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Abstract

This paper provides a computational method to model a three-dimensional static electromagnetic field within a finite source free

volume starting from discrete field information on its surface. The method uses the Helmholtz vector decomposition theorem and the

differential algebraic framework of COSY INFINITY to determine a solution to the Laplace equation. The solution is locally expressed

as a Taylor expansion of the field which can be computed to arbitrary order. It provides a natural multipole decomposition of the field

which is required for the computation of transfer maps, and also allows to obtain very accurate finite element representations with very

small numbers of cells.
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1. Introduction

The detailed simulation of particle trajectories through
magnets in spectrographs and other large acceptance
devices requires the use of detailed field information
obtained from measurements. Likewise, for high-energy
accelerators like the LHC, higher order description of the
beam dynamic via one-turn maps is required to study the
long-term beam stability [1,2]. The construction of such
high-order one-turn truncated Taylor maps [3] requires the
precise information of the electromagnetic field in the
individual electromagnetic components (quadrupoles, di-
pole, sextupoles, etc.) of the lattice.

It is commonly known that for a device that satisfies
mid-plane symmetry, the entire field information can be
extracted from the data in the mid-plane of the device [3].
However, it is well known that this method has limitations
in accurately predicting nonlinear field information outside
the immediate vicinity of the mid-plane because the
extrapolation requires the computation of higher order
e front matter r 2005 Elsevier B.V. All rights reserved.
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derivatives of in-mid-plane data, which is difficult to do
with accuracy if the data is based on measurements. Thus,
it is particularly useful to employ techniques that rely on
field measurements outside the mid-plane. In particular, in
modern particle spectrographs it is common to measure the
fields on a fine mesh on 2–4 planes outside the mid-plane.
These data have frequently been used to model the overall
field as a superposition of point-charge fields of so-called
image charges [4,5]. However, the computational effort
required for this approach is large, as it requires the
inversion of a matrix with a dimension equal to that of the
number of image charges.
However, the out-of-plane field measurements in essence

provide field data on the top and bottom surfaces of a box
containing the region of interest through which the beam
passes. If the planes extend outward far enough to a region
where the fringe field becomes very small, or can easily be
modeled, and inwards far enough that the field becomes
rather homogenous, field data are known on an entire
surface enclosing the region of interest. The method we
present in this paper can extract the field information as a
multipole expansion in the volume of interest if a discrete
set of field measurements are provided on a closed surface
enclosing the volume of interest.
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Thus, the field computation problem can be viewed as
solving a boundary value problem for the three-dimen-
sional ð3DÞ Laplace equation for the field, i.e. to obtain the
solution of the PDE

r2cð r!Þ ¼ 0 in the volume O � R3

where rcð r!Þ ¼ f
!
ð r!Þ is specified on the surface qO.

The existence and uniqueness of the solution for the 3D
case can easily be shown through the application of
Green’s formulae. In particular, it is well known that the
component of ~rc normal to the surface is sufficient to
specify the solution; however, in the following we will also
make use of the additional field components available from
measurements. It is well known that the analytic closed-
form solution for the 3D case can be found for problems
with certain regular geometries where a separation of
variables can be performed. However, in most practical 3D
cases, numerical methods are the only way to proceed.
Usually the finite difference or finite element approach are
used to find the numerical solution as data set in the region
of interest. But because of their relatively low approxima-
tion order, for the problem of precise solution of PDEs, the
methods have limited success because of the prohibitively
large number of mesh points required. The method we
present in this paper can determine local finite elements of
in principle unlimited order.

In Section 2 we discuss the benefits of using the
boundary data and present the analytic closed form
solution for the 2D case that can be easily found by
application of Cauchy’s integral formula. We then use a 2D
example to highlight the advantages of the methods that
use the boundary data to compute the solution. In Section
3 we present the theory and the implementation of the new
scheme to find the solution of the 3D Laplace equation
when the gradient of the solution is specified on the surface
enclosing the volume of interest . This scheme is based on
the Helmholtz theorem and the tools of the code COSY
Infinity [3,6,7]. In Section 4 we present an application of
this new scheme to a theoretical bar magnet problem. We
also address the results of an application to the study of a
dipole magnet of the MAGNEX spectrograph.

