hand, the
physical part of the program can be compiled for a UNIX
operation system and used for calculations independently
of the interface. The interface in this case can be used for
preparation of the input file and result visualization after
completion of the calculations. All input and output files
are in text format. The parameters in the input file are
divided into groups according to the structure of the
BETACOOL objects.

The interface part of the software consists of an
executable file (Bolide.exe), *.dfm files containing informa-
tion about the BETACOOL exterior, and input files for
post-processing of the calculated data. Development of the
BETACOOL exterior is possible without recompilation of
the Bolide.exe file. The interface is also used to work with
the file structure on disc.

The physical part of the software consists of the
executable file Betacool.exe compiled for Windows or a
UNIX operation system and files of input parameters. For
intrabeam scattering calculation, use of a file of lattice
parameters is required, for instance, a MAD file. Addi-

tional input files are used for electron cooling simulation
under friction force calculated by other programs and for
input of magnetic field errors in the cooling section.
The source code of the physical part of the software

consists of three relatively separate parts:

� The interface, which supports the format of input and
output files common to the Bolide system;
� A library of base numerical algorithms, including the

description of dimensional variables, templates of the
program self-counters, procedures for matrix algebra,
and algorithms for the numerical solution of differential
equations; and
� Physical codes describing the objects of the program and

procedures for them.

The structure of the BETACOOL program exterior
corresponds to the structure of general objects in the source
code and correspondingly to the structure of the input file.
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Abstract

Simulation codes for the spectra of heavy implanted nuclei, applications for online data visualization and real time PC-based

algorithms are considered. Special attention is paid to the application of real time techniques for radical suppression of background

products in heavy-ion-induced nuclear reactions at the U-400 cyclotron of the Flerov Laboratory of Nuclear Reactions. The detection

system of the Dubna gas-filled recoil separator (DGFRS) is also briefly described. Calculated heavy recoil spectra are compared with

those measured in heavy-ion-induced nuclear reactions.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of experimental verification of the existence
of the hypothetical domain of super-heavy nuclides is one
of the fundamental outcomes of the nuclear shell model
that has been extensively discussed in recent years. Another
problem is the existence of even stronger spherical shells
beyond 208Pb, in the domain of heavier neutron-rich nuclei
with Z ¼ 114 (possibly 120, 122 or 126) and N ¼ 184.
Since 1998, the Dubna gas-filled recoil separator (DGFRS)
heavy-element research group has attempted to verify this
non-trivial theoretical hypothesis [1–6]. This region is not
easily reached with stable partner nuclei. In order to
approach the N ¼ 184 shell, maximum neutron excess is
needed in both the target and projectile nuclei. With this
aim, we used targets of enriched isotopes such as Pu, Am,
Cm and Cf, and the rare and expensive isotope 48Ca as a
projectile. We used the main U-400 cyclotron of the Flerov
Laboratory of Nuclear Reactions (FLNR) to accelerate
48Ca ions and the DGFRS to separate in flight the reaction
products under investigation from different backgrounds.
The separator was filled with hydrogen at a pressure of
approximately 1Torr [7]. Evaporation residue (ER) recoil

passed through a time-of-flight (TOF) system, and was
implanted into a 4� 12 cm2 semiconductor detector array
with 12 vertical position-sensitive strips [8–11]. This
detector was surrounded by eight 4� 4 cm2 detectors to
provide detection efficiency for alpha decay registration of
up to 87% of 4p. The full-width at half-maximum
(FWHM) for position resolution of the signals from
correlated decays of nuclei implanted in the detectors was
0.8–1.3mm for ER-alpha signals and 0.5–0.8mm for ER-
spontaneous fission (SF) signals. The PC-based DGFRS
data acquisition system provides not only data storage
event by event, allowing the accumulation of more than
hundred working histograms, but also the visualization
and control of definite parameters related to the detection
module and the separator set-up.

2. Background products

Although the DGFRS (and its analogues, see Ref. [7]) is
a highly effective set-up for ER separation, most of the
signals detected at the focal plane of the separator during
long-term experiments are of a background nature. This is
due to different reasons, such as an extremely low cross-
section of the product under investigation (sometimes units
of picobarns or lower), very intense beams of heavy ions
coming from the cyclotron, transfer reaction products,
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neutron-induced signals in a passivated implanted silicon
(PIPS) detector, etc. [9].

The typical counting rate is approximately tens of events
per second in the focal plane detector, depending on the
cyclotron tuning and reaction conditions. This means that
more than 1.0� 108 background signals are measured by
the detection system during a 1 month experiment, whereas
only single detected events can be attributed to the
complete fusion products. A significant proportion of the
background particles are charged (alpha decay events being
the most significant part of the experimental data flow)
and, therefore, can be detected by a TOF and/or a veto
detector [9].

Of course, neutron-like backgrounds cannot be sup-
pressed with a TOF detector and in this sense, can simulate
signals such as alpha particles in a silicon detector. A
typical value for the latter parameter is approximately
0.2min–1 per strip for signals in the energy interval
9.6–11.0MeV.

3. Real time detection mode for recoil–alpha-correlated

sequences

In many experiments we used a special detection mode to
detect two or more sequential decays. The beam was
switched-off after a recoil signal was detected with
parameters of implanted energy and TOF expected for
the evaporation residues, followed by an alpha-like signal
within preset energy and time intervals in the same strip,
within a position window corresponding to the position
resolution. Thus, all the expected sequential decays of the
daughter nuclides should be observed in the absence of a
beam-associated background. We used a more complicated
form of beam switching based on recoil–alpha correlation
chain real time detection, except for single recoil detection
[18] to minimize total experimental efficiency losses for
correlation times up to tens of seconds. In a more detailed
form, it can easily be shown that the equation relating to
these two approaches from the viewpoint of equivalence of
total experimental efficiency losses is

tRa ¼

ffiffiffiffiffi
tR
na

r
, (1)

where tRa is the recoil–alpha correlation time, tR is the
recoil time (duration of pause, generated by recoil detection
[18]) and na is the signal rate, such as alpha particles per
strip and per actual vertical position element.

The real time algorithm for searching recoil–alpha
sequences operates in parallel with data capture and file
writing. It should be noted that such parallelism is achieved
by applying a specially designed autonomous CAMAC
crate controller [12] operating together with intermediate
buffer memory for the main data flow, whereas an
intellectual KK-012 crate controller [13] operates with the
imminent event to find a correlated recoil–alpha pair. The
basic idea of the algorithm, in brief, is that it uses the
discrete representation of the PIPS detector separately for

recoils and alpha particle signals. Thus, the real detector is
presented in the form of two matrixes, one for ‘‘ER’’ and
the other for ‘‘alpha particles’’ [9,14,15], with elapsed time
as a matrix element in both cases, whereas the matrix
indexes correspond to strip number and vertical position
(in discrete representation). In addition [9], to prolong the
‘‘beam OFF’’ interval up to tens of minutes or hours,
information about the strip number is used, as well as
extraction of the next (after switch-off) alpha particle with
its vertical position, although with a wider position interval
in comparison with one generating the beam switch-off.
Thus, modified in comparison with Ref. [9], the working
system of equations is as follows:

j ¼ int Nmax
aiNa þ bi

ayi þ byi

R0i

Ri

þ 1

� �
�

R0i

Ri

þ da;esc;ERi

� �� �
,

(2)

ta;ER
i;j ¼ tðelapsedÞ, (3)

ta1;a2
i;jþk � tERi;j pT1;2

pr ðEa1;2Þ ðrecoil2alphaÞ, (4)

(Usually Tpr is a constant, but in the same experiments a
relation of the form T � 10½ðaZ þ bÞQ21=2 þ cZ þ d� is
used, where a ¼ 1:78, b ¼ �21:398, c ¼ �0:25488 and
d ¼ �28:423. Q is the estimated decay energy.)
or:

ta2i;jþk � ta1i;j pTa
prðEa1;2 Þ ðalpha2alphaÞ, (5)

t
a_OFF
i;jþ2k � ta1;2i;j pdTOFF

) dTOFF ¼ KdTOFF ðbeam-OFFprolongationÞ. ð6Þ

In these equations, TprðEa1;2 Þ are the preset time intervals
for the first and second (if the first escapes with a position
signal below the 500–1000 keV threshold) alpha particles,
respectively; Nmax ¼ 170 is the maximum value of cells per
strip in a discrete representation; i ¼ 1; . . . ; 12 is the strip
number; k ¼ �3; . . . ;þ3 is the cell index [9,14,15];
K ¼ 10–20 is the prolongation factor; and dTOFF is the
duration of the beam-OFF interval after detection of the
first correlation chain. Subscript a_OFF indicates that the
appropriate alpha particle is detected in the beam-OFF
interval. Other parameters in Eqs. (2)–(6) are calibration
constants that were extracted from the calibration reac-
tions and parameters of the PIPS detector. The calibration
parameter d is equal to zero in the ER case, and is a small,
non-zero value in the case of alpha decay in the focal plane
detector and for an alpha particle escaping this detector,
detected in the backward detector and having a non-zero
component in the focal plane detector (superscripts a and
esc, respectively). It is extracted from the calibration
reactions natYb+48Ca and 207Pb+48Ca. Subscripts 1 and
2 for a1,2 indicate the first and second (forthcoming) alpha
particles that cause the beam-OFF pause.
Figs. 1(a) and (b) shows two time sequences in the decay

chains observed at 48Ca energy values of (a) EL ¼ 248MeV
and (b) EL ¼ 253MeV, as well as the energy measured,
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time intervals and vertical positions, with respect to the top
of the strips for the decay events observed [1]. During the
last 3 yr, more than 50 decay chains for Z ¼ 110–116 were
detected under low-background conditions in long-term
experiments.

