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a b s t r a c t

A technique to interpolate complex three-dimensional field distributions such as those produced by

large magnets is presented. It is based on a modified charge density method where the elementary

sources of the magnetic field are image charges with Gaussian shape placed on a three-dimensional

surface. The strengths of the charges are found as the solution of a best-fit problem, whose special

features are discussed in detail. The method is tested against the measured field of the MAGNEX large

acceptance quadrupole, showing a high level of accuracy together with an effective compensation of the

effect of the experimental errors present in the data. In addition the model field is in general analytical

and Maxwellian. As a consequence, the reliability of the presented technique to the challenging problem

of trajectory reconstruction in modern large acceptance spectrometers is demonstrated.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

For magnetic spectrographs with large aperture and energy
acceptance, the correction of all the relevant aberrations requires
the application of sophisticated techniques based on the recon-
struction of the ion trajectories [1,2]. The MAGNEX spectrometer
is such an instrument, designed with a solid angle as large as
50 msr and an energy acceptance of 720%, still allowing for
an energy, mass and angular resolution as high as 1/1000, 1/250
and 5 mrad, respectively [3–5]. Because of the large accepted
phase space, the aberrations are found to be relevant up to high
order (10th or so) and could severely limit the design resolutions
[6]. To prevent this, the transfer maps need to be computed at
least to the same order of the relevant aberrations, which in turn
relies on the precise description of the three-dimensional field of
each optical element of the spectrograph. This puts severe
constraints both on the required accuracy of the field measure-
ment and in the subsequent construction of a field model, based
on the interpolation of such data. For example, in Refs. [6–9] it has
been shown that in the case of the MAGNEX dipole and
quadrupole magnets the standard interpolating methods based
on the high order differentiation of the field measured on the

symmetry plane, are not sufficiently accurate to preserve the
energy resolution. That is mainly a consequence of the large
aperture of these lenses, which amplifies the effect of the
experimental errors in the measured field on the high order
derivatives necessary for the extrapolation out of the median
plane.

In Ref. [9] the problem of the finite uncertainty in the
measurement of the magnetic field was analysed for the special
case of the MAGNEX quadrupole. It was found that the field data
slightly deviate from the ideal axial symmetry, defined in terms of
the mechanical shape of the lens, either due to imperfection on
the magnetic circuitry or to the finite precision of the alignment
of the measurement device. In addition, the two sources of
uncertainty were disentangled and the systematic and random
errors were estimated. In particular, the systematic errors in the
Bx, By and Bz components are found to be about 0.3%, 0.2% and
0.05%, respectively, to be compared with the 0.1% approximate
limit on the overall field model required for a best application of
the trajectory reconstruction technique, such as that based on
Differential Algebra (DA) approach [10]. Also the random errors in
the Bx, By and Bz components are about 0.2%, 0.1% and 0.0%,
respectively, which is not negligible. Such errors could rapidly
propagate in the interpolation, resulting in much larger figures in
the final accuracy of the model field, as happens with standard
algorithms based on extrapolation from the medium plane.
One expects to improve the reliability of the field dataset for the
purpose of DA techniques by a proper transformation of the data
to account for the systematic errors. Also it is important to use an
interpolation algorithm weakly dependent on the random noise at
least at the level of 0.2%.
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An interesting possibility to face this problem is offered by
methods based on the charge density technique [11], such as the
Image Magnetic Charge Method (IMCM) [12], where the field is
generated by a superposition of Gaussian charge distributions. In
principle, this method can be applied for every magnetic lens and
the resulting distribution is Maxwellian and infinitely differenti-
able. This latter feature is desirable if one wants to apply techni-
ques based on DA to obtain the transfer map of ray-tracing
spectrometers [13–15]. In addition, one can account for measure-
ments out of the symmetry plane of the magnetic elements, thus
avoiding the extrapolations mentioned above. The IMCM has been
applied to simple cases where analytic solutions are available and
has shown a high accuracy (better than 10�4) and an effective
compensation of the randomly distributed measurement errors.

Despite these positive results, the technique of Ref. [12] was
notably limited for the following reasons:

(1) The field was interpolated in a small region of the magnet.
No performance tests were done for larger field distributions.
This last point is crucial for application to large acceptance
spectrometers.