2. Methods using boundary data

Boundary data methods such as those utilized below are
based on a description of the interior field in terms of
particular surface integrals involving the surface data.
These approaches have various advantages. Firstly, the
solution is analytic in terms of the interior variables, even if
the boundary data fail to be differentiable or are even
piecewise discontinuous; all such non-smoothness is
removed after the integration is executed. Hence a Taylor
polynomial approximation in terms of interior variables
can be performed; and we expect that a Taylor approxima-
tion of a certain order will provide an accurate approxima-
tion over suitable domains.
Secondly, since for the PDEs under consideration here
the solution functions are known to assume their extrema
on the boundary because of analyticity or harmonicity, a
method that uses boundary data is expected to be robust
against errors in those boundary data with errors in the
interior not exceeding the errors on the surface. Thirdly, if
the boundary data given have statistical errors, such errors
have a tendency to even average out in the integration
process as long as the contributions of individual pieces of
integration are of similar significance. Thus, we expect the
error in the computed field in the interior to be generally
much smaller than the error in the boundary data. This
ensures that the methods using boundary data are
computationally stable.

2.1. The 2D case

As an introduction to the general approach, we begin
with the discussion of the 2D case, the theory of which can
be fully developed in the framework of elementary complex
analysis, and which also describes the situation of static
electric or magnetic fields as long as no longitudinal field
dependence is present. It is based on the use of Cauchy’s
integral formula stating that if the function f is analytic in a
region containing the closed path C, and if a is a point
within C, then

f ðaÞ ¼
1

2pi

I
C

f ðzÞ

z� a
dz (1)

where the integral denotes the path integral over C.
Cauchy’s formula is an integral representation of f which
permits us to compute f anywhere in the interior of C,
knowing only the value of f on C. This integral
representation of f is also the solution of the 2D Laplace
equation for the primitive of ðReðf Þ;�Imðf ÞÞ with the
function f specified on the path C.
Now, suppose a random error of dðzÞ is introduced in the

measured data around the path C. Then by Eq. (1) we can
compute the error EðaÞ introduced in the computation of
f ðaÞ at some point a inside C as

EðaÞ ¼
1

2pi

I
C

f ðzÞ þ dðzÞ
z� a

dz� f ðaÞ

¼
1

2pi

I
C

dðzÞ
z� a

dz ð2Þ

We note that while EðaÞ is given by a Cauchy integral, E

need not be analytic since dðzÞ need not assume the
function values of an analytic function. In fact, if it would,
then it already would be uniquely specified on any dense
subset S of C, which removes the freedom for all values of
E on points on C that are not in S.
While the error E itself may be bounded in magnitude, if

the integral is approximated by one of the conventional
numerical quadrature methods, the result can become
singular as the point a approaches the boundary C. This
case may limit the practical use of the method and needs to
be studied carefully. As an example, we consider the case of
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Fig. 1. The plot shows the dependency of ZðrÞ on the radius r. The Y-axis

represents logðZðrÞÞ and the X-axis represents the radius r. Ten thousand

error sets ðNeÞ around the circle or radius R ¼ 2 were chosen for the

analysis. We show the plot for both the best and the worst case scenario.
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Fig. 2. The plot shows the dependency of ZðrÞ on the radius as the radius r

approaches the boundary. The Y-axis represents logðZðrÞÞ and the X-axis

represents logð2� rÞ. Ten thousand error sets ðNeÞ around the circle or

radius R ¼ 2 were chosen for the analysis. We show the plot for both the

best and the worst case scenario.
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quadrature based on adding the terms of a Riemann sum,
i.e. the approximation

1

2pi

I
C

dðzÞ
z� a

dz �
1

2pi

XNz

j¼1

dðzjÞ

ðzj � aðrÞÞ
ðzj � zj�1Þ

¼ ~EðaÞ ð3Þ

where the Nz points zj are spaced equidistantly around C;
since C is closed, z0 ¼ zNz

. By studying the approximation
~EðaÞ as the point a approaches the boundary C, we can
analyze the stability of the method with respect to the
discretization of the path C.