4. Super-heavy recoil spectra calculation in a silicon

radiation detector

When applying the above technique, a reasonable
question is how to estimate the shape and position of an
ER spectrum due to the relatively high pulse-height defect
(PHD) in a silicon radiation detector. There are several
ways that are actually complementary to each other.
Estimation based on the measured mass of the ER is one
of these. Of course, of great interest is the possibility of
computer simulation based on knowledge of the energy
losses and broadening in different media [16], the neutron
evaporation contribution to broadening, and PHD and its
fluctuations in silicon. The code described in Ref. [16]
allows a simulation that takes into account the reasons
mentioned for transformation of the spectra originating
in the target to that registered by a PIPS detector.
Figs. 2(a)–(c) shows calculated and measured spectra of
registered energy for the two reactions. Note that Fig. 2c
corresponds to the GSI experiment aimed at the synthesis
of the Z ¼ 112 element some years ago [17] and that
Fig. 2a included no free parameters in the simulation
procedure. Special attention should be paid to the fact that
the event marked by the left arrow (2c) on the histogram
was eliminated, as described in [18], after careful analysis of
the raw data. In May 2000 the experiment 70Zn+208Pb-
112+1n was repeated by the same group [18]. One
additional event of element 112 with ER energy of
24.1MeV was reported. This event is shown in Fig. 2c

with an appropriate comment. The remaining questions are
the formation mechanism for PHD, especially its recombi-
nation component, and a more exhaustive discussion of the
applicability and limits of the overall ‘‘one event–one
element’’ philosophy, but such a discussion is outside the
scope of this paper.1

5. Conclusions

Together with the development and improvement of
both accelerating and separation techniques, computer
codes applied in active form not only allow data capture
and visualization, but also play an even more significant
part in improving the overall experimental conditions from
the viewpoint of effect/background ratio. This resulted in
the possibility of establishing genetic links between alpha
particles for decay times of up to tens of hours or even
days. We plan to use this approach in forthcoming
experiments with an estimated cross-section for complete
fusion reaction product below 1 pb.
When preparing this manuscript, an experiment [19] on

chemical identification of the 268Db isotope as a product
terminating decay chains of the Z ¼ 115 element from the
reaction 243Am+48Ca-288115+3n was successfully per-
formed. This confirmed the decay properties of 268Db
measured previously [1].
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with comments on a reasonable type of recombination in silicon.

Y.S. Tsyganov, A.N. Polyakov / Nuclear Instruments and Methods in Physics Research A 558 (2006) 329–332 331



Acknowledgements

The authors are indebted to Drs. V.K. Utyonkov, A.M.
Sukhov, I.V. Shirokovsky and S. Iliev for their assistance
and fruitful discussions on the item reported in this paper.

References

[1] Yu.Ts. Oganessian, et al., Phys. Rev. C 69 (2004) 021601(R).

[2] Yu.Ts. Oganessian, et al., Phys. Rev. C 69 (2004) 054607.

[3] Yu.Ts. Oganessian, et al., Eur. Phys. J. A 15 (2002) 201.

[4] Yu.Ts. Oganessian, et al., Nucl. Phys. A 734 (2004) 109.

[5] Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, et al., Rev.

Mex. Fis. 46 (Suppl. 1) (2000) 35.

[6] Yu.Ts. Oganessian, et al., Phys. Rev. C 64 (2001) 054606.

[7] K. Subotic, et al., Nucl. Instr. and Meth. Phys. Res. A 481 (2002) 71.

[8] Yu.S. Tsyganov, V.G. Subbotin, A.N. Polyakov, et al., Nucl. Instr.

and Meth. Phys. Res. A 392 (1997) 197.

[9] Yu.S. Tsyganov, V.G. Subbotin, A.N. Polyakov, et al., Nucl. Instr.

and Meth. Phys. Res. A 525 (2004) 213.

[10] Yu. Tsyganov, JINR Commun. P-10-98-20, Dubna, 1998 (in

Russian).

[11] Yu. Tsyganov, JINR Commun. E-10-99-36, Dubna, 1999.

[12] Yu.S. Tsyganov, et al., in: Proceedings of High Performance

Computing on the Information Superhighway, HPC Asia-97, 28

April–2 May 1997, Seoul, Korea, IEEE Computer Society Press, Los

Alamos, CA, 1997, p. 651.

[13] I.N. Churin, et al., JINR Commun. P10-90-589, Dubna, 1990 (in

Russian).

[14] Yu.S. Tsyganov, A.N. Polyakov, A.M. Sukhov, Nucl. Instr. and

Meth. Phys. Res. A 513 (2003) 413.

[15] Yu. Tsyganov, J. Phys. G Nucl. Part. Phys. 25 (1999) 937.

[16] Yu. Tsyganov, Nucl. Instr. and Meth. Phys. Res. A 378 (1996) 356.

[17] S. Hofmann, et al., Zh. Phys. A 354 (1996) 229.

[18] S. Hofmann, et al., Eur. Phys. J. A 14 (2002) 147;

V. Ninov, K.E. Gregorich, W. Loveland, et al., Phys. Rev. Lett. 89

(3) (2002) 039901(E).

[19] Yu.Ts. Oganessian, et al., Phys. Rev. C 72 (2005) 034611.

ARTICLE IN PRESS
Y.S. Tsyganov, A.N. Polyakov / Nuclear Instruments and Methods in Physics Research A 558 (2006) 329–332332



Nuclear Instruments and Methods in Physics Research A 558 (2006) 333–335

The features of high intensity beam dynamics in low energy
super-conducting linear accelerator

N. Vasyukhin�, R. Maier, Y. Senichev

FZJ/IKP, Jülich, Germany

Available online 28 November 2005

Abstract

The super-conducting linear accelerator is considered as a candidate for the high intensity beam acceleration in low energy region from

2–5MeV and up to 50–100MeV. The conventional room temperature linear accelerator was struck off the list of effective accelerators for

this purpose, because of the high power RF and the appropriate cooling systems are needed to produce high gradient with duty factor

near to 100%. The super-conducting linear accelerator has a number of advantages in comparison with room temperature accelerators.

However, due to RF requirements the geometry of super-conductive cavity has to be simplified as much as possible. Also cavities

belonging to one family should have identical geometry. Therefore in such accelerators the longitudinal and transverse dynamics of high

intense beam are more complicated. In this paper, we consider 3D beam dynamics together with space charge effect. The latter is

investigated in the system without synchronism, when focusing and defocusing factors in longitudinal and transverse planes are the time

dependent functions.

r 2005 Elsevier B.V. All rights reserved.

PACS: 29.27.a; 29.17.+w; 52.59.Sa; 52.65.Rr

Keywords: Linear accelerators; Space-charge-dominated beams; Particle-in-cell method (simulations)

1. Halo creation

Super-conducting linear accelerators have a number of
advantages in comparison with room temperature accel-
erators: high accelerating gradient, low energy losses and
high duty cycle. But despite of these benefits some specific
features of super-conducting accelerators like high RF
defocusing factor or long focusing period makes the
working point smeared in the Smith–Gluckstern stability
diagram for transverse plane. Additionally compensation
of linear space charge detuning by quadrupoles moves halo
particles out of the stable region due to non-linear detuning
of these particles. Attempts to describe qualitatively halo
creation mechanism have been undertaken, but in this case
an analytical solution is possible only with a significant
simplification of model. It is generally accepted that it is a
more or less resonant process, in which some particles
increase amplitude of transverse oscillations. It was shown

[1], that the mechanical concept is more appropriate than a
thermodynamical one for linear accelerator description.
The point was to describe qualitatively non-linear para-
metric resonances due to mismatched RMS size of bunch
and forced envelope oscillations in alternative gradient
focusing structure. These resonance conditions should
increase the amplitude of transverse oscillations. To solve
the equation analytically a number of approximations were
undertaken. Following this idea one can obtain resonant
Hamiltonian for particles motion in case of mismatched
beam

Hr ¼ �
ðdIÞ2

2
RcCsc�

�2 � Rc

Xm

k¼2

ðk � 1ÞckIk�2
0 G2k

(

þðn� 1ÞrmcnIn�2
0 bn0 þ

1

2
dn0

� �
cosð2ncÞ

)

where b is the beta function; ~m the frequency of beta
function oscillation due to mismatching; n the order
of resonant term in binomial distribution; m the number
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of terms in binomial distribution; ck the coefficient
in distribution; Csc the space charge coefficient; �
the emittance; G2k ¼ ð2kÞ!=22kðk!Þ2; dn0 ¼ 1=22n�2; bn0 ¼

1=22n�1; rm the amplitude of mismatching; c the slow
phase; I0 the meaning of invariant in resonance vicinity; dI

the deviation of invariant because of nonlinear terms of
space charge.

The first term is linear detuning, while the second term
describes the deviation of non-linear detuning and the third
term is the resonant term. But this is valid only for a
qualitative understanding of the phenomenon.

2. Superconducting accelerator features

From the simulation point of view the most important
features of super-conducting linacs are:

� High accelerating gradient. In a super-conducting cavity
one can achieve very high accelerating fields. Therefore
at low energy the velocity gain is high and any field
approximation leads to incorrect results. The defocusing
factor of accelerating field is phase dependant. This
leads to a smearing of the working point in the stability
diagram.
� Absence of synchronism. It is desirable to have the super-
conducting cavity with constant phase velocity geome-
try. In contrast to the normal-conducting linac, in the
super-conducting linac the equivalent phase velocity is
adjusted via phasing of the cavities [2]. Therefore
effective separatrix decreases.
� Relatively long focusing period. In some cases of super-
conducting linacs the focusing elements are located
between cryomodules only. The transition from the
cooled cavities to warm quadrupoles takes some
distance. However the space charge effect is propor-
tional to the square of focusing period. For instance in
the COSY injector design [3] the focusing period is
1.7m.

Besides, the compensation of linear space charge leads to
an additional decreasing of the stable region in the case of a
high intensity beam. The particles in the halo, which are
affected by non-linear tune shift, are subject to resonances
and can be lost. In theory at low energy it is difficult to take
into account these features. Therefore for investigation of
beam dynamics the particle-in-cell code with space charge
was developed at FZJ. The electrical and magnetic 3D RF
field were calculated by CST MicroWave Studio. The space
charge force is computed in 3D by the FFT method with
rectangular boundary conditions.

