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The computation of aberrations of fringing fields of magnetic 
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Differential algebraic (DA) methods are used for the computation of transfer matrices of arbitrary order of the fringing fields of 
magnetic particle-optical elements. The accuracy of the method is only limited by the numerical integrator for the equations of 
motion. Comparisons are made to the method of fringing-field integrals, the results of which are known to third order, and it is 
shown that the results of both methods agree well. 

I. Introduction 

In the simulation of particle-optical elements one is 
often not interested in the trajectories of individual 
particles, but rather in some global properties of an 
optical system. Such properties advantageously are de- 
scribed by a nonlinear map relating final phase-space 
coordinates 9 to initial ones ~ of individual charged 
particles: 

~ =,4¢(r~). ( I )  

This transfer map is usually represented by a power 
series to a prespecified order, the so-called transfer 
matrix of that order [1,2]. 

In case of the main fields of particle-optical ele- 
ments, direct analytical formulas for the expansion 
coefficients have been found to second [3-6] and to 
third order [7-11]. Recently, this procedure has been 
extended to fifth order using a custom-made formula 
manipulator [12,13]. 

However, in the case of fringing fields, analytical 
soiutions for the expansion coefficients can be found 
only for special cases [14]. Thus fringing fields have 
usually been neglected, treated only as a steep rise 
function or been only roughly approximated. The best 
solution so far was to treat them in a perturbative 
method based on the technique of fringing-field in- 
tegrals [15-18] which is also used in some ion-optical 
programs [19-23]. This technique is quite accurate. 
However, because it simply truncates the action of the 
fringing field at terms of third order in A, the length of 
the fringing field, it only approximates the symplectic 
symmetry [24,25] which the system has because it is 
governed by a Hamiltonian to that accuracy. 

Here we present a new method to obtain expansion 

coefficients for fringing fields to arbitrary order. To do 
this, we note that the matrix elements or expansion 
coefficients of the transfer map are simply partial de- 
rivatives of the map (see for instance ref. [26]). Using 
the technique of differential algebra [27-29], which 
allows an accurate arithmetical computation of deriva- 
tives, one thus can compute all elements of a transfer 
matrix in a consistent way. In this context it is im- 
portant to note that the corresponding programming 
effort is independent of the order to which the matrix 
elements are calculated. 

2. Differential algebra 

Differential algebraic (DA) methods are related to 
nonstandard [30] analysis. A detailed description of the 
method is given in refs. [29,31,32]. Here we illustrate 
only the simplest DA which will eventually allow the 
computation of only first-order derivatives and func- 
tions of only one variable. 

Consider the vector space R 2 of ordered pairs 
( u o, u 1), u o, u 1 ~ R in which an addition and a scalar 
multiplication are defined in the usual way: 

( Uo, ~ )  + ( Vo, v~) = ( ~o + Vo, ~ + ~, ), 

t-(-0, ul)= (t-Uo, i - ~ )  
for u o, u l ,  v 0, v~, t ~ R  as well as a multiplication 

between vectors: 

(u0. u~)-(~0. ~ ) =  (~0-~0. ~0-v, + u,-~'o) 
so that the set of ordered pairs becomes an algebra. 

When evaluating a function in DA instead of using 
real numbers, one automatically obtains not only the 
value of the function, but also its derivatives to a 
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prespecified order. Note also that all arithmetic func- 
tions based on power series can be generalized to DA 
using coordinatewise convergence. The accuracy of de- 
termining derivatives in this manner is always close to 
machine precision, contrary to numerical techniques 
[33] in which derivatives are obtained as differences of 
close numbers. The DA method can be generalized to 
allow computation of derivatives of higher orders and 
more than one variable, which is necessary, to compute 
high-order transfer matrices. 

3. Transfer matrices obtained by using differential alge- 
bra 

Without having analytical formulas that relate the 
final phase-space coordinates r! to the initial ones r,, it 
still is possible to computationaily relate the ~ to the r, 
by numerically integrating the equations of motion. A 
particle trajectory can thus be determined from a dif- 
ferential equation of the form 

d 
d--~r = F ( r ,  s) ,  (2) 

where s is the independent variable, and where F de- 
scribes all the forces due to the external and internal 
electromagnetic fields. To be more specific, we could 
use the frequently used particle optical coordinates [26] 

r I = X ,  

r 2 = a = Px/Po, 
r3 = y ,  

r 4 = b = Pv/Po,  

rs. = I = Vo(t - to), 

r 6 = 3 x = ( K / q  - K o / q o ) / ( K o / q o ) ,  

r v = 3,, = ( m / q  - m o / q o ) / (  m o / q o  ), (3) 

where x and y are the horizontal and vertical distances 
to the optic axis, respectively, while P0, v0, q0, Ko, mo 
and t o denote momentum, velocity, charge, kinetic en- 
ergy, mass and flight time of the reference particle, 
whereas p, v, q, K, m and t stand for the same 
quantities of the particle under consideration, in these 
coordinates the equations of motion in electromagnetic 
fields E and B of the described particle take the form 
[12l: 

x '  = a (  l + hx ) (  p o / p  ), 

y '  ~ -  :,( i + h ,  )( po/~ ), 

I '  = (1 + h x ) ( o o / o ) ( p / ~ )  , 

a ,  _ q / q o  ( To ~o ) l '  P 
xB ~ b - ~  - G . + h po 

Xa " -T + B~ vo (4) 