As an example, we choose the path C as a circle of radius
R enclosing the region of interest. We assume a random
error of dðzÞð�10�2Þ is introduced in the measured data
around C. The point a is given by r expðifÞ and the points
zj are given by R expði2pj=NzÞ for j ¼ 0; . . . ;Nz. Letting
dmðzjÞ denote the error assigned to point zj in error set m,
for each of these error sets we express the Riemann sum
zmðaÞ for point a by

zmðaÞ ¼
1

2pi

XNz

j¼1

izjdmðzjÞ

ðzj � aðrÞÞ
2p
Nz

.

We then form the average of the magnitude of the error
over Ne error sets to obtain

ZðrÞ ¼
1

Ne

XNe

m¼1

jzmðaÞj.

Note that ZðrÞ still depends on the phase f. However, in the
statistical limit there is apparently invariance under
rotation by expði2p=NzÞ; and one quickly sees that there
are two limiting cases for the choice of the phase. These are
the case f ¼ 0, where the a will eventually collide with the
zj for j ¼ Nz as r! R and thus a ‘‘worst case’’ divergence
will appear, and the case f ¼ 2p=2Nz, in which case the a
will approach the mid-point between zj for j ¼ Nz and zj

for j ¼ 1 as r! R. Choosing sufficiently fine discretization
of the path and sufficiently many error sets dm, the quantity
ZðrÞ for these two cases will be a good measure for the
accuracy that can be achieved with the surface integral
method.

For our specific example, we choose random errors of
maximum magnitude 10�2 at Nz ¼ 10; 000 points on the
circle of radius R ¼ 2. For each value of r, we perform the
computation for a total of Ne ¼ 10; 000 error sets. The
results of this analysis are shown as plots in Figs. 1 and 2
for the two phases that represent the ‘‘worst case’’ and the
‘‘best case’’ situation.

We first observe that sufficiently away from the surface,
the expected smoothing effect is happening, and the errors
in the function values are indeed well below the errors
assumed on the surface. A rough quantitative analysis
shows that this error is about two orders of magnitude
below the surface data error, corresponding well with the
statistically expected decrease of the error by 1=

ffiffiffiffiffiffi
Nz

p
. As a

approaches the curve closer than 10�3, in the ‘‘best case’’
situation, the error rises to about 10�2, which is because
now only nearby grid points contribute to the sum and thus
the smoothing effect disappears. In the ‘‘worst case’’
scenario, divergence actually happens; but the average
error is still at the level of the original random error of 10�2

for values of r that are only about 10�4 away from the
radius 2.
So overall we see that the method performs significant

smoothing, and even with the simplest discretization as a
Riemann sum, good accuracy is maintained even as we
approach C. We note in passing that with more sophisti-
cated quadrature methods, for example, those based on
Gaussian methods [3], the divergence effect can be
significantly controlled.
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3. The 3D case

The scheme we use for the 3D case is based on the
Helmholtz vector decomposition theorem [8–14]. We begin
by representing the solution of the PDE via Helmholtz’
theorem, which states that any vector field B

!
which

vanishes at infinity can be written as the sum of two terms,
one of which is irrotational and the other solenoidal as

B
!
ð~xÞ ¼ ~r � ~Atð~xÞ þ ~rfnð~xÞ (4)

fnð~xÞ ¼
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds

�
1

4p

Z
O

~r � B
!
ð~xvÞ

j~x� ~xvj
dV

~Atð~xÞ ¼ �
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds

þ
1

4p

Z
O

~r � B
!
ð~xvÞ

j~x� ~xvj
dV .

Here qO is the surface which bounds the volume O. ~xs

denotes a point on the surface qO, and ~xv denotes a point
within O. ~n is the unit vector perpendicular to qO that
points away from O. ~r denotes the gradient with respect to
~xv.