3. Simulation results

As an example COSY injector linear accelerator design is
considered. The focusing period consists of four super-
conducting half wave cavities [4] in one cryo-module and
quadrupole doublet. In this design it is possible to

accelerate 30mA average current with 100% duty factor
with losses 5W/m. In 11 periods the proton beam is
accelerated from 2.5MeV up to 50MeV. The first 5 periods
operate at 160MHz and the remaining 6 modules operate
at 320MHz. The transverse RMS sizes are shown in Fig. 1.
In this case it is difficult to make matching because the
space charge linear tune shift is about 40%. However,
the halo particles have a different tune shift. Therefore the
fixed level of losses is the criterion for optimisation. The
transverse RMS emittance grows by 30%.
To investigate how the focusing period length affects on

peak current value the simulation has been done for the
modified structure, where there are only 2 resonators in one
cryo-module and focusing period is double shorter. During
simulation we have concluded that maximum current limit
raised up to 160mA with the same level of losses. However,
from the technical point of view this scenario is more
difficult, since so short focusing period is possible only with
super-conducting quadrupoles or solenoids located inside
the cryo-module.
In order to compare the numerical model with theory at

resonant conditions the real accelerator was simulated. The
resonance due to mismatching cannot be clearly expressed
in phase space, because the space charge forces change
while the particle distribution changes. In the analytical
formula the terms responsible for that should be expressed
through the high order term in the particle distribution.
Obviously this leads to an insignificant redistribution.
Another resonance is the forced resonance caused by
alternate gradient focusing element. As an example the
simulation has been done for the accelerator with resonant
conditions (see Fig. 2), when the phase advance for period
is near to p=2. It means the lower harmonic of q-function
has the frequency by factor four higher of eigen frequency,
and we see the 4th order resonance. In reality it is desirable
to avoid this case.
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4. Discussions and conclusions

The high intensity accelerators based on super-conduct-
ing structures can be used for low energy part as well.
However, the specific features have to be taken into

account at the design stage. First of all in the case of high
current and at low energy it is very important to make 3D
matching. The longer focusing period leads to higher
sensitivity of space charge that is bigger coefficient Csc.
This fact causes various resonances. They should be
avoided to minimize the problems with the transverse
emittance growth.
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Abstract

A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and

selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the

Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been

successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew

components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the

phase advances and the Local Green’s functions as well as the coupling ellipses among BPMs. The local Green’s functions are specified

by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green’s functions, the phase advances and

the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-

resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a

computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and

interaction point (IP) optics characteristics can be measured and displayed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For a system with sufficient known constraints and
specific quantities that can be accurately measured, one
may be able to build a computer model that can simulate
the system. One needs to identify efficient variables as
inputs to the model that can generate response outputs that
are to be identified to be equal to their corresponding
system-measured specific quantities. This requires training
process that re-identifies new efficient variables and
eliminates degenerate or unnecessary (low efficient) vari-
ables through Least-Square fitting of those well-chosen
responses from the model to those corresponding measured
quantities. In many occasions, this training process may
also involve identifying new responses with measurable
corresponding quantities from the system. To interpret the

above in short, one can have a simple mathematical
formulae,

~Y ð~X Þ ¼ ~Y m (1)

where all variables are represented by an array (a vector)
~X ; responses and their corresponding measurable quan-
tities are represented by an array ~Y and an array ~Y m,
respectively. Note that ~Y is the response to the ~X and
therefore is a vector function of ~X as is explicitly shown in
the equation. Also note that the array length of ~Y and ~Y m

must be the same and must be larger than the array length
of ~X to avoid any degeneracy. Indeed, the array length of
~Y is preferred to be significantly larger than the array
length of ~X to make sure an over determined Least-Square
fitting for adding on accuracy and most of the time adding
on convergence, too. The Least-Square fitting is to update
~X through iteration such that the residual of ~Y ð~X Þ � ~Y m

converge to a minimum that is sufficiently small.
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2. The SVD-enhanced Least-Square fitting

To perform Least-Square fitting, let us first denote the
iteratively updated or the initially reasonably guessed
variable values to be ~X 0 and let ~X ¼ ~X 0 þ ~x. Then, after
performing Taylor expansion of ~Y ð~x0 þ ~xÞ, Eq. (1) can be
written as:

Y ð~X Þ ¼ Y ð~X 0 þ ~xÞ ¼ ~Y ð~X 0Þ þM~xþ~Zð~xÞ ¼ ~Y m (2)

where the Taylor expanded nonlinear term ~Zð~xÞ is much
smaller than the linear term M~x and finally becomes
negligible once ~X 0 is getting close to ~X (and so ~x is very
small) through convergent Least-Square fitting iterations.
Thus, for fitting iteration purpose, Eq. (2) can be written as

M~x ¼ Y m � Y ð~X 0Þ ¼
~b (3)

where ~b is the residual after a given fitting iteration. The
task is to take a limited fitting iterations to achieve a small
enough residual ~b.

If one were to consider the regular Least-Square fitting,
then each iterative equation would be simply

~x ¼ ðMTð~X 0ÞMð~X 0ÞÞ
�1MTð~X 0Þ

~b

where ~X 0 and ~b are updated from the last iteration by
taking ~X 0 ¼ ~X 0 þ ~x and ~b ¼ Y m � Y ð~X 0Þ: However, such
regular Least-Square fitting cannot take care of degen-
eracies that ultimately cause the iteration to diverge. To
overcome the degeneracy effect, we consider an SVD-
enhanced Least-Square fitting by identifying and eliminat-
ing those degeneracy modes in the iteration so as to always
get a convergent iteration process. In practice, by identify-

ing the dominant SVD modes, we actually select those
efficiently convergent modes for an optimized converging
iterations.
Let us perform a singular value decomposition for the

derivative matrix M as follows:

M ¼ ULVT, (4)

where L is the singular value diagonal matrix with singular
values, ~l, given in an order from a large to a small
magnitude. Then the Least-Square fitting solution becomes

~x ¼ VL�1UT~b ¼
Xn

i¼1

1

li

ð~Vi
~U
T

i Þ
~b. (5)

Since the larger singular modes of MTM, which is
proportional to l2i , are more efficient, the SVD modes are
re-arranged in the order of the magnitudes of l3i ~U

T

i
~b. The

first kon modes are automatically tested for efficiency and
then chosen for each iteration or sub-iteration, i.e.

~x ¼
Xk

j¼1

1

lj

ð~V j
~U
T

j Þ
~b.

We have successfully applied such an SVD-enhanced
Least-Square fitting to the study of PEP-II optics
measurement.

3. Application to PEP-II optics measurement

With the above SVD-enhanced Least-Square fitting
technique applied for PEP-II optics studies, we consider
all quadrupole strengths and sextupole feed-downs in the
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Fig. 1. Four independent orbits extracted from PEP-II LER BPM buffer data taken on January 13, 2004. The first two orbits ðx1; y1Þ and ðx2; y2Þ are
extracted from beam orbit excitation at the horizontal tune while the other two orbits ðx3; y3Þ and ðx4; y4Þ are from excitation at the vertical tune.
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lattice model as well as all BPM gains and BPM cross-
plane couplings as variables, i.e., the ~X . ~Y ð~X Þ, the to-be-
calculated responses from the lattice model, are the Local
Green’s functions [1], the phase advances [2] as well as the
eigen-mode coupling ellipses tilt angles and axis ratios
among BPMs [3], ~Y m, the corresponding measurable
quantities, are derived from orbit measurement using a
model-independent analysis (MIA) [4]. Once the lattice
model is fitted to the orbit measurement, we call this lattice
model the computer virtual accelerator which matches the
real accelerator in linear optics. To obtain the ~Y m, i.e., the

Local Green’s functions represented by the matrix compo-
nents, R12;R14;R32;R34, the phase advances, and the eigen-
mode coupling ellipses tilt angles and axis ratios among
BPM locations, we make two resonance excitations at the
horizontal and vertical tunes, respectively, to obtain two
pairs of Fourier conjugate (Cosine-like and Sine-like)
orbits, one pair (two orbits) for the horizontal-tune
resonance excitation and the other pair for the vertical-
tune resonance excitation as shown in Fig. 1 for a typical
sample from PEP-II Low-Energy Ring (LER). The Y m are
derived from these 4 independent linear orbits. Since the
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linear optics is determined by 4 independent linear orbits,
we have a complete set of constraints for the SVD-
enhanced Least-Square fitting to determine the computer
virtual accelerator. Fig. 2 shows a typical set of PEP-II
linear optics measured with this SVD-enhanced Least-
Square fitting, where the beta functions of the PEP-II LER
for the whole ring are calculated from the fitted virtual
accelerator comparing with the original ideal lattice model.
The beta beating shown are subsequently corrected by first
correcting the virtual accelerator and then applied to the
real accelerator [5].Fig. 2 also shows the beta function and
the waist shifts at IP. The other IP optics characteristics,
i.e., the linear coupling parameters (eigen-mode ellipse tilt
angles and axis ratios at IP) are shown in Fig. 3. These IP
optics measurements provide valuable information about
geometrical process of the e+–e� collisions that helps
subsequent adjustment of the IP optics. The linear coupling
parameters, the eigen-mode ellipses’ tilt angles and axis
ratios at double-view BPM locations around the whole ring
are shown in Fig. 4.

4. Summary

We have developed a mature SVD-enhanced Least-
Square fitting that has been successfully applied in the
PEP-II linear optics studies as proved by improvement of
the PEP-II optics [5]. The success basically comes from
three key points: (a) the SVD-enhances Least-Square fitting
can avoid degeneracies and has a fairly fast convergent rate
allowing for application to a fair large system such as the

PEP-II ring as a whole; (b) the PEP-II ring has a
reasonable amount of BPMs allowing for extracting
sufficient physical quantities for fitting; and (c) the linear
Green’s functions between any two BPMs can provide even
more fitting constraints that add significantly on the
convergence.
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Abstract

The design, construction and operation of magnetic systems of some electrophysical setups require preliminary mathematical

modeling. While calculating the fields of the magnetic systems mentioned (based on solving a set of direct problems of magnetostatics),

we attempted to solve the inverse problem of magnetostatics, namely, to find an optimal construction of the current elements and

ferromagnetic yoke for a required distribution of the magnetic field. This work discusses the results of numerical modeling of the magnet

field distribution for some modifications of the SP-94 spectrometric magnet used in some experimental setups.

r 2005 Published by Elsevier B.V.
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1. Introduction

The significance of numerical modeling for investigating
magnetic systems is emphasized not only by the importance
of computational experiments, but also by the fact that
measurement of magnetic fields is labor-intensive and
expensive.

The self-process of the mathematical modeling of
magnetic systems needs to be divided into two major
stages. For the first stage involving the creation of the new
magnetic system, it is advisable to have software for quick
and operational modeling that has the properties of a
‘‘logarithmic ruler’’, i.e. with accessibility, simplicity of
application and sufficient accuracy for numerical calcula-
tions. The second stage involves study of the configuration
chosen for the magnetic system in more detail, i.e. making
more accurate numerical calculations for two- and three-
dimensional configurations.

In the present work we propose a method for refinement
of the numerical solution of a magnetostatic problem for
an area with boundaries containing the ‘‘corner points’’.

Using this method, we carried out numerical simulation
of a set of modifications for the SP-94 magnetic system.