(2) Only the By component was calculated on a central portion of
the magnet mid-plane. For applications with real magnets the
method should be extended to account for the full ~B vector in
the three-dimensional space spanned by the beam envelope.

(3) The stability of the method against the experimental errors
was studied only for the random ones. These latter do not
modify the Maxwellian structure of the analytic field, at least
in average. For real cases the systematic errors, as for instance
those deriving from the misplacement of the measurement
device, strongly influence the Maxwellian property. A similar
effect is produced by the possible deviations of the field from
the expected geometrical symmetry, because of the unavoid-
able mechanical imperfections of the magnets. The weakening
of the Maxwellian property of the measured field could
seriously disturb the numerical stability of the IMCM algo-
rithm.

(4) The behaviour of numerical errors in the boundary regions
was not evaluated. For large acceptance spectrometers the
correct description of the boundary regions is quite important
due to the extended overlap between the beam envelopes and
the boundary fields.

The necessary upgrading of the IMCM to account for experimental
3D field distributions could require a big number of image charges
and consequently an extraordinary computational effort.

In this paper we show that the number of charges nc can be
greatly reduced by a careful shaping (which is lens dependent) of
the grid where they are placed. In this way the error propagation
due to the finite numerical precision of the computer drops to an
acceptable level. The computational requirements become com-
patible even with current standard PC capabilities, enabling one to
perform challenging tasks such as iterative optimizations of the
geometrical parameters of the grid. Thus it is possible to overcome
the limitations of the IMCM mentioned above and finally apply it
to model real field distributions. We describe a particular version
of the IMCM applied to the MAGNEX quadrupole and discuss the
compatibility with the severe requirement of the ray reconstruc-
tion for this case.

2. Image magnetic charge method: basic concepts

In the original formulation of IMCM the magnetic field of a
rectangular iron bar is generated by a superposition of charge
distributions of Gaussian shape placed on the nodes of two planar

grids. The strength of each single charge is determined by a least
square fit of the field values calculated analytically. In order to
reduce any fine structure due to the local influence of each single
charge, extended three-dimensional Gaussian distributions of the
form [12,14]

rðrÞ ¼ r0 exp �
r2

a2

� �
(1)

are used. Here a and r0 are the width and the strength of each
individual charge, respectively.

An important complication when applying the method to the
MAGNEX quadrupole is represented by the large size of the lens,
whose radius is 20 cm and effective length is 58 cm, and the
requested accuracy of about 10�3 in the reconstructed field. In
addition, the number of measured field points is about 104 which
are almost entirely concentrated in a sector of the magnet. The
average error is of the order of 10�3, which is about one order of
magnitude more than that studied in Ref. [12]. These factors make
nc easily of the order of 104 for an appropriate interpolation of the
field distribution. Finally, the measured field slightly deviates
from the ideal four-fold symmetry, with the consequence of loss
of accuracy if a symmetric charge distribution is used. Alterna-
tively, renouncing the symmetry in the charge distribution, one
should increase the number of charges and thus the complexity
of the problem. Thus a considerable computational effort would
be necessary for a direct application of IMCM to this case, with the
consequence of enhancing the numerical error propagation.

In the following a generalization of this method, describing the
three-dimensional structure of each component of the magnetic
field, is presented.

According to the Gauss law for the rotationally symmetric
charge distribution, the ith charge centred at (xi, yi, zi) gives a
contribution to the magnetic field at (x, y, z) of the form

BC
x;iðx; y; zÞ ¼ ri � ðx� xiÞ � FðriÞ

BC
y;iðx; y; zÞ ¼ ri � ðy� yiÞ � FðriÞ

BC
z;iðx; y; zÞ ¼ ri � ðz� ziÞ � FðriÞ (2)

FðriÞ ¼
1

r3
i

�
a2

i ri

2
exp �

ri

ai

� �2
" #

þ
a3

i

ffiffiffiffi
p
p

4
erf

ri

ai

� �" #
(3)

where ri ¼ ½ðx� xiÞ
2
þ ðy� yiÞ

2
þ ðz� ziÞ

2
�1=2 and erf ðuÞ ¼ 2=

ffiffiffiffi
p
pR u

0 e�t2
dt is the error function, similarly to Refs. [12–14]. The total

field ~B
C
ðx; y; zÞ is given by the sum over all the charges. It has been

shown that if one tunes appropriately the width parameter, the
superposition of regularly distributed Gaussian functions leads to
a smooth global distribution [12].