For the special case that ~B ¼ ~rV , we have ~r � ~B ¼ 0;
furthermore, if V is a solution of the Laplace equation
~r
2
V ¼ 0, we have ~r � B

!
¼ 0. Thus in this case, all the

volume integral terms vanish, and fnð~xÞ and ~Atð~xÞ are
completely determined from the normal and the tangential
components of ~B on the surface qO via

fnð~xÞ ¼
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds (5)

~Atð~xÞ ¼ �
1

4p

Z
qO

~nð~xsÞ � B
!
ð~xsÞ

j~x� ~xsj
ds. (6)

For static electric or magnetic fields without sources in O,
which are characterized by the Laplace problem that we are
studying, the divergence and the curl of the field vanish and
hence these fields can be decomposed into irrotational and
solenoidal parts. For any point within the volume O, the
scalar and vector potentials depend only on the field on
the surface qO. And due to the smoothing properties of the
integral kernel, the interior fields will be analytic even if the
field on the surface data fails to be differentiable.

It is worth noting that there are also various higher
dimensional extensions to the Helmholtz theorem [15,16]
which may be useful to also solve certain 4D boundary
value problems.
3.1. Surface integration and finite elements via DA

Since the expressions (5) and (6) are analytic, they can be
expanded at least locally. The idea is now to expand them
to higher orders in BOTH the two components of
the surface variables ~xs and the three components of the
volume variables ~x. The polynomial dependence on the
surface variables will be integrated over surface sub-cells,
which results in a highly accurate integration formula with
an error order equal to that of the expansion. The
dependence on the volume variables will be retained, which
leads to a high-order finite element method. By using
sufficiently high order, high accuracy can be achieved with
a small number of surface elements, and more importantly,
a small number of volume elements. We describe the details
of the implementation in the following.
The volume O is subdivided into volume elements. Using

the prescription for the surface field, the Taylor expansion
of the field is computed at the center of each volume
element. The final solution inside the overall volume is
given as local expansions of the field in different volume
elements.
To find the local expansions for each volume element, we

first split the domain of integration qO into smaller
elements Gi. From the surface field formula we extract an
approximate Taylor expansion in the surface variables ~xs

about the center of the surface element. Then the integral
kernel 1=j~r�~rsj and the field ~B on the surface are Taylor
expanded in the surface variables ~rs about the center of
each surface element. We also Taylor expand the kernel in
the volume variables ~r about the center of the volume
element. The final step is to integrate and sum the resulting
Taylor expansions for all surface elements. Depending on
the accuracy of the computation needed we choose step
sizes, order of expansion in rðx; y; zÞ, and order of
expansion in rsðx; y; zÞ.
All the mathematical operations to perform the

expansion, surface integration, curl and divergence
were implemented using the high-order multivariate
differential algebraic tools available in the code COSY
Infinity [3,6,7] which automatically leads to the respective
field representation to any order without any manual
computations.
4. Applications

4.1. An analytical example: the bar magnet

As a reference problem we consider the magnetic field of
an arrangement of the two rectangular iron bars with inner
surfaces ðy ¼ �y0Þ parallel to the mid-plane ðy ¼ 0Þ as
shown in Fig. 3. The interior of these uniformly magnetized
bars, which are assumed to be infinitely extended in the �y-
directions is defined by: x1pxpx2, jyjpy0, and z1pzpz2.
From this bar magnet one can obtain an analytic solu-
tion for the magnetic field ~Bðx; y; zÞ—see for example
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Fig. 3. Geometric layout of the bar magnet, consisting of two bars of

magnetized material.
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Fig. 4. Magnetic field By on the center plane of the bar magnet. B0 ¼ 1T

and the interior of this magnet is defined by �0:5pxp0:5, jyjp0:5, and
�0:5pzp0:5.

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

2 3 4 5 6 7

Lo
g(

E
rr

or
)

Order

Error at point (0,0,0)
Error at point (0.1,0.1,0.1)

Fig. 5. Error for the field calculated for the bar magnet example for

individual points ð0; 0; 0Þ and ð0:1; 0:1; 0:1Þ.