2. Geometry

The coordinate system (the right-hand triplet) is chosen
in such a way that Z-axis is directed along the beam. The
horizontal plain is X0Z. Fig. 1 shows half of the magnet
yoke cross-section on the X0Y plane (orthogonal to the
beam), while Fig. 2 shows the 1

8
th cross-section on the

vertical plane Y0Z. The domains Of and Oc are filled with
a ferromagnetic and a current source, respectively. Table 1
gives the linear size (in m) of the magnetic system (a basic
version, without modifications).
The curve m ¼ mðBÞ corresponding to the steel used is

given in Fig. 3.

3. Description of the program software

The first stage in the solution of the magnetostatics task
involved the creation of the CPMMS-1.0 complex of
programs [1] for the numerical modeling of magnetic
systems. This includes software programs such as POIS-
SON [2] for the numerical modeling of two-dimensional
magnetic fields, and graphics packages such as GRA-
PHER, SURFER and PAW [3]. The CPMMS complex of
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programs includes a program with expert systems for
optimal choice of the configuration of magnetic systems,
and a program for polynomial representation of the
components of a magnetic field, which is used in the tasks
of the dynamics of charge particles. It also includes the
COBRAM program for numerical simulation of some
classes of non-linear inverse magnetostatic tasks for the
modeling of ironless magnet systems with a rectangular
aperture. The suggested CPMMS complex is formed as a
library of programs, which can be used completely as is [4]
or can involve replacement of the programs used.

The main criterion for good modeling results is
comparison with experimental data with high accuracy. It
should be noted that our results for numerical calculation
used available experimental data on the 10�3–10�4 level.

4. Numerical calculation at corner points

Very often in calculations for a particular magnetic
system, the area for solution has a smooth boundary
everywhere, with the exception of a finite number of
‘‘corner points’’, in the vicinity of which the boundary is
formed by the intersection of two smooth curves.
In these cases, the solution of the problem or the

derivatives of the solution have singularity. For example,
the Dirichlet boundary problem for the Laplace equation
may be used in the area represented in Fig. 4

DuðpÞ ¼ 0; p 2 O

ujG1
¼ 0

ujG2
¼ sinð2j=3Þ

8><
>: (1)

ðr;fÞ is the polar coordinate system; region O ¼ fðr;fÞ :
0oro1; 0ofo3p=2g boundary G1 ¼ G0 [ G00 where G0 ¼
fðr;fÞ : 0prp1;f ¼ 0g;G00 ¼ fðr;fÞ : 0prp1;f ¼ 3p=2g
while the boundary G2 ¼ fðr;fÞ : r ¼ 1; 0ofo3p=2g.
Problem (1) has the solution u ¼ r2=3 sinð3p=2Þ. We take

the derivatives ux; uy and obtain ux ¼ �ð
2
3
Þr�1=3 sinð2p=3Þ;

ARTICLE IN PRESS

Fig. 2. 1
8
th cross-section on the vertical plane Y0Z.

Table 1

Linear size of the magnetic system (in m)

x1 x2 x3 x4 x5 x6 z1 z2 z2

0.15 0.3 0.36 0.49 0.605 1.175 0.65 0.62 0.81

y1 y2 y3 y4 y5 y6 y7

0.0645 0.114 0.144 0.302 0.46 0.49 1.06

Fig. 1. Half of the magnet yoke cross-section on the X0Y plane.
Fig. 3. The curve m ¼ mðBÞ.

Fig. 4. A domain with a corner point.
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uy ¼ ð
2
3
Þr�1=3 cosð2p=3Þ. For r! 0 the derivatives ux and uy

increase without limit. Therefore, for solution of these
problems by numerical methods, it is necessary to take into
account the nature of the behavior in the vicinity of the
corner point.

The present work involved study of the behavior of a
magnetic field in the vicinity of the corner points using
effective algorithms to improve the accuracy of the
numerical solution of a magnetostatics problem.

Numerical calculation using such a method gives
accurate results only for a mesh with a 4–5-fold greater
number of nodes along every axis than the initial mesh.

The results obtained may be used to solve various non-
linear physics problems involving an equation of the form
div½mðjrujÞ� ¼ 0, when the boundary contains corner
points.

Using this method, we carried out simulation of the
configuration of the SP-94 spectrometric magnet being
used in experiments at the Laboratory of High Energies
(LHE), the Joint Institute for Nuclear Research (JINR)
and the Institute for High Energy Physics (IHEP),
Protvino.

5. SP-94 magnet, IHEP, Protvino

The numerical results show (Fig. 5) that inhomogeneity
of the magnetic field (on the 1-T level) in the 13-cm air gap
is highest at the pole edge (the pole size is
x� z ¼ 30 cm� 130 cm). In the vicinity of the edge it can
be more than 5% for y ¼ 5:2 cm.

On the other hand, the same extent of inhomogeneity is
also observed for the median plane (y ¼ 0) when the
coordinate x410 cm, i.e. at the pole edge for x ¼ 15 cm. To
increase the area of the homogenous field, it is natural to
set up (in a reasonable way) the ferromagnet bars on the
pole edge.
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Fig. 5. Distribution of the magnetic field at the pole edge: (1) y ¼ 0 cm, (2)

y ¼ 1:3 cm, (3) y ¼ 3:9 cm and (4) y ¼ 5:2 cm.

Fig. 6. 1
8
th cross-section on the vertical plane Y0Z.

Table 2

Linear size of the ferromagnet bars (in m)

x1 x2 x3 x4 y1 y2 y3 y4

0.108 0.1235 0.1345 0.15 0.053 0.05587 0.06162 0.0645

Fig. 7. ByðxÞ: (1) without bars, (2) with ferromagnet bars (variant A) and

(3) with ferromagnet bars (variant B).

Fig. 8. ByðxÞ: (1) h ¼ 13 cm, (2) h ¼ 10 cm, (3) h ¼ 9 cm, (4) h ¼ 8 cm and

(5) h ¼ 7 cm.
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Such bars (Fig. 6, Table 2) were made of steel (similar to
the steel of the yoke in magnetic characteristics) on the pole
of the SP-94 spectrometric magnet for the EXCHARM-II
experiment in the 5H channel of the U-70 accelerator,
IHEP, Protvino. Fig. 7 shows graphs for the basic version
(without bars) and two versions with ferromagnet bars for
the median plane, y ¼ 0. It can be verified that a significant
increase (for the component By) in the size of the area with
a homogeneous field was observed inside the inter-pole
13 cm air gap.

6. SP-94 magnet, LHE, JINR

Fig. 8 shows the results of numerical modeling of the
magnetic field distribution values for inter-pole air gaps of
h ¼ 7; 8; 9; 10 and 13 cm. The full current for half of the coil
is I ¼ 0:73� 105 A, generating a field of 1T for the 13-cm

air gap. The dependence functions constructed allow
computation of the field for other configurations similar
to those presented.
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Fig. 9. Distribution of the magnetic field for various air gaps: (1) h ¼ 7 cm, (2) h ¼ 8 cm, (3) h ¼ 9 cm, (4) h ¼ 10 cm, and (5) h ¼ 13 cm.

Fig. 10. Dependence of By on x for various values of y: (1) y ¼ 0 cm, (2) y ¼ 0:9 cm, (3) y ¼ 1:8 cm and (4) y ¼ 2:7 cm.

Fig. 11. 3D distribution of the magnetic field Byðx; 0; zÞ:
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The nominal working current in one loop of the coil is
635A, while the total current in the half coil is
I ¼ 1:016� 105 A. Such a current creates a field distribu-
tion for this configuration of the magnet with air gaps h ¼

7; 8; 9; 10 and 13 cm, which is shown in Fig. 9.
Numerical results for 3D calculation (h ¼ 9 cm, pole

width s ¼ 30 cm) are shown in Fig. 10. The dependence of
By on x for z ¼ 0 and for various values of y (y ¼ 0; 0:9; 1:8
and 2:7 cm) is evident.

An inter-pole air gap of h ¼ 9 cm with pole width s ¼

30 cm is now the working version of the SP-94 magnet at
LHE, JINR, for the ‘‘Delta-Sigma’’ experiment.
The nominal field is Byð0; 0; 0Þ ¼ 1:751T at the center. A

3D distribution of the magnetic field Byðx; 0; zÞ for this
working version with nominal current I ¼ 1:016� 105 A is
given in Fig. 11.
The dependence of By ¼ Byðx; 0; 0Þ along the x-axis and

the dependence of By ¼ Byð0; 0; zÞ along the z-axis are
shown in Fig. 12.
The value of

R L

�L
Byð0; 0; zÞdz is equal to 2:4T� m,

where Byð0; 0; 0Þ ¼ 1:751T, and L ¼ 1:5m is the size (along
the z-axis) of the area where calculation of the magnetic
field was carried out. The curve B ¼ BðIÞ of the excitation
current is shown in Fig. 13 for this magnet configuration.

7. SP-94 magnet with three coils

Further investigations were directed toward solving the
following inverse problem in magnetostatics. We were
interested to find a magnet configuration that would
provide a larger value of the working magnetic field inside
the aperture, as well as a larger value of the field integral
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Fig. 12. The dependence of the field Byðx; 0; 0Þ on the x-axis and the field Byð0; 0; zÞ on the z-axis.

Fig. 13. The curve B ¼ BðIÞ for the magnet configuration.

Fig. 14. The magnet with three parts to the current.

Fig. 15. Distribution of the component of the field By along the x-axis for

(1) h ¼ 13 cm, (2) h ¼ 10 cm, (3) h ¼ 9 cm, (4) h ¼ 8 cm and (5) h ¼ 7 cm.
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and possibly with a greater pole width. A technological
possibility exists involving placement of an extra third coil,
exactly the same size as, for example, the first (upper) or
second (lower) coil in the basic version of the SP-94
magnet. The height of the ferromagnet yoke increases by
4 cm in this case.

The nominal current in one loop would, naturally, be
kept the same, at 635A. However, the total current
increases by 1:5-fold for such a coil. The configuration
suggested (half a section of the XOY plane) for the magnet
is given in Fig. 14.

The results shown in Figs. 15 and 16 were obtained by
numerical modeling. Fig. 15 demonstrates the field
distribution of By along the x-axis for h ¼ 7; 8; 9; 10 and
13 cm. Fig. 16a shows the distribution of By along the x-
axis for y ¼ z ¼ 0 and h ¼ 9 cm, while Fig. 16b shows the
distribution of By along the z-axis for x ¼ y ¼ 0 and
h ¼ 9 cm.

The value of
R L

�L
Byð0; 0; zÞdz is equal to 3:019T�m.