Here h = l / p  is the momentary radius of curvature of 
the optic axis and Xa = Po/qo  is the magnetic rigidity of 
a reference particle. Furthermore we used the abbrevia- 
tions 

,b =p~/1 - ( p o / p ) 2 ( a  2 + b 2) 

and 

= o~/1 -- ( U o / V ) 2 ( r o / r ) 2 ( a  ~ + b ~) 

as well as 

7- q(~ 2~K+~") 
~ = T o o  + ~z-~-~ , 

P=--q (]+sk) 1+ l + n  
P0 q0 

Oo (1+8 . )  1+ %¢+6" 2~6~ + 6" 
1 + ~  l + 2 v l  ' 

(5) 
where the factor ~ = K o / 2 m o  c2 is used for relativistic 
corrections with c denoting the speed of light. 

Numerical integrators now use the right hand side of 
eq. (2) to obtain an approximate estimate for the new 
value of r at the new value of the independent variable 
s + As. For instance, in the case of the well-known 
fourth-order Runge-Kutta  integrator, the procedure is 
as follows. After computing quantities k t, k 2, k 3, k 4 
recursively as 

k I = F ( r ,  s ) . A s ,  

k2 = r ( ,+  'k,, s +-~A).As, 
k 3 = r ( r +  ~k 2, s + ½ A s ) . A s ,  

k,  = r ( . +  k3. s + a s ) .  as. (6) 
one obtains from these k i recursively as an approximate 
(and for reasonably small As usually very good) esti- 
mate for the value of r at s + As: 

r ( s  + As) = r ($ )  + / .  (k  I + 2- k 2-4- 2 . k  3 + k4) 

+ O(AsS). (7) 

After many steps, eqs. (6) and (7) provide a functional 
dependence between the initial and the final coordi- 
nates. Obviously it is almost impossible to write the 
dependence analytically, let alone differentiate the re- 
sult in order to obtain the expansion of the transfer 
function. However, blindly performing all the oper- 
ations in the steps of the Runge-Kut ta  algorithm in DA 
instead of real arithmetic, one automatically obtains the 
transfer function including all derivatives 

( aO+'+k+t+"+n'rp/;)rl ard Or~ 3r~ Or~ Ort ) 

with respect to the initial phase-space coordinates of eq. 
(3), i.e. the matrix elements (rplr~r~r~r~r~'r~). To this 
end, one simply must replace all quantities that depend 
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on the particle coordinates (with respect to which we 
want to differentiate) by DA vectors. In our case, this 
includes for instance the components of r, and the three 
components of the flux density B in eq. (4), as well as 
the components of F, r and k i in eqs. (6) and (7). On 
the other hand, the quantities 8~ in eqs. (3), P/Po, V/Vo 
in eqs. (4) and ~ in eq. (5) as well as s and As in eq. (6) 
stay scalars• 

4. Transfer matrices  for the fringing f ie lds  of  magnetic 
multipoles 

To determine a transfer matrix for the fringing fields 
of magnetic multipole elements by solving the equations 
of motion using DA, it is necessary to first have an 
analytic description of the distribution of the flux den- 
sity B. Furthermore it is advantageous to replace this 
transfer matrix by one which describes field-free and 
main-field regions ranging up to the effective field 
boundary as well as a transfer across the effective field 
boundary [15,16]. 

4.1. The distribution of the flux density in multipole 
elements 

In case of muitipole elements [9,10,18] that have 
straight optic axes, it is advantageous to describe the 
distribution of the flux density B in cylindrical coordi- 
nates z, r and oh. Due to the time-independence and the 
fact that there are no currents inside the multipole 
element we infer from Maxwell's equations div B = curl 
B = 0. Hence there exists a magnetic scalar potential V n 
for which Laplace's equation holds, i.e. AV e = 0. This 
V B can be expanded in a power series around r = 0 as 

o o  o o  

Va(r ,  ~, z ) =  E Y'- Mk.t(Z)COS(idP+O,.t) "rk. 
k = 0  I=0  

(8) 

Note that there is no power series expansion along the 
z-axis, i.e. the optic axis. In these cylindrical coordi- 
nates, Laplace's equation reads 

1 0 [ r 'OVB~ 1 ~2V B 02VB 
AVn = r ~-7 ~ " ~  / + - - ~  + - O .  (9) - r 2 0th 2 Oz 2 - 

Inserting eq. (9) into eq. (8) one obtains 

oo oo 

- M "  AVE= E E ( M ~ . , ( ~  2 12)+  , - 2 . , j  
k=0  i=0  

× COS( lc k + Ok. t ) .  r (*- 2)=0, (10) 

where the double prime denotes the second derivative 
with respect to z. 
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In the main field of the multipole V B is z-indepen- 
dent, causing M~t_2.t tO vanish and eq. (10) to be 
fulfilled only for ! = k. In this case eq. (8) simplifies to: 

oo 

VB( r, dp ) = ~_, Mk.t. cos( k dp + Ok.k ) . r ~. 
k=l 

For a multipole of 2k-fold angular symmetry V a thus 
increases with r k, and the constant M,. k is the so-called 
multipole strength. 