S. Manikonda, M. Berz / Nuclear Instruments and Methods in Physics Research A 558 (2006) 175–183 179
Ref. [17]—and the result is given by

Byðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj

� arctan
X iZj

YþRþij

 !
þ arctan

X iZj

Y�R�ij

 !" #

Bxðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj ln
Zj þ R�ij

Zj þ Rþij

 !" #

Bzðx; y; zÞ ¼
B0

4p

X2
i;j¼1

ð�1Þiþj ln
X j þ R�ij

X j þ Rþij

 !" #

where X i ¼ x� xi, Y� ¼ y0 � y, Zi ¼ z� zi, and
R�ij ¼ ðX

2
i þ Y 2

j þ Z2
�Þ

1=2. We note that because of the
symmetry of the field around the mid-plane, only even
order terms exist in the Taylor expansion of this field about
the origin. The mid-plane field of such a magnet is shown in
Fig. 4.

4.1.1. Results and analysis

As a first step, we study the performance of the surface
integration method. To this end, the six surfaces are each
subdivided into a 44� 44 mesh. The entire volume is
considered as one volume element, which is characteristic
of the situation in which the entire system has to be
represented by merely a single multipole expansion. On
each of the surface mesh cells, the contribution from
the Helmholtz integral is Taylor expanded [3,18], and the
resulting polynomial is integrated. Fig. 5 shows the
accuracy of the predicted field, compared with the exact
solution, as a function of the order of expansion within the
surface mesh cells. Results are shown for the points ð0; 0; 0Þ
and ð0:1; 0:1; 0:1Þ. It can be seen that at order six, an
accuracy of approximately 10�12 is reached, which is very
high compared to conventional numerical field solvers.
We note that the change from order 2 to 3, 4 to 5 and 6 to

7 do not produce significant change in the error. This is due
to the fact that odd order terms do not exist in the Taylor
expansion of the field around the reference point ð0; 0; 0Þ.
For the next example, we split the volume inside the bar

magnet into 5� 5� 5 finite elements of width �0:2. Within
each of the elements, a Taylor expansion in the three
volume variables is carried out, resulting in a polynomial
representation of the field within the finite element cell. The
polynomial representation is used to evaluate the field at
1000 randomly chosen points within the cell, and compar-
ing the result with the analytical answer. Fig. 6 shows the
resulting RMS error for finite elements centered around
ð0; 0; 0Þ and ð0:1; 0:1; 0:1Þ. It can be seen that at order 7, an
accuracy of approximately 10�6 is reached.
Overall, the method of simultaneous surface and volume

expansion that can be carried out automatically with the



ARTICLE IN PRESS

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7

Lo
g(

R
M

S
 e

rr
or

)

 Order 

RMS Error at point (0,0,0)
RMS Error at point (0.1,0.1,0.1)
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for finite elements of width 0:4 around points ð0; 0; 0Þ and ð0:1; 0:1; 0:1Þ.

Sample eighth order Taylor expansion in two surface variables

I Coefficient Order Exponents

1 0.1430015055365947E-01 0 0 0 0 0 0
2 0.6922600731781813E-03 1 0 0 0 1 0
3 -0.9437452710153340E-03 1 0 0 0 0 1
4 -0.1561210105220474E-04 2 0 0 0 2 0
5 -0.4471499751575185E-04 2 0 0 0 1 1

^
20 -0.3232493054085583E-07 5 0 0 0 1 4
21 0.6156849473575023E-07 5 0 0 0 0 5
22 0.8960505971632865E-10 6 0 0 0 6 0
23 0.1890553337467643E-08 6 0 0 0 5 1
24 -0.9792219471281489E-09 6 0 0 0 4 2

^
41 -0.2417698920592542E-10 8 0 0 0 4 4
42 0.7717865536738434E-10 8 0 0 0 3 5
43 -0.2649803372019223E-11 8 0 0 0 2 6
44 -0.2561415687161454E-10 8 0 0 0 1 7
45 0.8506329051477273E-10 8 0 0 0 0 8
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tools in the code COSY Infinity [3,6,7,18] leads to
accuracies that are significantly higher than those of
conventional finite element tools, even when unusually
large finite elements are used.