The least square algorithm to determine the charge strengths
ri results in a square matrix that must be inverted. If we assume
mid-plane symmetry, only one half of these strengths have to be
calculated. Since the best-fit matrix A is symmetric the number, N,
of independent elements aij to be calculated is given by

N ¼
ncðnc þ 1Þ

2
. (4)

To show how the coefficients of the best-fit matrix are
calculated, we rewrite the field components Bx, By, Bz as B1, B2,
B3; then n1, n2, n3 are the numbers of explored points for the B1, B2,
B3 components, respectively, and Bij; i ¼ 1;2;3; j ¼ 1; . . . ;ni,
are the individual measured values of the field at the points
ðxij; yij; zijÞ; i ¼ 1;2;3; j ¼ 1; . . . ;ni. Finally ðxc

k; y
c
k; z

c
kÞ are the co-

ordinates of the kth charge placed in the grid above the mid-plane
and rijk the distance between the two points ðxij; yij; zijÞ and
ðxc

k; y
c
k; z

c
kÞ. The strengths of the image charges are obtained by the
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solution of the symmetric linear system:

A � ~r ¼ ~b)

a11 a12 a13 . . . a1nc

a21 a22 a23 . . . a2nc

. . . . . . . .
.

. . . a3nc

. . . . . . . . . . .
.

. . .

anc1 anc2 anc3 . . . ancnc

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

r1

r2

r3

. . .

rnc

0
BBBBBBBB@

1
CCCCCCCCA

¼

b1

b2

b3

. . .

bnc

0
BBBBBBBB@

1
CCCCCCCCA
; alm ¼ aml (5)

where

alm ¼
Xn1

i¼1

½ðx1i � xc
l Þ � Fðr1ilÞ � ðx1j � xc

l Þ � Fðr̄1ilÞ�

� ½ðx1i � xc
mÞ � Fðr1imÞ � ðx1i � xc

mÞ � Fðr̄1imÞ�

þ
Xn2

i¼1

½ðy2i � yc
l Þ � Fðr2ilÞ � ðy2i þ yc

l Þ � Fðr̄2ilÞ�

� ½ðy2i � yc
mÞ � Fðr2imÞ � ðy2i þ yc

mÞ � Fðr̄2imÞ�

þ
Xn3

i¼1

½ðz3i � zc
l Þ � Fðr3ilÞ � ðz3i � zc

l Þ � Fðr̄3ilÞ�

� ½ðz3i � zc
mÞ � Fðr3imÞ � ðz31i � zc

mÞ � Fðr̄3imÞ� (6)

bl ¼
Xn1

i¼1

½ðx1i � xc
l Þ � Fðr1ilÞ � ðx1i � xc

l Þ � Fðr̄1ilÞ�

þ
Xn2

i¼1

½ðy2i � yc
l Þ � Fðr2ilÞ � ðy2i þ yc

l Þ � Fðr̄2ilÞ�

þ
Xn3

i¼1

½ðz3i � zc
l Þ � Fðr3ilÞ � ðz3i � zc

l Þ � Fðr̄3ilÞ� (7)

In these equations r̄ijk refers to the charge placed below the mid-
plane along the same vertical line of the kth one. From Eqs. (6) and
(7), it can be shown that the number of calls to the function FðrijkÞ

to calculate all the coefficients of the system in Eq. (5) is

ðn1 þ n2 þ n3Þ½ncðnc þ 2Þ� � ðn1 þ n2 þ n3Þn
2
c (8)

For large field distributions, as in the case of the MAGNEX
magnets, nc could be as high as 104 whereas the total number
of measured point could easily be of the order of 105. As a
consequence the number of function evaluations is approximately
1013. Some computational effort may be saved by using a
Chebyshev approximation [16] of the standard error function
erf(x) contained in Eq. (3).

