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Relations are derived between elements of transfer matrices. These relations result from the fact that the motion of charged
particles from one profile plane to another can be described as a canonical transformation . The derived four first order relations are
already known . Similarly, the higher order relations are very useful to check results of numerical ion optical calculations .

1 . Introduction

The motion of charged particles in space and time can be described relative to a reference particle in
canonically conjugate variables (rl , r2, r3 , r4, r5 , rb ) describing a point in a six-dimensional space as
function of an independent variable like, for instance, the time t . Assuming a curvilinear coordinate system,
such sets of canonically conjugate variables are

( rk) = (r, r2, r3, r4, r5 , rb ) = (x, y, Az, p. , pv , àpz),

	

(la)

( rk) = (r, r2, r3 , rq , r5, r6) = (x, y, -,As, p, py , ap),

	

(1b)

(rk) = (rl , r2, r3, r4, r5 , rb ) = (x, y, - dt, p, py , aE),

	

(1c)

with k = 1, 2, 3, 4, 5, 6 . Here s describes the path coordinate, t the time and E the total particle energy
while x, y, z describe the position and pX , py , pZ the corresponding components of the particle momentum
p. For eq . (la) the independent variable advantageously is the time t or the path coordinate s, for eq . (lb)
it is the time t or the coordinate z along the optic axis and for eq . (lc) it is the path coordinate s or the z
coordinate along the optic axis .

Knowing the position rko at a time t o or position z o or so, respectively, the objective of ion optical
calculations [1-3] is to calculate a set of coordinates { rk1 ) describing the position of a particle in phase
space at a time t l or position z l or s t , respectively . The relation between these two sets of canonically
conjugate variables can be expanded in a Taylor's series and written as
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with r� r., rk , r, . . . as defined in eqs . (1) . The coefficients
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determine the first order properties of the optical system connecting r, 1 and r,o while the coefficients
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etc . describe the higher order aberrations . Note that (r, I r rk ) is identical to (r, I rk r,) so that for j 0 k the
term (r, I rj rk ) describes half of the total aberration coefficient proportional to r, orko .

2 . The condition of symplecticity

Knowing eq. (2) one can compute the 6 * 6 Jacobi matrix A with 36 elements :

J=

3

r. oa0
Here i denotes the row number and j the column number of a specific matrix element where i and j both
take values from 1 to 6 . Note here that differently than for eq . (2) the partial derivatives of eq . (3) are taken
not only at r.o = 0 .

For the case that both r, and r. represent a set of canonically conjugate variables, it has been shown, for
instance in ref. [4], that the above Jacobi matrix A fulfills the so-called symplectic condition

ATJA = J,

where AT is the transpose of A and where

Denoting the elements of the matrix (ATJA) by v,,, this condition can also be written as

v, J = 0,

	

exceptfor

	

v14 = V25 = V36 = 1,

	

(5a)

with i <j because of

v, J _ -vj, .
Carrying out the matrix multiplication (ATJA) as required by eq . (4) one finds

Ur j = W1zW4j - W4,Wlj + W2 ,W5 j - w5rw2j +- w3rw6l - w6rw3j

which also shows that v,, equals -v,, . Thus we can restrict ourselves to the case i <j and require only eq .
(5a) to be fulfilled .

In order to simplify further calculations, we can rewrite eq. (6) as :

Ur~ - ~ (WW,rWt`+3 . .t - wW+3.rWja .~ ) .
W=1

6

	

6

W,J=\r,Irl)+ Y. rk0

	

r,Irrk)+z ~rto{(rrlrrkrl)+ . . .
k=1

	

l=1

Introducing these w,, into eq . (7) one finds after a straightforward substitution

U r~ =

	

`
3

	

6

	

6

	

6

Fi .,~ +

	

rko{ F2 .~ + E r101 F3.u +

	

rno{ Fa.,, +
tt=1 k=1 1=1 m=1

(5b)

The w,_, of eqs . (3), (6) now can be obtained by differentiating in eq. (2) the Taylor's series of partial
derivatives with respect to r O :

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

-1 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0



where the F~ , ,, are given as :

Ft .,, =

	

~

	

D',(r, ; rkrtrm - . . r. )(~ 1 1) [( 0

	

1
11

+~1-11Dw(rirk ; rtrm . . . ri ) + . . . +~

	

- 1 ~D1, ( rrkrlrm . .