In the region of the fringing fields V a depends on z. 
Thus the Mk"2. I do not vanish anymore and we can 
infer from eq. (10): 

Mk. t " 12 
= Mi_2 . , / (  - k 2) (11) 

for I• k. Eq. (11) determines all Mk. t from the z-de- 
rivatives of those with ! = k. For an arbitrary superposi- 
tion of multipoles we thus obtain from eqs. (8) and (11) 
to seventh order: 

oo ~ k! 
Va(r,  dp)= E E Mt2"tk.k , z ) ' r  k+2' 

k=2 i=l i!( k + i ) ! (  - 4 ) '  

• cos(/,- 0 + 0k., ) 

r4 ,,,, r 6 ) 
= M2"2r2- M2':2-~ + M2": 3 -~  + " ' "  

• cos(2 ¢ + 02. 2 ) 

,, r 5 . . . .  r 7 ) 
+ M3,3 r 3 -  M3. 3 ~  + M3, 3 ~ + . . .  

• cos(34 + 03. s ) 

,, r 6 ) 
+ M4.4 r 4 _  M~.42_0 + . . .  

• cos(4¢ + 04, 4 ) 

r 7 

• cos(Sq, + 05.s ) 

+ (MG. ~r 6 + " ' "  )" cos(6* + 06. 6) + - - - .  

(12) 

Obviously eqs. (11) and (12) allow higher than k th-order 
r dependences to a 2k-fold rotational symmetry. In the 
case of a pure quadrupole, i.e. for only M2, 2, M~" 2, 
M2,2", --- being nonzero, there are thus contributions 
to the potential that obey the fourfold symmetry of the 
quadrupole but depend o n  r 2 as well as on r 4, r 6, . .. 
Note here that with larger and larger i the coefficients 
k ! / [ i ! ( k  + i)!4 ~] decrease drastically while the magni- 
tude of the derivatives of the multipole strengths M~. k "  (2,) 

increase considerably, but that because of the increasing 
exponent of r the contribution to the potential V a 
always decreases with increasing k for sufficiently small 
r.  
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Fig. 1. The  value and first  five derivatives of  the  q u a d r u p o l e  s t rength as func t ions  of  the pos i t ion  on  the  ~pt"c axis. N o t e  tha t  at  
z = z a the value o f  M z ,  z i s  zero  ai:d has reached sa tu ra t ion  at z = z b. The  curves  s h o w n  were ob t a i ned  0y evaluat ing the func t ion  at  

d i f fe ren t  z values with f i f th o rde r  DA.  These results  a re  requi red  for e q s  (11) a n d  (17). 
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4.2. The computation of fringing fields of magnetic multi- 
poles 

Since the distribution of the magnetic scalar poten- 
tial, and thus of the flux density in magnetic multipoles, 
is uniquely determined by the values and the z-deriva- 
tives of the multipole strengths Mk,k(z) (see eqs. (8) 
and (11)), it suffices to describe these multipole strengths 
as functions of z. All these muitipole strengths vanish 
far outside the multipole, i.e. Mk.k(za)-  0 in fig. 1, 
then increase in the fringing-field region, and finally 
reach a plateau of height Mk,k(Zb)¢ 0. This z-depen- 
dence of the strengths Mk.k(z) of a multipole of aper- 
ture radius Go and of a main multipole strengths 
Mk,k(Zb) can be described [33,21] by: 

Mk.k ( Z ) 

Uk.k(Zb) 
1 + exp[ bk.o + bk.,(z/Go) + bk,2(z/Go) 2 + " "  ]" 

(13) 

which requires to fit the parameters bk. j to describe a 
given fringing-field distribution. Here z is assumed to 
be zero at the effective field boundary, so that the 
multipole strength at the effective field boundary is 

Mk,k(z* ) = Mk,k(Zb)/[1 + exp(bk,o) ] • 

The derivatives of multipole strengths, described by 
eq. (13), could be obtained analytically, even though for 
higher derivatives this procedure becomes quite 
cumbersome. Using DA, the derivatives are computed 
automatically by just evaluating the Mi,.k(Z) in DA 
instead of in real numbers. 