Here Byð0; 0; 0Þ ¼ 2:21T, and L ¼ 1:5m is the size (along
the z-axis) of the area where the field calculation was made.
Thus, the value of the field integral for this configuration
increases 1:3-fold compared to its value for the configura-
tion of the magnet version (h ¼ 9 cm) with two coils.

8. Main conclusions

1. Using numerical modeling, two- and three-dimensional
distributions of the magnetic field were obtained for
some modifications of the SP-94 spectrometric magnet,
which is widely used in various nuclear physics
experiments.

2. The optimal configuration was been found for the SP-94
magnet, which is well suited to implementation for
different experiments.
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Abstract

In this paper, we review the features in the newly released version of COSY INFINITY, which currently has a base of more than 1000

registered users, focusing on the topics which are new and some topics which became available after the first release of the previous

versions 8 and 8.1. The recent main enhancements of the code are devoted to reliability and efficiency of the computation, to verified

integration, and to rigorous global optimization. There are various data types available in COSY INFINITY to support these goals, and

the paper also reviews the feature and usage of those data types.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the previous versions 8 and 8.1, the main
enhancements of the code COSY INFINITY were focused
on computational reliability and speed. Interval arithmetic,
which serves as a stepping stone to guaranteed computa-
tions, is performed with fully verified software rounding in
COSY INFINITY. The method is connected to the
Differential Algebraic (DA) technique to provide a further
efficient method of reliable computation, the Taylor model
method, by utilizing the capability of high order computa-
tion of the DA technique. Both of these methods benefit
from enhanced sparsity support including the ability to
treat different variables to different orders.

Besides such basics to support the quality of the
computation, there are several particle optical elements,
analyzing tools and beam physics concepts newly added in
the code since the last version. In particular now there are
various ways to treat the dynamics of particle beams
traveling in matter.

Through the changes of versions, emphasis has been
placed on backwards compatibility and portability of the
code to different platforms as well as transparent

portability to four separate language platforms, namely
F77, F90, C and Cþþ.

2. Verified computations

2.1. Data types

COSY INFINITY supports various data types, starting
from RE (double precision REal number), DA (Differen-
tial Algebra vector), and the GR (GRaphics) data type.
Table 1 lists all the data types supported in the standard
version of COSY INFINITY Version 9. Since the code is
object oriented, new data types and the associated
operations can be easily added and removed [1]. As some
of the readers may have noticed, the Ordered Interval (OI)
and Ordered interval Vector (OV) data types are not
supported anymore. Besides the STring (ST), LOgical (LO)
and GRaphics (GR) data types, all others are numerical
computation objects based on double precision real
numbers. If any higher precision computation environment
like quadruple precision computation mode is available, all
these numerical computation objects can be straightfor-
wardly ported to the higher precision mode.
A REal number (RE) data type object corresponds to a

double precision number; a CoMplex number (CM) data
type object occupies two double precision numbers for the
real and imaginary parts. A real number VEctor (VE) data
type object consists of several double precision numbers in

ARTICLE IN PRESS

www.elsevier.com/locate/nima

0168-9002/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.nima.2005.11.109

�Corresponding author.

E-mail addresses: makino@msu.edu (K. Makino), berz@msu.edu

(M. Berz).



a vector form, in a similar fashion as a one dimensional
double precision array. The VE data type object is created
by concatenating two RE data type objects using the
operator ‘‘&’’, and more components can be added by
further concatenating RE data type objects and/or VE data
type objects; its advantage lies in enhanced performance in
vectorizable operations.

A DA data type object carries all the non-negligible
coefficients of the differential algebra nDv with order n and
dimensionality v [2], where vanishing coefficients and
coefficients below the cutoff threshold ec in magnitude
are not retained. The value of the cutoff threshold ec can be
specified via the COSY intrinsic procedure DAEPS, its
default is set to 10�20. The sparsity handling is particularly
important for beam physics applications where usually half
of coefficients vanish due to symmetry, and we have been
striving to realize and keep superb performance of DA data
type objects by the efficient sparsity handling algorithms
[3]. A Complex Differential algebra vector (CD) data type
object turns DA data type objects to be complex by
carrying a set of DA coefficients for the real part and a set
for the imaginary part. DA and CD data type objects
truncate small coefficients below cutoff threshold, on the
other hand, the TM (Taylor model, Remainder-enhanced
Differential algebra object) data type objects keep errors
associated to order truncation, cutoff and round-off in the
data structure. It is worth noting that among various
numerical algorithms in the code, those based on the DA-
fixed point theorem [2] are particularly powerful, by
achieving an nth order DA solution in at most ðnþ 1Þ
iterations of the DA-fixed point operation.

The newly implemented feature of weighted order
computation enables to carry different variables xi to
different orders wi, which can account for the fact that
certain variables are more important than others. This fact
is particularly helpful for the problem of integration of
transfer maps for time-dependent systems with or without
verification, where the length of the time step typically
significantly exceeds the range of initial conditions, i.e.
beam coordinates. This is achieved by simply ‘‘seeding’’
original variables as xwi

i instead of xi. In all subsequent
operations, only multiples of wi appear as powers of xi.

Using the feature, optimal reduction of speed can be
achieved by sparsity.

2.2. Data types for verified computations

The other data types INterval (IN), Interval Vector (IV)
and TM are objects for verified computation. An IN data
type object consists of two double precision numbers; one
for the lower bound and one for the upper bound of an
interval, and an IV data type object describes a vector with
interval components. The concept of the IV data type is
similar to that of the VE data type, except for that each
component is an interval consisting of two double precision
numbers. Interval methods for numerical computations
express a set of numbers by an interval, and through
various computational operations, interval arithmetic
rigorously keeps all the possible outcomes in the resulting
interval. (Refer to, for example [4] as well as references
therein, and many more.) Floating point rounding errors
are unavoidably associated with numerical computations,
thus a correct implementation of interval methods requires
proper handling of these rounding errors. The interval
library in COSY INFINITY, which is the base for the
verified computations for the data types IN, IV and TM,
supports the directed rounding to assure the verification
[5]. The COSY ASCII output of intervals is further
rounded outward to avoid confusion caused by system
dependent output truncation. To facilitate interval-related
applications, some utility procedures are newly available.
Particularly, INTSEC, INTUNI and INTINC are used for
intersection, union and inclusion check, respectively.
The data type TM represents Taylor model objects. The

DA data type objects truncate Taylor power series at order
n, but the TM data type objects keep the contribution from
the Taylor remainder term in an interval, the so-called
remainder bound interval. The bulk amount of the
functional dependency is kept in the polynomial part that
has the same data structure as the DA data type objects.
Thus, this data type is also called the (R)emainder-
enhanced (D)ifferential algebra type. The remainder
bound interval part is used conveniently to absorb
other errors like floating point rounding errors and
coefficient cutoff errors. This allows us to use floating
point numbers for polynomial coefficients, while assuring
verified computations.
The utilization of floating point number coefficients has

numerous benefits. First, a Taylor model implementation
can utilize a big part of the DA library code by mere DA
subroutine calls. This helps to reduce the code implementa-
tion and maintenance effort as well as the size of the code,
but it requires special care to properly handle floating point
rounding errors and cutoff errors. Secondly, as summar-
ized in an exhaustive paper on the method of Taylor
models [6], this idea is one of key points to enable the
suppression of the dependency problem. This is one source
of overestimation often observed in interval based compu-
tations, and it limits the applicability of many verified
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Table 1

Data types supported in COSY INFINITY

RE Real Number

ST String

LO Logical

DA Differential Algebra Vector

VE Real Number Vector

CM Complex Number

IN Interval

IV Interval Vector

GR Graphics

CD Complex Differential Algebra Vector

TM Taylor model (Remainder-enhanced Differential

Algebra Object)
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computations. Thirdly, the concept of DA-fixed point
theorem can be extended straightforwardly to various
Taylor model algorithms, allowing them to achieve the
same level of computational efficiency to that of DA fixed
point based algorithms. One superb example of this is the
Taylor model algorithm for verified ODE (ordinary
differential equation) integrations [7].

The arithmetic on Taylor models is introduced for
binary operations and intrinsic functions. The implementa-
tion of Taylor models in COSY INFINITY utilizes the
COSY DA and the COSY interval libraries optimally so
that the efficiencies achieved for the DA and IN data types
can be carried over to the TM data type. Refer to [6] for the
theoretical background and implementation details.
Furthermore, a binary output/input capability is newly
added to COSY INFINITY to avoid any error growth
associated to Taylor model file input and output. The
binary I/O capability is supported for the RE and TM data
types.

The Taylor model method provides sharp estimate while
guaranteeing the result, and even only low-order Taylor
models often perform better than sophisticated methods
like the centered form and the mean value form [6,4].
Details can be found in Ref. [6], which also summarizes
various Taylor model based algorithms and discusses some
practical problems. The various Taylor model operations
and intrinsics have been independently analyzed for rigor
based on IEEE floating point standards [8] and subjected
to extensive and challenging execution-based testing [9,10].

2.3. COSY-VI and COSY-GO

Verified integration of ODEs and global optimization
require efficient computational methods with verification,
and the method of Taylor models can be applied
effectively. Based on the Taylor model implementation in
COSY INFINITY, packages for those important applica-
tions are now available for release.

COSY-VI is the COSY Taylor model package for
verified integration of ODEs, and the package offers
various state of the art Taylor model algorithms for the
task. The package also can be used for other types of
problems like differential algebraic equations by reducing
them to the form of ODEs [11]. Besides the general concern
of controlling the dependency problem in verification
problems, verified integrations of multidimensional ODEs
exhibit a severe asymptotic overestimation problem of
geometric nature, called the wrapping effect [4]. The
striving for suppressing the wrapping effect has as long a
history as the computer implemented interval method
itself. The naive concept of Taylor models with multi-
variate polynomials allows not only the high-order Taylor
expansion in time t, but also the high-order expansion in
space variables ~x. This feature enables a solution set at each
integration time step to be enclosed by an nth order Taylor
model, i.e. the set is approximated by an nth order
polynomial while the approximation error is kept in a

small remainder bound interval. Combined with precondi-
tioning techniques, this approach much reduces the
devastating wrapping effect. The COSY-VI package is
further equipped with higher level algorithms like the
method of shrink wrapping and various types of blunting
for tighter control of error growth, details about which can
be found in an exhaustive paper on the Taylor model ODE
integrations [7]. In summary, the key features and
algorithms of COSY-VI are

� High-order expansion not only in time but also in
transversal variables.
� Capability of weighted order computation, allowing to
suppress the expansion order in transversal variables.
� Shrink wrapping algorithm including blunting to con-
trol ill-conditioned cases.
� Pre-conditioning algorithms based on the Curvilinear,
QR decomposition, and blunting pre-conditioners.
� Resulting data is available in various levels including
graphics output.