	

; r. )J,

DW(Mm; Mn) = (rw I Mm )(rw+3~ Mn) - ( ru+3 I Mm) ( rli I Mn),

with 1 < i < j < 6 and k, 1, m, n,

	

E { 1, . . . , 6) and Mm and M� being monomials of the phase space
coordinates rl, r2, r3 , ra, r5, r6 :

6

Mm =

	

r

	

t = rl'rz2r33r4'4r5

	

6 6

Mn = r rn r = r1 1 rz z r33r44r3Srn6 '
~=1

where n~ as well as m~ are nonnegative integers 0, 1, 2, 3, 4, . . . Note here that
ii =nl +n 2 +n 3 +na +n 5 +n 6 <~,

in =ml+m2+m3+ma+m5+m6<~,

and that very generally

DN (M~ ; Mn)= -Du(Mn ; Min )-

3
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etc . with 5, ,,, = 1 for (i, j) = (1,4), (2,5), (3,6) and 5, ., = 0 for all other cases . Thus
a) eq . (Ila) represents 15 relations between the 1st order coefficients of eq. (2),
b) eq. (llb) represents 6 * 15 relations between the 1st and 2nd order coefficients,
c) eq . (Ilc) represents 21 * 15 relations between the Ist, 2nd and 3rd order coefficients,
d) eq . (lld) represents 56 * 15 relations between the 1st, 2nd, 3rd and 4th order coefficients, etc .

3 . General consequences of the choice of the set of coordinates of eq. (1c)

(10)

Because of v,, _ - vJ , and 1 5 i <j<-6, eq. (5a) represents 15 relations . Comparing the coefficients for all
powers of rko, rto, rm0, . . . on both sides of eq . (9) one finds :

3

	

3
E Fl,w= Y_ D,, (r, ; rJ)=g, .t,

	

(lla)
tL=i g=i

3

	

3
Y- F2 , N = Y DJr, ; rkr,)+DL(rrk; r.)=0,

	

(llb)
it= i

	

w=1
3

	

3
F3,u = Y D~(r, ; rkrtr,)+2D,,(rrk ; rtr,)+D,.(r,rkrt ; r.)=0

	

(llc)
t=1 W=1

For ion optical problems we like to choose the set of canonically conjugate variables of eq . (lc) with the
independent variable being z, i .e ., the coordinate along the optic axis, so that

ri =x, ra =Px, (12a)

r2 =Y, r5 =Py , (12b)
r3 =At, r6 =AE. (12c)
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Here, as in any set of coordinates, some coefficients of eq . (2) always vanish so that finally the exuberantly
large number of relations due to eqs . (11) is reduced considerably .

3.1 . Time invariant fields

Since x� y� pX� pyl, 4E, all do not depend on time explicitly, all partial derivatives of these
coordinates vanish . This causes all coefficients of eq . (2) to vanish which contain a r3 , with n 3 * 0 in the
right hand side of the bracket, i .e . :

(ril* . .r33 . . .)=0

	

(13a)

or (r, I Mn [n3 # 0]) = 0 except (r3 I r3 ) =1.

3.2. Energy constancy

For most optical systems the particle energy stays unchanged or varies by the same factor for all
particles of a beam . This causes all coefficients of eq . (2) to vanish which contain a "AE = rb " in the left
side of the bracket, i.e. :

( r6 l * . . ) = 0,

	

(13b)

or (rb I M� ) = 0 except (rb I rb ) = n, with q = 1 in the event that no accelerations had occurred at all .

3 .3. Midplane symmetry

For most ion optical systems one postulates a plane of symmetry which in case of a sector magnet would
be the midplane (y = 0) in the magnet air gap . In this case all electromagnetic forces must be symmetric
with respect to the plane y = 0 . Thus one finds for m Z +m 5 = odd

(r, I

	

. . . r2Zr55 . . . ) = ( r3 I

	

. . . r2 Zr55 . . . ) = ( r4 I

	

. . . r2Zr55 . . . ) = (rb I

	

. . . r2Zr55 . . . ) = 0,(13c)

and for mz + m5 = even

(r2 I . . . r2zr55 . . . ) = ( r5 I . . . r2zr55 . . . ) = 0 .	(13d)

The eqs. (13) can also be written as

and

(riIModd ) = (r3IModd ) = (r4IModd ) = (rbIMndd ) =0,

(r2 i Mneven) = ( r5 IMeven) = 0.