In the case of a permanent-magnet quadrupole the 
multipole strength M2.2(z) and consequently all its de- 
rivatives can be calculated analytically [14]. In this case 
the coefficients bk. j in eq. (13) are determined as b2, 0 = 
b2, 2 = b 2 A  ---- 0 . 0 0 0 0 0  as well as: 

b2,1 - -  3.59463, b2, 3 = - 0.09349, b2, 5 = 0.00106. 
(14) 

This quadrupole strength M2,2(z) and its derivatives to 
fifth order as obtained by DA are shown in fig. 1. Note 
that also the highest derivatives are accurate to machine 
precision. Using the thus obtained values of M2, 2, M~/2, 
M2"2", etc. at a certain position z, the potential distribu- 
tion in space can be determined from eq. (8). Conse- 
quently also the right hand side of eq. (2) can be 
determined and a solution of this differential equation 
be obtained using a Runge-Kutta method as in eqs. (6) 
and (7) from z a to z b in fig. 1. 

In this connection one should mention that in order 
to obtain a description like eq. (13) for a real fringing 
field distribution, one should not only measure the 
Mk,k(Z)  and fit the bk, i t O  those measurements, but one 

should also make the derivatives of eq. (13) match the 
derivatives of the Mk.k(z ). 

One way to obtain these derivatives, which cannot 
easily be determined by measurements on the axis of 
the multipole element, is to measure the field on a 
closed surface, for instance the surface of a cylinder 
extending from the field-free to the main field region. 
As one sees from eq. (12), this potential - and analo- 
gously this field - contains information about the de- 
rivatives of the Mk.k(z). However, this information 
cannot be recovered by Fourier transformation - which 
is often done in the case of the main fields - because 
several terms occur with the same angular dependence. 

To avoid this problem, one here advantageously 
determines "surface charges" or "surface currents" on 
that surface such that they reproduce the measured 
scalar potential or field on that surface. The field given 
by the sum of the fields of all these surface charges and 
currents is fully Maxwellian and can be differentiated 
infinitely many times. Thus it can be used to determine 
the derivatives of the M~,,k(z). By using this procedure, 
one computes derivatives that produce the proper field 
on the surface of the cylinder and hence have the right 
global behaviour. 

In the majority of cases, however, it is sufficient to 
determine the bk,~ as accurately as is easily possible by 
just fitting eq. (13) to the measured Mk.k(z). The flux 
density distribution obtained in this fashion fulfills 
Maxwell's equations everywhere, though it is not the 
one that one really looks out for, but one that would be 
produced from slightly different pole faces. However, 
typically the difference between this distribution and 
the one one would obtain in some accurate measure- 
ment of the flux density caused by the real pole faces is 
smaller than the commonly achievable fabrication accu- 
racy. 

Furthermore, it should be noted that since the func- 
tion in eq. (13) is rather smooth, it is likely that it will 
produce too small derivatives and hence too smooth 
fields on average. However, even if this happens, the 
erroneous higher derivatives due to the fitting do not 
influence the transfer map very much. A local error in 
the Mk,k(z) produces localized higher derivatives which 
tend to oscillate around the true solution while in the 
integration process to determine the transfer map such 
localized oscillations usually average out to a large 
extent and do not affect the aberrations drastically. 

4.3. Fringing-field transfer matrices across an effective 
field boundary 

Though in principle the motion of charged particles 
in the fringing field is fully described as soon as one has 
obtained the transfer matrix from z a to z b in fig. 1, it is 
advantageous [16] to replace the transfer matrix from z a 
to z b by the product of three transfer m~trices: 
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1) a transfer matrix for a field-free region, ranging from 
z a to z*, i.e. to the position of the effective field 
boundary; 

2) a transfer matrix which is located at the effective 
field boundary and which summarizes all fringing- 
field effects; 

3) a transfer matrix for a region ranging from z * to z b, 
in which the multipole strength is assumed to be 
constant. 

In this case the elements of the center transfer matrix 
must be chosen such that the product of all three 
transfer matrices is equal to the fringing-field transfer 
matrix from z, to z b. This center transfer matrix is 
usually called I16,26] " t he  fringing-field transfer 
matrix". 

The reason for describing the fringing-field action by 
this "fringing-field transfer matrix" [15,16] is that, as 
long as Laplace's equation is assumed to be valid 
throughout the fringing field, in this matrix 
1) several of the elements - though being large - be- 

come independent of the specific fringing-field dis- 
tribution, 

2) many elements vanish altogether, 
3) many elements that depend on the detailed distribu- 

tion of the fringing field are small. 
Thus in this case a rough description of the distribution 
of the fringing-field is adequate even for a quite precise 
description of the fringing-field action. 

The small matrix elements that depend on the de- 
tailed distribution of the fringing field can all be ex- 
pressed by integrals over the extent of the fringing field, 
i.e. over Az. Assuming that z is of the same magnitude 
as the diameter of the particle beam, only those in- 
tegrals must be taken into account into which Az enters 
to the 1, 2,. • . ,  n - 1 power, if the transfer matrix shall 
be of  the nth order. In case of a magnetic quadrupole, 
i.e. k = 2, these integrals are [18]: 

• o M2.2(Zb) T -~ 0 .13852,  

12"~g=fzzb [fzz M2"2(z') z ~M2.2(Zb) 

• M2.2(Zb) d2 dz - = 0.0660, 

M2.z(zb) dz - z b = -0.28501. 