3. On the solution of least squares problems with large matrix

One of the main problems in applying the IMCM to the
MAGNEX quadrupole is the treatment of the large best-fit matrix.
An efficient algorithm guaranteeing a strong numerical stability,
high precision and velocity is needed to find the solution of the
system of Eq. (5). Different numerical methods were compared
[16] to find the best compromise between computational speed
and precision:

(1) Gauss (pivoting);
(2) Jacobi;
(3) Gauss–Seidel;

(4) Cholesky decomposition;
(5) LU-factorization.

The first method is particularly indicated when small matrices
need to be inverted. The matrix [A] is transformed by elementary
operations, such as linear combinations of rows or interchange of
rows, to a triangular matrix whose solution can be easily found.
The number of arithmetic operations required for this is N3. As a
consequence, for large matrices with dimension NX100, the
algorithm takes a long calculation time and the finite machine
precision strongly affects the solution. Since the best-fit matrix
may wander from its symmetry at each step, a large quantity of
memory machine is needed to store its N2 elements in double
precision arithmetic.

The Jacobi and Gauss–Seidel methods are iterative and the
convergence to the exact solution is ensured only for dominant
diagonal or positive definite matrices [16]. They are commonly
applied to sparse linear system with most of the matrix elements
vanishing. In that case, the convergence from an approximated
solution to the exact one is achieved with a few iterations.
However, in the case discussed in this paper, the convergence
requires more than 106 iterations. Moreover, the convergence is
not always obtained.

The Cholesky decomposition method requires only N3/6
operations to decompose the best-fit matrix in the product form:

A ¼ L � LT (9)

where L is a lower triangular matrix with positive diagonal
elements. In this case, only two diagonal systems must be solved
whose solution can be found even with simple substitutions. This
technique appears quite interesting since it is fast and requires a
limited computational effort, at least compared to the others
discussed above. A sufficient condition for the Cholesky decom-
position is that the matrix A must be positive definite. In our case,
this property was achieved up to N�100, but an attempt to
decompose the A matrix for larger N failed.

In the LU factorization method the matrix A is represented as
the product of two matrices,

A ¼ L � U )

a11 a12 a13 . . . a1nN

a21 a22 a23 . . . a2N

. . . . . . . .
.

. . . a3N

. . . . . . . . . . .
.

. . .

aN1 aN2 aN3 . . . aNN

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

a11 0 0 . . . 0

a21 a22 0 . . . 0

a31 a32 a33 . . . 0

. . . . . . . . . . .
.

. . .

aN1 aN2 aN3 . . . aNN

0
BBBBBBBBB@

1
CCCCCCCCCA

�

b11 b12 b13 . . . b1N

0 b22 b23 . . . b2N

. . . . . . . .
.

. . . b3N

. . . . . . . . . . .
.

. . .

0 0 0 . . . bNN

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(10)

where L is lower triangular and U is upper triangular. In this way
the A � ~r ¼ ~b equation is transformed as follows:

A � ~r ¼ ðL � UÞ � ~r ¼ L � ðU � ~rÞ ¼ ~b. (11)

ARTICLE IN PRESS

A. Lazzaro et al. / Nuclear Instruments and Methods in Physics Research A 602 (2009) 494–500496



Author's personal copy

This latter can be solved first for the vector ~y:

L �~y ¼ ~b (12)

and then for the vector ~r:

U � ~r ¼ ~y. (13)

The advantage of this decomposition is that the solution of a
triangular set of equations is quite simple. As an example, Eq. (12)
can be solved by forward substitution as follows:

y1 ¼
b1

a11

yi ¼
1

aii
bi �

Xi�1

j¼1

aij � yj

2
4

3
5; i ¼ 2;3; . . . ;N (14)

while Eq. (13) can then be solved by backward substitution as
follows:

rN ¼
yN

bNN

ri ¼
1

bii

yi �
XN

j¼iþ1

bij � rj

2
4

3
5; i ¼ N � 2; N � 3; . . . ;1 (15)

Eqs. (14) and (15) require, for each element bi, N2 executions of a
loop containing one multiplication and one addition. In the overall
problem of the matrix inversion, one has N elements bi in the
vector. Taking also into account the leading zeros it can be shown
that the total number of elementary computations of Eq. (12) is
reduced from N3/2 to N3/6, while Eq. (13) is unchanged at N3/2.