For purposes of illustration, we now show the Taylor
expansion of the field given by Eq. (5) and calculated using
the DA tools of COSY over one surface element for a
particular point frozen inside the volume of interest. The
center of the surface element is at ð�0:39;�0:39; 0:5Þ and
the point is at ð0:1; 0:1; 0:1Þ. The surface element is
described by ð�0:39þ 0:5lxxs;�0:39þ 0:5lyys; 0:5Þ, where
lx; ly represent the length and width of the surface element
and xs; ys 2 ½�1; 1�. In the representation of the Taylor
expansion in xs and ys below, the entries in the first column
provide the number assigned to each of the coefficients in
the Taylor expansion to easily identify them. The entries in
the second column provide the numerical value of the
coefficients. The entries in the fourth, fifth and the sixth
columns provide the expansion orders with respect to the
volume variables ðx; y; zÞ. And the entries in the seventh
and eighth column provide the expansion orders with
respect to the surface variables ðxs; ysÞ. The total order for
each coefficient is the sum of all the orders in columns four
through eight, which is given in the third column. Since we
compute the Taylor expansion about a particular point
ð0:1; 0:1; 0:1Þ frozen in the volume of interest in two surface
variables ðxs; ysÞ, we notice that the entries in column four,
five, six are all zero. It can be seen that in this expansion,
the contributions of higher order terms depending on the
surface variables decrease rapidly, and thus the expansion
shown would lead to a result of very high accuracy.
We now present the Taylor expansion of the contribution
of (5) for one surface element and over one volume element
inside the volume of interest. The center of the surface
element is at ð�0:39;�0:39; 0:5Þ and the center of the
volume element is at ð0:1; 0:1; 0:1Þ. The surface element and
the volume element can be fully described by ð�0:39þ
0:5lxxs;�0:39þ 0:5lyys; 0:5Þ and ð0:1þ 0:5rxx; 0:1þ
0:5ryy; 0:1þ 0:5rzzÞ, respectively, where lx; ly represent
the length and width of the surface element, and rx;ry;rz

represent the length, width and height of the volume
element, and xs; ys; x; y; z 2 ½�1; 1�. In this case the coeffi-
cients of the Taylor expansion depend on both the surface
ðxs; ysÞ and the volume variables ðx; y; zÞ. The coefficients
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depending only on the surface variables and the coefficient
of the zeroth order term are same as in the previous
example of the expansion in just the surface variables. Once
again we notice that the contributions of higher order
terms decrease rapidly for higher order, showing that also
the expansion in volume variables leads to a very accurate
representation.
Sample eighth order Taylor expansion in two surface variable and three volume variables

I Coefficient Order Exponents

1 0.1430015055365947E-01 0 0 0 0 0 0
2 -0.9590481459719686E-02 1 1 0 0 0 0
3 -0.9590481459719686E-02 1 0 1 0 0 0
4 -0.9768082968233012E-02 1 0 0 1 0 0
5 0.6922600731781813E-03 1 0 0 0 1 0
6 -0.9437452710153340E-03 1 0 0 0 0 1

^
454 -0.4509222359486833E-07 6 0 1 0 0 5
455 -0.3067430813781439E-07 6 0 0 1 0 5
456 0.8960505971632865E-10 6 0 0 0 6 0
457 0.1890553337467643E-08 6 0 0 0 5 1
458 -0.9792219471281489E-09 6 0 0 0 4 2

^
1283 -0.2417698920592547E-10 8 0 0 0 4 4
1284 0.7717865536738462E-10 8 0 0 0 3 5
1285 -0.2649803372019148E-11 8 0 0 0 2 6
1286 -0.2561415687161455E-10 8 0 0 0 1 7
1287 0.8506329051477271E-10 8 0 0 0 0 8
We now study the error dependency on the size (length) of
the volume element, or equivalently the number of volume
elements chosen for the computation. For the order of
computation 3,5,7 and 9, Figs. 7 and 8 provide the
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Fig. 7. The plot shows the dependency of the average error on the length

of the volume element.
dependence of the average error on the length of the
volume element and the total number of volume elements.
As an example, for cell lengths of 0:1, which leads to a total
number of only 550 finite elements, an accuracy of 10�10