Here z. is a point outside of the quadrupole field and 
z b denotes a point in the main region of the quadrupole. 
The numerical numbers given above correspond to the 
fringing field of a permanent magnet quadrupole as 
described by the b2. k of eq. (14). Furthermore M2.2(Zb) 
is the quadrupole strength in the main region of the 

quadrupole of aperture radius G O and M2.2(z)/M2,z(Zb) 
is the relative quadrupole strength in the fringing field. 

4.4. Comparison between third-order fringing-field trans- 
fer matrices 

In all our simulations the reference particle was 
chosen to be singly charged having a mass of 200 mass 
units and an energy of 100 keV. For  such particles we 
used DA to compute the fifth-order transfer map of the 
main field of quadrupoles, hexapoles, octupoles, de- 
capoles and duodecapoles. These results can be com- 
pared with the analytical formulas in the libraries of 
COSY [22,23] yielding agreement of at least seven sig- 
nificant digits for all matrix elements of magnetic multi- 
poles of up to fifth order [13]. By using a smaller step 
size in the gunge-Kutta integrator, the number of digits 
in agreement could probably be increased further. This 
result is similar to the comparison [28] between DA and 
the code TEAPOT. 

In the case of the matrix elements for the fringing- 
field region we tested the transfer matrix of a magnetic 
quadrupole, the relative quadrupole strength M2,2(z)/ 
M2.2(z b) of which we chose to be given by eqs. (13) and 
(14). In detail we chose different values of the aperture 
radius G O as well as of the quadrupole strength M2.2(zb) 
in the main region. The left column of plots in fig. 2 
shows the dependence of the first-order matrix elements 
and of some selected high-order matrix elements on the 
quadrupole strength M2,2(z b) which is varied between 0 
and 1 T / m  assuming a fixed aperture radius of G o = 0.05 
m. The fight column of plots in fig. 2 shows the depen- 
dence of the same matrix elements on the aperture 
radius G o which is varied between 1 and 12 cm assum- 
ing a fixed quadrupole strength Ma,2(zb) = 0.5 T/m. 

All matrix elements of first and second order ob- 
tained by using the fringing-field integral method ap- 
proximate the DA values of the matrix elements quite 
well. In the cases shown here, the differences between 
the results obtained by both methods and the sharp 
cut-off approximation are at most about 10% and typi- 
cally < 1~ or they are very small to begin with. Note, 
however, that the sharp cut-off approximation, as used 
in most ion-optics codes, produces considerable devia- 
tions from the more accurate two other results. For the 
matrix elements of third-order the sharp cut-off ap- 
proximation yields the same results as the fringing-field 
integral method which assumes that the extent of the 
fringing field is taken into account to the same power as 
the highest terms in the transfer matrix. 

5. Transfer matrices for the fringing fields of sector 
magnets 

Also in the case of sector magnets a detailed descrip- 
tion of the distribution of the flux density B is a 
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Fig. 2. The magnitude of the elements ( X, X), ( X, A ), ( A. X) and ( A, A ) as well as the elements ( A, XXX). ( A. Y YY ). ( X, XXX). 
(X, XAA) of a quadrupole fringing-field transfer matrix, i.e. a transfer matrix that t,ansfers a particle trajectory, across the 
effective-field boundary are shown. These elements were calculated assuming singly charged particles of 200 mass units and 100 keV 
energy. Shown are the "exact results" obtained by DA (circles), the results obtained by the fringing-field integral method (squares) 
and the results obtained from the sharp cut-off approximation (diamonds). For the left column of the drawings the aperture radius 
was chosen to be Go = 0.05 m and the quadrupole strength M2.2(Zs) has been varied between 0 and 1 T/re. The fight column of 
drawings shows the same matrix elements assuming a fixed quadrupole strength Mz.2(z b) = 0.5 T / m  and aperture radii Go varied 
between 0.01 and 0.11 m. Note here that using the fringing-field integral method the first-order matrix elements are: 

( X, X )  = I -  K21,, ( X, A) = -2K212,  ( A , X )  = - K413, ( A, A) ---I + K21, 

with K 2= (q/p)Mz.2(Zb) according to ref. [18, and in the sharp cut-off approximation these elements are the same, however, with 
Ii = 12 = 13 = / a  = 0. 

prerequisite for obtnining matrix elements by using DA. 
While the procedure  has a similar f lavor as in section 4, 
here things are a little more complicated.  