The matrix Eq. (11) is thus equivalent to a set of N2+N linear
equations for the a and the b coefficients. An elegant procedure
called Crout’s algorithm solves this problem [16], merely by
arranging them in a special order. Inside this algorithm each aij

is used only once and never again. This means that the
corresponding aij and bij can be stored in the location before
occupied by aij, which means that the decomposition is ‘‘in place’’.

In a set of preliminary calculations the precision and the
computation time of all the methods summarized above were
tested. The LU-decomposition was the best, since the other
methods either produced a wrong solution when the number of
unknowns become higher than N�100 or were by far too slow.
LU-decomposition assures good precision and requires small
computation time, thus it was used for the application of the
IMCM to the MAGNEX quadrupole.

4. IMCM model of the MAGNEX quadrupole

In order to apply the IMCM model to the case of the MAGNEX
quadrupole, a special procedure has been set up which performs
the following operations:

(1) Calculates the coefficients of the best-fit matrix, assuming
the field symmetries both in the vertical and the horizontal
direction and using the Chebyschev approximation for the
erf(x) of Eq. (3). Because of the many calls to this function a
reduction of about 20% in the overall computation time was
achieved with negligible influence on the final precision.

(2) Solves the best fit system using a fast and high precision
algorithm based on the LU-pivot decomposition method.

(3) Makes a statistical analysis of the reconstructed field, compar-
ing at each point the discrepancy DBi between the measured
and the interpolated fields. In particular, the accuracy of the

reconstructed field, defined by the following quantities:

mean absolut error ðm:a:e:Þ ¼
hjDBiji

B0
� 100; i ¼ x; y; z

(16)

mean square error ðm:s:e:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðDBiÞ

2
i

q
B0

� 100; i ¼ x; y; z

(17)

is estimated.

It was found that the number nc can be significantly reduced
if the charges stay on a series of four cylindrical surfaces, each
one with axis parallel to the quadrupole one, thus maintaining
the axial symmetry of the mechanical poles. This configuration is
shown in Fig. 1, where one of these surfaces is plotted. The angular
aperture of the grid was 901, thus representing a quarter of a
cylinder. Only 326 charges, placed at the nodes of such grid, were
enough to get an encouraging accuracy to start the optimization.
The strength of the charges placed in the other three grids was
obtained by the requirement of symmetry both in the horizontal
and vertical direction.

Because of the reduced overall computational effort, a series
of iterative optimizations can be executed in a reasonable time,
giving a better geometric parameterization of the grid. In parti-
cular, the tip radius R1, the quadrupole radius R2 and the length L

were optimized in such a way. In Table 1 both the quadrupole
geometrical parameters and the optimized ones for the charges
grid are listed. The field data were supplied in twelve planar grids
as reported in Table 2. The actual beam envelope volume covers
the planes up to the 7th one. Nevertheless, the full set of data was
used, up to the 12th plane, in order to improve the description at
the borders of the beam envelope region. Following the technique
of the generalized Enge function of Refs. [8,9], supplemental data
were added to the measured ones 60 cm beyond the entrance and
exit boundaries (i.e., where the measurements end) in order to
improve the description of the fringe field of the magnet. The
measured value of the field (B0) at the pole-tip was 0.6 T.

Before comparing the reconstructed field with the experi-
mental data, the influence of possible local fluctuations, such as
those generated by random errors in the measurements, on the
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Fig. 1. Geometrical shape of the grid containing the image charges at each node.

A. Lazzaro et al. / Nuclear Instruments and Methods in Physics Research A 602 (2009) 494–500 497



Author's personal copy

overall accuracy was studied. In particular the Maxwellian
field generated by the 326 image charges was used to produce
virtual data at each point where the actual measurements were
performed. Such a field was interpolated by the IMCM technique
and the newly calculated data compared with the initial
Maxwellian field. In these conditions, which would correspond

to the ideal case of a field free of experimental errors, the intrinsic
accuracy of the IMCM can be estimated. As seen in Fig. 2, the
reconstruction accuracy is within the limits for trajectory
reconstruction purposes [9] (m.a.e.o0.1% and m.s.e.o0.1%),
showing a slight deterioration for the 1st and the 11th plane.
This does not influence the overall energy resolution, as the beam
envelope covers the volume up the 7th plane. Moreover, the loss
of field accuracy near the mechanical poles (which causes an
m.s.e. in the 1st plane beyond the requested limit) does not affect
the particle trajectories as these cross such region only beyond the
exit boundary of the lens.