can be reached with a ninth order method. Similarly, for a
seventh order method with a cell length of 0.2, correspond-
ing to 125 boxes, accuracies of about 10�6 can be reached.
Compared to conventional 3D Laplace solvers which
typically utilize in the order of 106 cells to achieve
accuracies in the order of 10�3, these results are quite
promising.
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Fig. 8. The plot shows the dependency of the average error on the number

of volume element.
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Table 1

Areas mapped in the dipole

Area

1 EFB area at entrance

2 Central area entrance end

3 Central area exit end

4 EFB area at exit

Table 2

Planes mapped in the dipole

Planes Z (cm)

a 0 Mid-plane

b 1.6 Above mid-plane

c 3.2 Above mid-plane

d 4.8 Above mid-plane

e 6.4 Above mid-plane

f 8.0 Above mid-plane

g �4.8 Below mid-plane

Fig. 9. The dipole magnet of the MAGNEX spectrometer; courtesy A.

Cunsolo.

Fig. 10. Layout of the measurement grids in different regions of the dipole

magnet. Courtesy A. Lazzaro.
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4.2. The dipole magnet of the MAGNEX spectrometer

We now address a practical application of this method to
magnetic spectrometers. The trajectory reconstruction
method [19] is one of the important tools to study magnetic
spectrometers. Good computational modeling of the dipole
magnet is very important for this tool to work, and this is
particularly so for modern large-aperture devices such as
MAGNEX at INFN, Catania, Italy [20–22]. Fig. 9 shows
the MAGNEX spectrometer configuration.

As mentioned above, for purposes of measurement
economy, magnet builders usually provide the magnetic
field only on few separate horizontal planes within the
dipole, while the computational treatment of the device
requires the knowledge of the field in all of space. The
MAGNEX dipole was divided into a number of volumes
defined by areas and planes as shown in Fig. 10. Four areas
were mapped as indicated in Table 1; areas 1 and 4
comprise the effective field boundary regions of the magnet
at the entrance and at the exit where the field undergoes a
sudden variation due to the fringe field effects, whereas
regions 2 and 3 represent the central region of the magnet.
This subdivision is the result of the need of different grid
sizes over the mapped area in order to limit the
measurement time. For each of the regions, the measure-
ments were taken on seven different planes as shown in
Table 2.
The magnetic measurement were organized so that the

RMS error hDBi=Bi i ¼ x; y; z at any mesh point inside the
working volume of the magnet was not greater than
5� 10�4. The field measurement error due to the error of
measuring the Hall probe voltage was DB ¼ �5� 10�5 G.
The main source of the B measurement error were assumed
to be the errors of positioning the Hall probe [23–25].
Utilizing that sufficiently outside the dipole the fields will

vanish, it is thus possible to provide field data over the
surface of a finite box enclosing the region of interest, and
thus to apply the methods described above to obtain a field
representation everywhere. We use this method to compute
the fields in region 1 and plane A of the dipole magnet. The
contour plot of the resulting relative errors is plotted over
region 1 in Fig. 11. The region where the sharp valley is
observed coincides with the physical boundary of the
dipole magnet.

5. Conclusion

A new technique for finding the multipole expansion
solution of the 3D Laplace equation using surface data has
been developed. Since this new technique uses the field
information on the surface enclosing the volume of interest
and is implemented using the high-order multivariate
differential algebraic tools available in the code COSY
Infinity [3,6,7], the accuracy achieved is much higher than
that of conventional field solvers. If the data on the surface
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Computational error in BZ component
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Fig. 11. Contour plot of the magnetic field errors for region 1 and

plane A.
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enclosing the volume of interest can be given exactly, then
in principle arbitrarily high accuracy limited only by the
computational resources available can be achieved by this
new technique. In practical situations where the field data
on the surface enclosing the volume of interest is
experimentally measured, the discretization of the surface
and the errors in the experimentally measured field data
may limit the accuracy achieved, but because the method is
naturally smoothing, the accuracy is expected to exceed
that of the measurements. The use of this new technique
has been tested rather successfully for an analytic example
of the bar magnet. The result from a preliminary analysis
of the data from the MAGNEX spectrograph dipole
magnet is also presented.
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