For all sector magn~-ts, thc ion-optical properties of 
which we want  to describe, we assume the optical axis 
to be a circle of  radius O0 inside the main  field, and the 
coordinate along this axis is denoted as z. In the region 
of the main field this entails that the flux density B 
along this circle is B 0 = constant,  i.e. independent  of z, 
and thus the pole faces are rotat ionally symmetric. In 
the plane of the optic axis, i.e. for y = 0 ,  then the 

y-component  o? the flux density distr ibution is de- 
scribed by [4,51: 

t = l  \ 

with x describing the deviation of a trajectory from the 
optic axis and the n i being coefficients that  describe the 
inhomogeneity of the field distribution. This description 
of By(x) includes that of a homogeneous magnet ,  hav- 
ing parallel pole faces and a flux density distribution 

B~.( x ) = B o, i.e. all n, vanish. 
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In the fringing field such relations are more com- 
plicated. As in the case of multipoles we infer from 
Maxwell's equations div B =  curl B = 0  due to the 
time-independence and the fact that there are no cur- 
rents inside the sector magnet. Hence also here exists a 
magnetic scalar potential V a for which Laplace's equa- 
tion holds, i.e. AV B = 0. We may also expand this 
potential in particle-optical coordinates x and y keep- 
ing the z-dependence unexpanded. In detail one can 
write: 

~ X i y )  
V, (x ,  y, z ) =  E E a,.j(z)7-(.-~. (15) 

i = O j = O  

and postulate because AV a = 0 [34,6]: 

V 2 V B =  - -  
1 O [ OVal O2VB 

1 + hx Ox ~ (1 + hx)- f fZ  ] + --By 2 

1 0 (  1 OVa) 
+ l+h-----x Oz l + h x  Oz =0. (16) 

Here h(z)  = 1 /p  is the momentary radius of curvature 
of the optic axis. Since sector magnets all have mid- 
plane symmetry, Va(x, y, z )must  equal Va(x, - y ,  z) 
and all coefficients a,,j  with even j must vanish. Note 
also that for a homogeneous magnet all a,.j  vanish 
except a0.1. Inserting eq. (15) into eq. (16) one obtains 
furthermore: 

t t  • e l  . I p 

a j . / +  2 = - - a t ,  / - -  l h a t _  l.  I + th  a t _ l ,  j - -  (2t+2. l 

- (3i + 1)ha ,+Lj  - 3iha,_~./÷ 2 

- i(3i - 1 ) h 2 a , . / -  3i(i - 1)h2a,_2.~+2 

- i ( i -  1)2h3a,_l,j 

- i ( ,  - 1)(i  - 2)h3a,_3.,+2, (17) 

where primes denote derivatives with respect to z, and it 
is understood that all coefficients with negative indices 

X 

P s :  

Fig. 3. Illustration for the computation of the midplane fringe 
field in a sector magnet according to the "Enge procedure" 

[33]. For details, refer to the text. 

are zero. In the main field region of the sector magnet  
the potential V a is independent of z, causing all z 

derivatives to vanish so that eq. (17) simplifies consider- 
ably to 

a , . /+2=  - a , + 2 . j - i a , _ t . / - ( i + l ) a , + l , / .  (18) 

Since all ai. j vanish for even j eqs. (17) and (18) allow 
to determine all a,./ once all a,. 1 are known. Thus 
Laplace's equation determines the potential V n up to a 
constant in all space, once its first y-derivative at y = 0 
is known in a power series in x for all z. Consequently 
one finds to second order with h = h(z). 

B,,(x, y, z ) =  - ( O V a ( z )  

= - a , , ( z ) y -  a2, (z)xy  + . . . ,  

= - ½ b y  

_ ½a2,(z)(x 2 _ y 2 )  + ½ao,(Z)"y2 

-1 (0v.  
Bz(x, y, z ) =  1 +  hx -~-z ] 

- - 1  p t 
-- l ~ - ~ x ( a m ( z ) y + a i l ( z ) x y +  . . . ) .  

5.1. The computation o f f  ringing fields of sector magnets 

In case of the fringing fields of  sector magnets, the 
momentary curvature of a particle trajectory under in- 
vestigation as projected onto the plane of the optic axis 
(y  = 0) depends on the position s along the particle 
trajectory. This curvature varies as By(s), both being 
zero far outside the magnet and then increasing mono- 
tonically to reach a plateau inside the magnet. 

In a Cartesian coordinate system X, Y, Z the distri- 
butions of the scalar magnetic potential VB(X, Y, Z)  
and thus of the flux density B(X, Y, Z )  are uniquely 
determined by the distribution of By( X, O, Z) i.e. the 
Y-component of the flux density in the magnet mid- 
plane at Y = 0 .  In order to find Br(X,  Y, Z) at an 
arbitrary point P(X, Y, Z )  it thus is only necessary to 
determine By(Z, O, Z) at P(X, 0, Z )  = P(X, Z) in the 
plane of the optic axis Y = O. In detail we follow a 
procedure outlined in re/. [331: 

1) Look for the closest point Po(X, Z)  on the effec- 
tive field boundary (see fig. 3) and determine the dis- 
tance d between P and P0- 

2) Determine the distance O between Po( X, Z )  and 
M, the center of  the circular optic axis, and find the flux 
density for a point inside the sector magnet with the 
same distance p from M: 

p - 00 (p - 00) 2 
B v ( p ) = a 0 ' l + a l ' l  l----f - - + a 2 , 1  2! + " " '  



B. Hartmann et al. / Computation of aberrations of fringing fields 351 

where #0 is the radius of the optic axis. Note  here that 
in the case of a homogeneous magnet B r = aoa inde- 
pendently of p. 