Then a random source of fluctuations, simulating casual
experimental errors, was added to the analytical field at each
explored point. A uniform statistical distribution was chosen
and different cases analysed with error amplitude ranging from
DB/B0 ¼71–5%, in fact much larger than the actual random errors
in the experimental dataset (DB/B0 below 0.2%). Some results are
shown in the right panels of Fig. 2, where the error amplitude was
set to DB/B0 ¼73%. One observes that the corresponding m.a.e
and m.s.e. do not show appreciable variations when compared
with those obtained in the case (D(m.a.e) �0% D(m.s.e) �0%).
Thus the method is shown to be particularly powerful for
situations where the field inaccuracy is dominated by random
errors.

5. Field reconstruction accuracy

The IMCM model of the MAGNEX quadrupole field was
compared with the measured one. The calculated accuracy of
the model, defined in Eqs. (16) and (17), is shown in Fig. 3 for each
plane covered by experimental data. Both the finite error in the

ARTICLE IN PRESS

Table 1
Geometrical parameters of the quadrupole together with the those of the charges

grid.

Quadrupole tip radius 0.2 m Grid tip radius (R1) 0.39 m

Grid curvature radius (R2) 0.2145 m

Quadrupole length 0.6 m Grid length (L) 0.6 m

Grid angular aperture 901

Table 2
Total number of measured points in the quadrupole mapping for each plane of

measurement.

Plane y (cm) Number of measured points xmin (cm) xmax (cm)

1 0 2059 �21 21

2 1.5 852 �16.5 0

3 3.0 852 �16.5 0

4 4.5 852 �16.5 0

5 6.0 781 �15 0

6 7.5 781 �15 0

7 9.0 710 �13.5 0

8 10.5 639 �12 0

9 12.0 568 �10.5 0

10 13.5 497 �9 0

11 15.0 426 �7.5 0

12 16.5 213 �3 0
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0
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1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. M.a.e. (upper panels) and m.s.e (lower panels) as a function of the measurement plane obtained by applying the IMCM method to the analytical quadrupole field. In

the right panels, a random and uniform error distribution with (DB/B0)max ¼ 3% was added to the analytical field (B0 ¼ 0.6 T, : Bx: By : Bz).
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measurement and the intrinsic accuracy of the interpolation play
a role in the overall observed accuracy. In fact, as discussed in the
previous section, the casual errors in the data are too small
to have an influence on the final result. On the other hand the
systematic errors, known to arise both from small imperfection
in the magnetic circuitry and from the finite resolution in the
alignment of the measurement device, could be more relevant and
need to be carefully studied. In particular, in Table 3 the Euler
angles, representing the deviation of the measured field from the
axial symmetry of the quadrupole, are listed from Ref. [9]. There
the Dy, Dj, Dc parameters were connected to the magnetic
circuit imperfections while the Dyp, Djp, Dcp were found as
mainly due to the misplacement of the measurement probe.

The results are reasonably good for the By and Bz components
for which a m.a.e. �0.15% is obtained. These values are in fact
compatible with the intrinsic accuracy of the interpolation since
this is about 0.05 and 0.15% for these components. A different
behaviour is found for the Bx, whose m.a.e. is about 0.35%, which
is compatible with the systematic error of about 0.3% in this
component. This is a little too large for the purpose of the direct
application of trajectory reconstruction algorithms. If the source
of such deviation is the systematic error in the measured data, a
proper transformation of the field components and coordinates of
the measurement points could compensate it and consequently
improve the accuracy of the reconstructed field. Ideally such a
transformation of the measured data generates the distribution
that would have been obtained if the errors listed in Table 3 were
null. Special attention needs to be paid to this point, as the
two main sources of systematic error, i.e. the imperfection on
magnetic circuitry and the systematic misplacement of the probe,
have a different impact on the final achievable accuracy in the
IMCM model. Both result in deviations of the measured magnetic
field from the natural axial symmetry of the lens, which cannot be
described by the technique discussed above since the image
charge distribution is, by construction, axially symmetric. On the
other hand, while the effects of the probe misplacement can be

reconstructed, providing that the rotation parameters are known,
those due to the magnetic circuit should not be compensated,
since they determine the actual shape of the magnetic field of the
lens crossed by the particle trajectories. In that case, a possibility
is to model the full magnetic field by an enlarged four-fold charge
distribution, thus renouncing the symmetry condition, with the
consequence of increasing considerably the complexity of the
problem. Test calculations have shown that at the price of
increasing the calculation time by almost two orders of magni-
tude, the overall accuracy is not significantly improved, mainly
because of the effects of error propagation.