COSY-GO is the COSY Taylor model package for
global optimization. Different from intervals, Taylor
models carry the information on local slope and convexity
in the data structure. Utilizing the readily available
information, various range bounding algorithms have been
developed. The linear dominated bounder LDB provides
fast multidimensional Taylor model range bounding,
utilizing the linear part as a guideline on range enclosing
and reducing the corresponding domain area. The quad-
ratic dominated bounder QDB provides a thorough
quadratic bounding of a multidimensional Taylor model
by carrying out the convexity tests of the quadratic part. A
v dimensional box has 3v surfaces, consisting of 2v one
dimensional corner points, various higher dimensional
surfaces, and finally the v dimensional box interior. Thus, a
complete examination of stationary points for a v dimen-
sional quadratic polynomial requires 3v � 2v tests if
conducted naively, which becomes impractical quickly as
v increases. The QDB bounder reduces the required efforts
by utilizing the LDB and the efficient surface list handling,
making high dimensional problems practically solvable. To
facilitate the task of quadratic bounding for global
optimization, a limited purpose quadratic bounder, the
fast quadratic bounder QFB, is more practical. QFB is
designed for a multidimensional Taylor model whose
quadratic part is convex, which is characteristic of the
most crucial bounding task, namely that of a Taylor model
in the proximity of a local minimizer. This enables to
eliminate the pure quadratic terms from the bounding task.
The COSY-GO package is equipped with those state of the
art Taylor model range bounding algorithms [12]. Since
those quadratic bounders solve an infamous problem in
global optimizations with verified methods, the so called
cluster effect, COSY-GO makes various global optimiza-
tion problems practically solvable, among them the long-
term stability estimate of storage rings using Normal Form
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analysis, which is the original motivation of the develop-
ment of Taylor models. The core features and algorithms
of COSY-GO can be summarized as follows:

� List management of boxes not yet determined to not
contain the global minimizer. Loading a new box.
Discarding a box with range above the current threshold
value. Splitting a box with range not above the threshold
value for further analysis. Storing a box smaller than the
specified size.
� Application of a series of bounding schemes, starting
from mere interval arithmetic to naive Taylor model
bounding, LDB, then QFB. A higher bounding scheme
is executed only if all the lower schemes fail.
� Update of the threshold cutoff value via various
schemes. It includes upper bound estimates of the local
minimum by corresponding bounding schemes, the mid
point estimate, global estimates based on local behavior
of function using gradient line search and convex
quadratic form.
� Box size reduction using LDB.
� Resulting data is available in various levels including
graphics output.

3. Particle optical elements and analyzing tools

COSY INFINITY offers various methods for particle
trackings via transfer maps that relate the initial condition
~zi to the final condition ~zf via ~zf ¼Mð~ziÞ: In the code,
transfer map M is represented by the DA data type. For
the purpose of gaining speed in computations, the VE data
type is employed to represent the particle coordinates ~z in
the tracking algorithm. Tracking can be performed not
only in regular particle coordinates that provide intuitive
understanding of the dynamics, but also in normal form
coordinates that provide a means of quantitative analysis
of the dynamics. When studying the dynamic aperture, it is
important to be able to utilize appropriate symplectifica-
tion. In the current version of COSY INFINITY, mere
particle tracking without symplectification is performed by
specifying the tracking mode TY ¼ �21 for the command
TR [13]. The symplectic tracking modes with generating
functions of types F1 to F 4 require the user to find the
optimal generating function by trial and error for each
problem. A new approach, the EXPO (The EXtended
POincare generating function type), employs the optimal
generating function for symplectification [14,15]. COSY
INFINITY offers this method to promote the easy usage of
symplectic trackings, and the feature is performed by
specifying the tracking mode TY ¼ 0. Another minor but
useful tool is the command TRT, which allows the user to
incorporate bookkeeping information in a tracking picture
produced by the command TR. It is also possible to mark a
specific particle in tracking pictures by coloring the particle
via the command SR. Due to the additional memory
consumption, this feature is turned off by default. To

activate the feature, a few lines in the file cosy.fox have to
be altered, which can be easily identified by searching a
string ‘‘color.’’
Some of modern particle optical devices have large

acceptance, for example those to be used for the various
muon accelerator scenarios, where the difficulty and
expense of cooling require the ability to manipulate a
beam of unusually large emittance. This naturally has led
to the usage of COSY INFINITY for such systems,
because of the necessity of high-order nonlinear computa-
tions. As a result, several new algorithms and tools have
been developed. This includes an extensive collection of
solenoidal elements, efficient propagation of beams with
tremendously large emittance, and treatment of dynamics
of particle beams traveling through matter while experien-
cing scatterings. Refer to [16,17], for details.

4. Standard features and supported languages

With the rapid expansion of computer techniques in
recent years, it is not a simple task to maintain a scientific
computation code like COSY INFINITY with numerous
users and a variety of computer environments, to adjust to
newly emerging techniques and the disappearance of
others. To efficiently confront this situation, we have
strived to keep backward compatibility and portability of
the code COSY INFINITY as much as possible in order to
protect users from additional effort due to sudden code
changes based on syntax modification.
There are some items worthwhile to mention in this

paper about the current official distributions at the COSY
web site cosy.pa.msu.edu. For the interactive graphics
output purpose, the PGPLOT graphics library has been
stable in the last years, and thus we keep the PGPLOT
graphics drivers in COSY as the standard interactive
graphics package [1]. On the other hand, the GKS graphics
library is quickly becoming obsolete, so we demoted the
GKS graphics drivers. The GKS drivers are merely
commented in the code, so they are still easily available
for the user. We keep the VGA graphics drivers for Lahey
Fortran and the graPHIGS graphics drivers in the same
commented form. The long swing between MicroSoft
Windows PCs and Linux/UNIX for the COSY Fortran77
sources seems to be settled into ‘‘UNIX’’ version. It is
because the COSY ‘‘PC’’ version was meant mostly for
Lahey Fortran, and popular Fortran compilers lately
available for MicroSoft Windows PCs are compatible with
the COSY ‘‘UNIX’’ version.
Finally, for the increasing population and demand of

non-Fortran77 languages, COSY INFINITY provides
interface packages for Fortran90 and Cþþ to enhance
portability. All the data types and the associated opera-
tions, functions and intrinsic procedures in COSY IN-
FINITY are accessible via the interface packages as Cþþ
classes for the Cþþ user, and as Fortran90 modules for
the F90 user. These COSY interface Cþþ classes and
Fortran90 modules outperform independent attempts of
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creating DA packages in Cþþ and Fortran90. Refer to
[1,5] for details on the interface packages.
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Abstract

In this paper, we report on recent advances in strong–strong beam–beam simulation. Numerical methods used in the calculation of the

beam–beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This

method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It also appears to be

more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of

coherent modes with multi-bunch, multi-collision beam–beam interactions at RHIC. We also present the strong–strong simulation of the

luminosity evolution at KEKB with and without finite crossing angle.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The beam–beam interaction puts a strong limit on the
luminosity of the high energy storage ring colliders. At the
interaction points, the electromagnetic fields generated by
one beam focus or defocus the opposite beam. This can
cause beam blowup and a reduction of luminosity. An
accurate simulation of the beam–beam interaction is
needed to help optimize the luminosity in high energy
colliders. In this case, the self-consistent strong–strong
beam–beam simulation provides an invaluable tool for the
study of the colliding beams.

In the strong–strong beam–beam simulation, a number
of simulation particles (macroparticles) are used with the
same charge-to-mass ratio as the real particles. Outside the
interaction region, the macroparticles are transported
through the simulated lattice using transfer maps asso-
ciated with external elements, radiation damping, and
quantum excitation. At the interaction point, the electro-

magnetic fields from the beams are calculated and applied
to the particles of the opposing beam.
The soft Gaussian approximation is sometimes used to

obtain the electromagnetic fields of the beams at the
collision point [1–3]. While this approximation has the
advantage of computational speed, it is not self-consistent
because it assumes a Gaussian distribution for the
macroparticles even when the actual distribution might
differ substantially from the Gaussian shape. To take into
account the effects of the beam distribution self-consis-
tently, one has to solve the Poisson equation numerically
during each collision for the actual macroparticle distribu-
tion at that instant. A number of methods have been used
to solve the Poisson equation. The five-point finite
difference method with Fourier analysis and cyclic reduc-
tion (FACR) has been used by Krishnagopal [4] and Cai et
al. [5]. This method solves the Poisson equation efficiently
with finite domain boundary conditions. For the open
boundary conditions, which are appropriate in typical
beam–beam simulations, the method requires finding an
effective boundary condition on the problem boundary;
this can be computationally expensive. In addition, this
method is not efficient to handle the case with two widely
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separated beams, where the domain of the source particles
(particle domain) and the domain of the electric field (field
domain) are different. Another method based on the fast
multipole expansion has been used by Herr et al. [6] to
solve the Poisson equation. In this method, the computa-
tional cost scales linearly with the number of particles or
with the number of total mesh points for the open
boundary condition. The efficiency of this method is
independent of the distribution of the source particles
and the field domain, which makes it suitable to handle the
situation with two separated beams. However, this method
is an approximate algorithm in the sense that the accuracy
of the expansion depends on the radius of convergence.
The computational speed depends on the number of
polynomials required in the multipole expansion.

The widely used method to solve the Poisson equation in
beam–beam simulations is the Green function method with
fast Fourier transform (FFT) on uniform grid. This
method uses an FFT to calculate the cyclic summation
on a doubled computational grid [7–11]. The computa-
tional cost scales as N2 logðNÞ, where N is the number of
grid points in one direction. By defining a new shifted
integrated Green function, this method can handle the
separated beams, and beams with large aspect ratio.