3) Determine the flux density at point P0 from 

e (x,o,z) 

By(p) 
1 + exp[b o + b , ( d / G o )  + b2(d /Go)  2 + " "  ]"  

(19) 

where in advance the b, must be fitted to the given flux 
density distribution in the fringing field. Here Z is 
assumed to be zero at the position where the optic axis 
crosses the effective field boundary so that the flux 
density at this point is B r ( X , O , O ) = B r ( p ) / [ 1  + 
exp( bo)]. 

In case the effective field boundary is curved by a 
radius R, it is in general impossible to find a closed 
expression for the distance d; instead, d must be de- 
termined iteratively. To do this, one notes that it is a 
necessary condition that the line (PPo) is perpendicular 
to the tangent of the effective field boundary S at 
P0( Xo, Zo), which is given by [I, S'( Xo)], i.e.: 

[X-Xo,  Z -S(Xo) ] . [ 1 ,  S'(Xo)]=O. (20) 

Writ ing the function S(Xo) as a polynomial S(X 0) = 
S1X o + $2X2o + - . .  and inserting this polynomial into 
eq. (20), one obtains the iterative form 

Xo = { X + Z ( S ' ( Xo ) - E S2 Xo ) 

- ( S (  X o ) S ' (  Xo) - S?Xo) } 

× (1 + S 2 -  2 Z S  2 } - '  

A closer inspection of the right hand side shows that 
there are no linear terms in x left, which entails 
quadratic convergence. Iterating this equation one fi- 
nally obtains the position P0( X0, Z0), and from that the 
distance d. 

In order to obtain the required derivatives of the 
midplane field parallel and perpendicular to the optic 
axis, we also used DA. To be more specific, the coordi- 
nates X 0 and Z0 of P0 are not interpreted as real 
numbers anymore, but are viewed as DA quantities 
depending on x and y. Replacing all the operations to 
determine X and Y by the corresponding ones in DA, 
including the iteration process to determine the point P0 
one automatically obtains the derivatives of the field 
with respect to x and y, i.e., the derivatives along the 
optic axis and in the midplane perpendicular to the 
optic axis. So we obtain the terms a,a and all their 
derivatives with respect to s. This then enables us to 
compute the flux density B along the particle trajectory 
under consideration by using the recursive formula of 
eq. (17). 

5.2. Fringing-field transfer matrices across an effective 
field boundary 

The distribution of the flux density b,.(s) along a 
particle trajectory in the fringing field of a sector mag- 
net looks very similar to the distribution of the 
quadrupole strength shown in fig. 1. Also here we will 
first determine a transfer matrix and transfers a particle 
trajectory from s a to s b - corresponding to z a and z b in 
fig. 1 - and then extract from this a transfer matrix that 
summarizes all left-over effects at the effective field 
boundary, the so-called "fringing-field transfer matrix" 
which has similar properties as listed in section 4.3. 

Also here the small matrix elements that depend on 
the detailed distribution of the fringing field can be 
expressed by integrals over the extent of the fringing 
field. Assuming that As = s b - s  a, i.e. the extent of the 
fringing field, is of the same magnitude as the diameter 
of the particle beam, only those integrals must be taken 
into account into which As enters to 1, 2 , - - . ,  n - 1  
order, if the transfer matrix shall be of n th order. In 
case of a sector magnet these integrals are [15-17]: 

~h "~Bv(~) 

= B(c )  d r -  rb = --0 2850 , 
 ,tTl 

~" " ( ~ ' ) d ~ ' =  -0.06930.  

Here ~" is a coordinate perpendicular to the effective 
field boundary at the position where he optic axis is 
assumed to cross the effective field boundary. Analo- 
gously to the fringing field integrals of section 4.3 here 
~'a denotes a point outside the dipole field and ~'b a 
point in the main field region. For convenience the 
numerical values listed for the above three fringing-field 
integrals are obtained from choosing the numerical val- 
ues of the b, in eq. (19) to be identical to the bk. , of eqs. 
(13) and (14) though such a fringing-field distribution is 
not easily found in a sector magnet. 