To account for the observed finite values of the Dyp, Djp, Dcp

angles calculations were performed by applying the inverse
rotation to the experimental data. Fig. 4 shows the DBx distribu-
tion on the plane D obtained with the IMCM before and after this
error compensation. As may be seen, the maximum deviation has
been reduced. Also the m.a.e. and the m.s.e benefit from this
coordinates correction by about a factor two, dropping down to
values below 0.2%, which is slightly above the limit of the intrinsic
accuracy of the interpolation technique. The residual part is likely
due to the remaining contribution to the symmetry violation from
the imperfection in the magnet circuit, which was not treated by
the choice of a symmetric image charge distribution in the field
model. This means that the interpolation method presented
effectively compensates the systematic errors introduced by the
experimental measurements, providing that the sources of those
systematic errors on the data are sufficiently well known to allow
the disentanglement of pure distortions of the field symmetries
from spurious effects connected with the measurement instru-
ments.

6. Conclusions

A method to reconstruct the three-dimensional field of a large
quadrupole magnet has been presented. It is based on a super-
position of fields generated by image charges with Gaussian
distribution whose strengths are calculated by solving a best-
fit problem based on the measured data. The resulting field
is Maxwellian and infinitely differentiable, thus allowing the
application of DA-techniques for the high order calculations of the
ions trajectory through the MAGNEX spectrometer. Moreover,
no extrapolation of the data from the medium plane is needed to
determine the field in the whole space. This avoids high order
differentiation, a process that could seriously disturb the focal
plane image of the spectrometer.

The shape of the surface containing the centre of the charges
has been found to be crucial to reduce the number of strengths to
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Fig. 3. M.a.e. (left) and m.s.e (right) as a function of the mapping plane obtained by applying the IMCM to the MAGNEX (B0 ¼ 0.6 T, : Bx : By : Bz).

Table 3

Systematic error parameters Dy, Dj, Dc, Dyp, Djp, Dcp obtained for the

quadrupole [9].

Error parameters Optimized value (deg)

Dy 0.1

Dj �0.7

Dc 0.6

Dyp 0.0

Djp 1.0

Dcp 0.3
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be calculated. This brings the computational effort to a tolerable
limit such that time challenging procedures of optimization can
be exploited. The LU-factorization method was the best choice for
treatment of large matrices. In this way the parameters defining
the geometry of the grid surface have been set up and the overall
field reconstruction accuracy sensibly improved.

It was also shown that the method is sufficiently stable against
both random and systematic source of errors to allow the
application of the obtained field model to the challenging
requirements of modern techniques of trajectory reconstruction.
In particular the maximum admissible random noise is about
(DB/B0)max ¼ 3% which is well beyond the 0.2% noise contained in

the MAGNEX quadrupole data [9]. As regards the systematic error
we found that an upper limit of about (DB/B0)max ¼ 0.3%
is admissible to obtain a field accuracy compatible with the
application of trajectory reconstruction. More specifically the
accuracy of the By and Bz components lies below such limit, while
it is above for the Bx as the m.a.e and m.s.e. are about 0.35% and
0.6%, respectively. In order to improve the overall accuracy,
particularly that for the Bx component, a careful analysis of the
main sources of the systematic error was performed, based on the
control of the quadrupole four-fold symmetry [9]. In this way it
became possible to partly remove such errors and consequently
achieve the required accuracy for all the three reconstructed
components of the field.

In conclusion we feel that the IMCM is a ground-breaking
method that truly opens up the possibility of using 3D field
measurements. In view of these results it has been applied to
model the field both for the quadrupole and dipole lens of the

MAGNEX spectrometer. The details of the application of the
IMCM to the MAGNEX dipole will be published in a forthcoming
article.
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