During the beam–beam interaction, when the bunch
length is large compared with the beta function value or the
beam–beam forces are strong, finite bunch length effects
are not negligible. In this case, a multiple slice model has to
be used. The computational cost scales as the square of the
number of slices. For a hadron collider with small
radiation damping, it is required to track the beams for
many millions of turns to study the dynamics on the time
scale of the lifetime of the beams. To study the beam–beam
interaction fully self-consistently for both beams (i.e. a
strong–strong formulation), and to include all the physical
processes of long range off-centroid interactions, finite
beam bunch length effects, and crossing angle collisions,
requires computational resources far beyond the capability
of current serial computers. A parallel beam–beam
simulation code, Beam–Beam3D, with both weak–strong
and strong–strong capabilities, that can simulate these
physical processes accurately using high performance
computers has been developed at Lawrence Berkeley
National Laboratory [12]. In this paper, we present recent
advances in the numerical method to calculate the
beam–beam forces and in applications to the studies of
beam–beam interactions at RHIC and KEKB.

The organization of the paper is as follows: The
computational methods are described in Section 2.
Applications to the studies of beam–beam interactions at
RHIC and KEKB are given in Section 3. We summarize
our results in Section 4.

2. Computational methods

In strong–strong beam–beam simulation, the electric
fields generated by the opposite moving beam can be

obtained from the solution of Poisson’s equation. In
Cartesian coordinate system, the solution of Poisson’s
equation can be written as

fðx; yÞ ¼
Z

Gðx; x̄; y; ȳÞrðx̄; ȳÞdx̄dȳ, (1)

where G is the Green’s function, r is the charge density,
and ðx; yÞ represent the coordinates in the plane perpendi-
cular to the direction of motion of the beam. For the case
of transverse open boundary conditions, the Green’s
function is given by

Gðx; x̄; y; ȳÞ ¼ �1
2
lnððx� x̄Þ2 þ ðy� ȳÞ2Þ. (2)

Now consider a simulation of an open system where the
computational domain containing the particles has a range
of ð0;LxÞ and ð0;LyÞ, and where each dimension has been
discretized using Nx and Ny points, the electric potentials
on the grid can be approximated as

fðxi; yjÞ ¼ hxhy

XNx

i0¼1

XNy

j0¼1

Gðxi � xi0 ; yi � yj0 Þrðxi0 ; yj0 Þ, (3)

where xi ¼ ði � 1Þhx and yj ¼ ðj � 1Þhy. This convolution
can be replaced by a cyclic convolution expression in a
double-gridded computational domain. The cyclic convo-
lution can be computed efficiently using an FFT as
described by Hockney and Eastwood [13].
The method described above involves use of the FFT on

a uniform computational grid. In high energy colliders, the
colliding beams normally have a non-uniform transverse
charge density distribution. A nonuniform grid may help
resolve the charge density distribution more efficiently.
Furthermore, using an FFT-based method on the nonuni-
form grid in cylindrical coordinates also reduces the
computational cost of the Poisson solver by a factor of
two, which could have an important effect in the
strong–strong beam–beam simulation. This is because the
Poisson solver to calculate the beam–beam forces is
normally the major computational cost in the self-
consistent strong–strong simulation. To use a nonuniform
grid, we have transformed the charge density distribution
from the Cartesian coordinates ðx; yÞ into a cylindrical
coordinates ðr; yÞ. Then, we define another transform
between radial r and a new variable s as

s ¼
1

k1
log

r

k2

� �
(4)

where the constants k1 and k2 control the scale and the rate
of the function variation between r and s. Using a uniform
grid along s will generate a nonuniform grid along r since
dr ¼ k1k2rds. For a uniform computational grid in ðs; yÞ
coordinates, we can use the FFT based method to calculate
the convolution for electric potential. A similar transform
has been used in calculation of the gravitational potential
in a disk galaxy system [14]. The new Green function in the
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ðs; yÞ coordinate is

Gðs; yÞ ¼ �1
2
logðe2k1s � 2ek1s cosðyÞ þ 1Þ. (5)

In the ðs; yÞ coordinates, both the Green’s function and the
charge density distribution are periodic functions of y.
Hence, we do not need to double the computational
domain along y to use the Hockey’s algorithm. This
reduces the computational cost and the storage by a factor
of two compared with the standard FFT based Green
method on uniform Cartesian coordinate.

As an example of the above algorithm, we have
computed the radial electric field distribution generated
by a round beam with a Gaussian density distribution. The
left plot of Fig. 1 shows the analytical solution of the radial
electric field Er as a function of radial distance r. The right
plot of Fig. 1 shows the absolute error of Er as a function
of r using the nonuniform grid Green function method and
the standard uniform grid Green function method. It can
be seen that using the nonuniform grid Green function
method, the numerical error of Er is about half of that
using the uniform grid Green function method. In this
example, the transverse aspect ratio of the colliding beam is
one. This is true for most hadron collider where radiation
damping is negligible. For electron–positron colliders such
as KEKB and PEPII, the colliding beam can have a very
large transverse aspect ratio. To test the applicability of the
above algorithm, we have also calculated the electric field
for a Gaussian charge density distribution with an aspect
ratio of 30. The relative error of Ex on the x axis is given in
Fig. 2 together with that calculated from using the
integrated Green function method on uniform grid. Here,
three relative errors of Ex from using the nonuniform grid
Green function method on a computational grid of
256� 512, 512� 256 and 1024� 512 are given. The
relative error from the integrated uniform Green function
method uses a computational grid of 256� 256. Since the
nonuniform grid Green function does not need to double
the computational domain in the y direction, it has the

same computational cost on a 256� 512 grid as the
uniform grid Green function method does on a 256� 256
grid. It is seen that the integrated Green function method
on a 256� 256 uniform grid gives the least error. This
suggests that the integrated Green function method might
be more efficient for a beam with large aspect ratio.

3. Applications

In recent applications, we have studied the coherent
modes of multi-bunch collisions at RHIC through a
strong–strong beam–beam simulation [15]. Fig. 3 gives a
schematic plot of two colliding beams at RHIC. Here each
beam has three bunches. The six bunches couple with each
other through collisions at four interaction points, IP2,
IP6, IP8 and IP10. Table 1 gives a list of the physical
parameters used in the simulation. All bunches are
assumed to have the same physical parameters listed in
the table. Fig. 4 shows power spectra of horizontal centroid
motion of three bunches. There are only two distinct
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eigenmodes, the p mode (180 degree out of phase) and the
s mode (in phase), which are observable in this example.
The other four modes are degenerated and buried into the
incoherent continuous spectra. The p mode tune shift is
4:918x which is about of a factor of 4 times the single
bunch p tune shift 1:21x. This is in agreement with the
analytical calculation of Yokoya et al. [16]. The large tune

shift of the p mode due to the multi-bunch collisions
presents a potential instability since it can not be damped
out by the continuous spectra through the Landau
damping. In above example, we have assumed that the
two beams have the same parameters. In reality, the
parameters of two rings can be controlled so that the two
colliding beams have different tunes. Fig. 5 gives power
spectra of horizontal centroid motion of three bunches
with the horizontal tune of the second beam set as 0:2 while
the first beam is set as 0:22. The two colliding beams lose
the coherent motion and the dipole mode disappears into
the continuous spectra.
In another application, we have studied the time

evolution of luminosity at KEKB. The physical parameter
used in the simulation is given in Table 2. Fig. 6 shows the
time evolution of single bunch collision luminosity with
(left plot) and without (right plot) a finite crossing angle.
With 11mrad of finite crossing angle, the luminosity has
dropped by about a factor of two after about 2000 turns.
This suggests that using a head-on collision (e.g. by using
crab cavity at interaction point) will significantly improve
the luminosity at KEKB.
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Fig. 3. A schematic plot of two colliding beams at RHIC.

Table 1

RHIC physical parameters for beam–beam simulations

Beam energy (GeV) 100

Protons per bunch 10:0� 1010

b� (m) 1.0

RMS spot size at the IP (mm) 0.176

Betatron tunes ðnx; nyÞ ð0:22; 0:23Þ

Synchrotron tune nz 3:7e� 4

RMS bunch length (m) 3.6

Momentum spread 1:6e� 3

Beam–beam parameter x 0.00366
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Fig. 4. Power spectra (arbitrary normalization) of the horizontal centroid

motion of three bunches at RHIC.
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Table 2

KEKB physical parameters for the beam–beam simulation

e�=eþ beam energy (GeV) 8.0/3.5

e�=eþ per bunch 4:375� 1010=10:0� 1010

b� (horizontal, vertical,
longitudinal) (m)

ð0:6; 0:007; 10:0Þ

Emittance (horizontal, vertical,

longitudinal) (m-rad)
ð1:8� 10�18; 1:8� 10�18; 4:8� 10�6Þ

Betatron tunes ðnx; nyÞ ð0:5151; 0:5801Þ
Synchrotron tune nz 0.016

Damping time (horizontal,

vertical, longitudinal) (/turn)
ð2:5� 10�4; 2:5� 10�4; 5:0� 10�4Þ
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4. Summary

In this paper, we have reported on some recent advances
of strong–strong beam–beam simulation. The new nonuni-
form grid Green function method for calculating the
beam–beam forces has the advantage of better accuracy
and less computational cost for low aspect ratio beam in
hadron collider. The application to the study of the multi-
bunch coherent modes at RHIC shows a much larger
dipole mode tune shift than that of the single bunch
collision. This mode can be removed with asymmetric tunes
of two colliding beams. In the KEKB application, the
collision with 11mrad crossing angle shows a significant
decrease of the luminosity compared with the head-on
collision. This suggests that using a crab cavity to correct
the crossing angle collision will improve the luminosity of
the future machine operation.
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Abstract

Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can

be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has

various tracking algorithms including Runge–Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and

radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize

flexibility. Interface routines allow Bmad to be called from C=Cþþ as well as Fortran programs. Bmad is well documented. Every

routine is individually annotated, and there is an extensive manual.

r 2005 Elsevier B.V. All rights reserved.
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1. Overview

The Bmad [1] subroutine library for simulating
relativistic charged particle beams was created to
enable programmers to develop programs without the
need to code from scratch commonly used functions such
as lattice file parsing and particle tracking. Using a
subroutine library such as Bmad cuts down on the time
needed to develop programs and reduces programming
errors.

Bmad has been developed at Cornell University’s
Laboratory for Elementary Particle Physics. The name
Bmad is derived from the MAD [2] simulation program.
Originally, the Bmad standard lattice input format was a
subset of the MAD format, and the name Bmad was
chosen as a shortening of the name ‘‘Baby MAD’’. As
explained below, the Bmad lattice format now has
numerous extensions that are not part of MAD.