5.3. Comparison between third-order fringing-field trans- 
fer matrices 

For a numerical analysis we assumed that in the 
sector magnet under consideration the optic axis would 
be a circle of 2.5 m radius. Also here we used DA to 
compute the fifth-order transfer map fo the main field 
and compared the results with the analytical formulas 
in the libraries of COSY [22,23] again finding agree- 
ment of at least seven significant digits for all matrix 
elements of sector magnets up to fifth order. Also here 
we assume that by using a smaller step size in the 
Runge-Kutta  integrator, the number of digits in agree- 
ment could probably be increased further. 
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In the case of the matrix elements of the fringing-field 
transfer matrix for a sector magnet we varied G 0, the 
half gap of the magnet, as well as the entrance angle (, 
i.e. the angle between the optic axis and the effective 
field boundary. The left column of plots in fig. 4 shows 
the dependence of two first-order matrix elements and 

of seven selected high-order matrix elements on G O with 
this half gap size being varied from 0.01 to 0.11 m while 
the entrance angle was kept fix at ( =  0 °. The right 
column of plots in fig. 4 shows for a fixed G o = 0.05 m 
the dependence of the same matrix elements on the 
entrance angle (, with ( being varied between + 6 0  ° 

0.00000 
-0.00001 
-0.00002 
-0.00OO3 

0.005 
0.004 
0.003 
0.003 
0.001 
O.(XIO 

0.00000020 
0.00000015 
0.00000010 
0.00000005 
O.OQO00000 

0.00000 
-0.00025 
-0.00050 
-0.00075 
-0.00100 

-0.4000 
-0.4001 
-0.4002 
-0.4003 

0.000 
-0.002 
-0.004 
-0.006 
-0.008 

0.000 
-0.005 
-0.010 
--0.015 

0.00 
-0.05 
-0 .10  
-0 .15  

0 
- 2  
-4  
- 6  
-8  

] . . . . . . . . .  , . . .  . . . . . . .  

• , , , , • . . . . .  

'~- . ~  

I . . . ,  . . . . . . . . . . . . . . . . . . .  

0.02 0 .04  0.06 0.08 O.I 

0.002 
0.001 
0.000 

-0.001 
-0.002 

0.5 
0.0 

- 0 . 5  

0.0 
-0.2 
-0.4 
- 0 . 6  

0.000 
-0.OO2 
-0 .004  
- 0 . 0 0 6  

- 0 . 5  
-1.0 
-]..5 

5.0 
2.5 
0.0 

-2.5 
-.5.0 

2 
0 

--2 
--4 

0 
-1  
-2  
- 3  

o 
_.~ 

-10 
-15 
-20  

" I t . . . .  I " " " I I - 

" " I . . . .  I " " " I 

I 

- 5 0  - 2 5  0 25 50 

Fig. 4. "['he magni rude of the elements ( Y, B) and ( B, Y ) as well as ( X. XX  ). ( X. AA ). ( B. .4 Y ), ( X__. * Y B  ), ( X, A Y Y ), ( B, Y YB ), 
(B, Y Y Y )  are shown of a sector magnet fringing-field transfer  matrix, i.e. a t ransfer  matrix that transfers a particle trajectory across 
the effective-field boundary.  These elements were calculated assuming a homogeneous magnet with an  optic axis of 2.5 m radius.  
Shown are the "exact results" obtained by differential  algebra (circles), the results obtained by the fringing-field integral me thod  
(squares) and the results obta ined  from the sharp cut-off  approximation (diamonds).  For the left hand  column of drawings the  
ent rance  angle • was chosen to be 0 ° and the half  gap of the magnet varied from G O = 0.01 to G o = 0.11 m. For the right h a n d  
column the half gap of the magnet  was chosen to be G O = 0.05 m and the angle of inclination varied between ( = +_60 °. Note  here 
that  the first-order matrix elements determined with the fringing-field integral method are; 

( X, X )  = (Y,  Y )  =1 ,  ( X, A)  = -20011 t a n ( ( ) / c o s 2 ( • ) .  

( A ,  X ) = - ( B .  Y ) = p  - I  t a n ( • )  (A ,  A ) = 1 - 2 1  n t a n ( c ) / c o s 2 ( • )  

according to refs. [18,18] and  that in the sharp cut-off  approximation these elements are the same, however,  with I n = 12 = 13 = 0. 
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and - 6 0  ° though for simply designed magnets this 
angle should only be varied between + 30 o and - 3 0  o. 

All matrix elements of first and second order, ob- 
tained by using the fringing-field integral method, ap- 
proximate the D A  values of the matrix elements quite 
well. For the matrix elements of third-order the sharp 
cut-off approximation here also yields the same results 
as the fringing-field integral method since this assumes 
As, the extent of the fringing field, to be of equal 
magnitude as the diameter of the particle beam. Note, 
however, that the scales on the drawings of the left hand 
column are considerably smaller than those on the 
drawings of the right hand column. This reflects the fact 
that the influence of the fringing fields on the matrix 
elements is small as long as the particle beam enters 
into the sector magnet more or less perpendicular, but 
that this influence becomes large if the particle beam 
enters obliquely. Note  also that there are matrix ele- 
ments like (B,  YYY) that grow drastically if G 0, the 
half gap of the magnet, becomes very small compared 
to the radius of the optic axis as for instance in a large 
ring accelerator or storage ring. 
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