Bmad, with some 400 routines, can do many things.
Bmad can be used to study both single and multi-particle
beam dynamics. It has routines to track both particles

(represented by a phase-space position vector) and macro-
particles (represented by a centroid phase-space vector with
a 6� 6 beam size sigma matrix). Bmad has various
tracking algorithms including Runge–Kutta [3] and sym-
plectic (Lie algebraic) integration. Bmad has routines for
calculating transfer matrices, emittances, Twiss para-
meters, dispersion, coupling, etc. The elements that Bmad
knows about include quadrupoles, RF cavities (both
storage ring and LINAC accelerating types), solenoids,
dipole bends, etc. In addition, elements can be defined to
control the attributes of other elements. This can be used to
simulate the ‘‘I-beams’’ which physically support compo-
nents in the accelerator, or to easily simulate the action of
control room ‘‘knobs’’.
Bmad, written in Fortran90, has been developed in a

modular, object-oriented fashion to maximize flexibility.
To facilitate interfacing Bmad with C and Cþþ, Bmad has
translation routines to convert Bmad structures to corre-
sponding C=Cþþ structures. To facilitate working with
Bmad in general, Bmad has been well documented [1]:
every Bmad routine has header comments explaining how
to use the routine, and there is an extensive manual
covering nomenclature, physics, lattice input format and,
programming.
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2. Lattice parsing

The Bmad library includes two lattice parser subrou-
tines. One parser interfaces with the Extended Standard
Input Format (XSIF) library developed at SLAC [4] so
that XSIF lattice files can be read. The other parser
implements the Bmad standard lattice format.

Aside from the standard MAD elements such as
quadrupoles, bends, RF cavities, etc., the Bmad standard
format includes wiggler [5], and Taylor map elements. Like
the SLAC extension to MAD, the Bmad standard also
implements LINAC accelerating cavity elements. Addi-
tionally, Bmad has a combination bend, solenoid, and
quadrupole element with the solenoid field being able to
vary linearly with longitudinal position

Bs ¼ Bs0 þ as. (1)

With such an element, a realistic solenoid with fringe fields
can be easily simulated. All lattice elements can be
individually positioned with respect to the reference orbit
so, for example, the effect of lattice errors can easily be
studied. Besides shifting elements with respect to the
reference orbit, Bmad also has ‘‘patch’’ elements that can
be used to shift the reference orbit itself.

The Bmad lattice format has the capability to easily
superimpose elements on top of other elements as long as
the combination can be represented as a valid Bmad
element. A common example occurs when a quadrupole
magnet is placed inside the field of a larger solenoid
magnet. Thus, for example, a lattice file could contain the
following:

Q: quad, l ¼ 10
D: drift, l ¼ 6
S: solenoid, l ¼ 5, superimpose, &
ref ¼ Q, ref_end, offset ¼ 1.4

lat: line ¼ (Q, D)
use, lat

This places the center of S is 1.4m away from the exit end
of Q. The region where Q and S intersect will be treated as
a combination solenoid/quadrupole element.

The Bmad lattice format also allows elements to be
defined that control the attributes of other elements. An
element, for example, could be defined to control the
strengths of a string of quadrupoles, thus mimicking the
effect of a power supply. In this way, control room
‘‘knobs’’ may easily be simulated. For example:

OV: overlay ¼ {Q1, Q2/2.0, S[ks]/0.4}, k1 ¼
1.0.

This example defines a control element OV, called an
overlay, that controls the k1 quadrupole strength of
elements Q1 and Q2 and the ks solenoid strength of
element S. The factors of 2.0 and 0.4 are scaling factors so
that when, in this example, the value of OV is set to 1.0, the
k1 strength of Q2 is 2.0, and the ks strength of S is 0.4.
Control elements can control other control elements, so a

hierarchy of controls may be established. Another type of
control element is called an i_beam which simulates a
support structure that orients the elements that are
attached to it in space. For example:

IB: i_beam ¼ {Q1, *, Q2}
IB[x_offset] ¼ 0.012
IB[tilt] ¼ 1e-4 * pi

would create an i_beam element that supports all elements
between elements Q1 and Q2. Once IB is defined, it can be
moved and tilted.

3. Tracking and transfer map calculations

Tracking and transfer map calculations are at the heart
of most simulations, and different problems will have
different requirements as to accuracy, speed, etc. To
preserve flexibility, Bmad implements a number of different
tracking and transfer map engines. Each lattice element can
be separately assigned which engine to use. Furthermore,
Bmad has routines to do tracking both in the forward and
backwards directions.
The default ‘‘Bmad_standard’’ engine is implemented

using thick element formulas which can be quickly
evaluated. The drawback here is that the formulas are
not necessarily symplectic. This is generally good for, for
example, in lattice design where symplecticity is not an
issue. The Polymorphic Tracking Code (PTC) library of
Etienne Forest [6] has been interfaced to Bmad. PTC tracks
using Lie algebraic techniques to integrate the appropriate
Hamiltonians and this guarantees symplecticity. Differen-
tial Algebra (DA) is implemented in PTC with the result
that Taylor maps of arbitrary order can be generated. PTC
has a full suite of DA routines to manipulate Taylor maps,
including map concatenation and normal form analysis.
Alternatively, the second order transfer maps that are used
in the MAD program are available for use. Furthermore,
by writing the appropriate routines, custom calculations
may be easily implemented. Runge–Kutta [3] and Boris [7]
integrators are also available which allow tracking from a
knowledge of the electric and magnetic fields within an
element.
In addition to tracking with particles, macroparticles

with wakefields have been implemented in Bmad. A
macroparticle has a centroid which propagates like a
particle, and a 6� 6 sigma matrix which characterizes the
size of the macroparticle. Since the full 6� 6 sigma matrix
is used, as opposed to only the transverse 4� 4 part,
macroparticles in Bmad can be propagated through bends.

4. C=Cþþ interface

Bmad is written in Fortran90 in an object-oriented
fashion. To facilitate interfacing Bmad with routines
written in C or Cþþ, C structures with corresponding
translation subroutines have been implemented to transfer
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data between Fortran and C=Cþþ. For example, a
Fortran program with a call such as:

type (ele_struct) ele
call c_example (ele)

could be handled with a Cþþ routine like:

void c_example_(void* f_ele) {
c_ele_struct c_ele;
ele_struct_to_c_(f_ele, &c_ele);
cout oo "X_Beta: " oo c_ele.x.beta oo
endl;
cout oo "X_Eta: " oo c_ele.x.eta oo endl;
c_ele_struct_deallocate (&c_ele);
}

Ele_struct is a Bmad structure that holds all the informa-
tion about a single element (attribute values, tracking
method used, etc.). The corresponding C structure is
the c_ele_struct. The ele_struct_to_c routine transfers
the information form an ele_struct to a c_ele_struct. The
c_ele_struct_deallocate routine cleans up any allocated
memory in c_ele.

5. Applications

The versatility of Bmad has led to its use in a number
projects at Cornell. Bmad is the engine that drives the main
software tools used for designing and simulating the
Cornell Electron/positron Storage Ring CESR. Projects
include dynamic aperture studies, lattice design, Beam-
beam luminosity simulations, element misalignment stu-
dies, synchrotron radiation calculations, Baba scattering
simulations, injection simulations, and measurement and
correction of orbits, dispersion, coupling, beta, and
betatron phase.

Bmad has also been used in conjunction with Cornell’s
Energy Recovery Linac (ERL) design effort and simula-
tions of the Next Linear Collider and TESLA designs.
Work is now in progress to use Bmad for lattice coupling
simulation and correction at SLAC’s PEP-II storage ring.

Fig. 1, which is a schematic diagram of the interaction
region of the CESR storage ring, shows an example of how
Bmad can be easily used. Two cryostats (only one is shown
in the figure) holding four superconducting quadrupoles
each are situated to either side of the interaction point. The

quadrupoles come in skew/non-skew overlapping pairs
and, to complicate matters, one pair of quadrupoles is
partially inside the solenoidal field of the CLEO detector.
To correct installation misalignments, each cryostat is
movable via four eccentric cams. The standard CESR
lattice file represents this situation by superimposing the
superconducting quadrupoles on the lattice. The cams are
represented by overlays that control the positions of the
quadrupoles (it would be somewhat simpler to use an
i_beam element here but the template for the standard
CESR lattice was created before the i_beam element was
implemented).
Since all the cam control information is in the lattice file,

it is a simple and straightforward matter for any program
to simulate cam motion. For example, the following
snippet of code would calculate the change in orbit due
to a movement of a cam by an amount dr:

call bmad_parser (’lattice_file_name’, &
lattice)

call closed_orbit_calc (lattice, &
orbit_before, 4)

call element_locator (lattice, &
’SC_CAM_4W’, ix)

lattice%ele_(ix)%value(rho$) ¼ &
lattice%ele_(ix)%value(rho$) + dr

call control_bookkeeper (lattice, ix)
call closed_orbit_calc (lattice, &

orbit_after, 4)

The call to bmad_parser reads in the lattice information
and puts it into the lattice variable. The call to
closed_orbit_calc calculates the closed orbit. Element_lo-
cator locates the cam in the element list contained within
the lattice variable, and control_bookkeeper transfers
the cam move to the appropriate elements that are used in
tracking.
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The results of a cam simulation are shown in Fig. 2.
Fig. 2a shows the measured change in the vertical orbit due
to a change in position of one of the cams. A program
adjusted a simulated cam so that the simulated change in
orbit best fit the measured orbit. A good fit to the data was
achieved as shown in Fig. 2b which shows the difference
between the measured and simulated orbit changes.

6. Summary

Bmad is a flexible, well documented, object-oriented
environment for simulating accelerators and storage rings.
It is not only useful in designing simulation programs but,
since it is a software library, Bmad can be built into control
room operation programs as well. Distributions with build
scripts are available on OSF UNIX, Linux, and VMS.
Bmad has also been compiled on Windows. The Bmad
distribution and documentation may be obtained from
Ref. [1]
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Flöttmann, K., see Abrahamyan, K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 249

Folwell, N., see Li, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 168

Folwell, N., see Ng, C.-K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 192

Formanoy, I., see Toprek, D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 147

Formanoy, I., see Toprek, D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 247

Frolov, O.T., see Esin, S.K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 220

Furman, M.A., see Qiang, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 351

Galea, R., A. Caldwell, S. Schlenstedt and H. Abramowicz, Simulation of low energy muon frictional cooling. . . . . . . . . . . . . . 558 (2006) 225

Ge, L., see Li, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 168

Gjonaj, E., see Wolfheimer, F.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 202

Golub, Y.Y., New vortices in axisymmetric beams in an inhomogeneous magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 119

Groening, L., see Yaramyshev, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 (2006) 90
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