Here M~dd stands for a M� with nz + n 5 = odd and M,`'en stands for a M� with n z + n5 = even.

4 . Consequences of eqs . (13) for the D,, of eqs . (10)

To get a better overview over the different cases let us discuss the total disappearance of D, DZ and D3
separately, i .e . the cases in which both terms of each Di, vanish simultaneously.

4.1 . The total disappearance of D,

From eqs . (13c), (13a) one finds D,(M~; M� ) = 0 for

M,� = Mmdd

	

or

	

M� = M~dd,

	

(14a)



or

m3 :k 0

	

or

	

n 3 *0.

	

(14b)

Note here that the cases of eqs. (14) are the only ones in which D, vanishes for arbitrary optical systems.

4.2 . The total disappearance of D,

or

or

From eqs. (13a), (13c), (13d) one finds D2 (Mm; Mn) = 0 for

M = Meven

	

or

	

M = Meven
m m

	

n n

m 3 *0 or n 3 9L0.

	

(15b)

Note here also that the cases of eqs. (15) are the only ones in which D2 vanishes for arbitrary optical
systems.

4.3. The total disappearance of D3

From eq. (13b) one finds D3(Mn, ; Mn )=0, except for

M�,=rb

	

or

	

M� = r,,

	

(16)

which is the same (see the definition of Mn, and Mn under eq . (10)) as stating

M I =m 2 =m 3 =m 4 =m 5 =0

	

and

	

m6 =1,

n,=n 2 =n 3 =n 4 =n 5 =0 and n 6 =1 .

In case one of the conditions of eq . (16) is fulfilled one finds for all nonvanishing D3 :

D3(M.n ; rj _ (r31M.n),

D3( r6 ; Mn) - - (r31 Mn) .

According to eq . (13c), however, even the D3 of eqs. (17) vanish if

Mn, = Mindel

	

or

	

Mn =
Mod' .

The restrictions imposed on the D� D2 and D3 by eqs. (14)-(18) shall now be used to simplify the relations
of eqs. (11) .

5. Relations between the first order coefficients of eq . (2)

For ~ = 1 in eq. (9) we find n = m = 1, i.e . five m, and n, vanish while one m, and one n, equal 1 . In
this case eq . (9) transforms to eq . (11a).

5.1 . The casej E { 1,4)
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(15a)

(17a)

(17b)

(18)

The condition i <j here implies j = 4 and hence iE (1,2,3) . Thus the eqs. (15), (16) yield D2 =D3 = 0
and we find with eqs. (14) only one nontrivial relation :

D, (r, ; r4)=5,,4=1,

	

(19a)
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5.2 . The casej C- ( 2,5)

The condition i <j here implies j = 2,

	

i =1 or j = 5,

	

i E {1,2,3,4) . Thus the eqs. (14), (16) yield
D, = D3 = 0 and we find with eqs. (15) only one nontrivial relation :

D2( 112 ; r5) =52.5 =1 .

	

(19b)

5.3. The case j = 3

From eqs. (14)-(16) we infer that D, = DZ = D3 = 0 for arbitrary i <j resulting in only trivial relations.

5.4. The case j= 6

Since in this case r. is even, the eqs. (15) yield Dz = 0. Furthermore, eq . (17a) implies D3(r, ; rb) = (r3 I r,) .

which are the well known results of Liouville's theorem, stating that the determinants of the first order
transfer matrices for the x- and y-directions both equal one [5]. The eq . (19c) reads explicitly

(x l x)(Px I AE) - (Px l x)(x I AE) = (At I x),

	

(20c)

(x l Px)(Px1 4E) - (Px1 Px)(xIAE) = (Dt1 Px),

	

(20d)

relations which are well known from ref. [6]. The eqs. (20c), (20d) determine longitudinal deviations
(At I . . . ) as functions of lateral deviations . Note here that there are three longitudinal first order terms

[(4 t1 x), (At I px), (At I DE)], only one of which must be determined truly independently.

6. Relations between first and second order coefficients of eq . (2)

For

	

= 2 in eq. (9) we find either n = 1, m = 2 or n = 2, m = 1 . In this case eq . (9) transforms to eq .
(llb).

6.1 . The case j E (1,4)

The condition i <j implies j= 4 and i E (1,2,3) . Thus the eqs. (16) yield D3 = 0. For i = 3 or k = 3 we
find only trivial relations. For i :91- 3 and k 0 3, however, we find from eqs. (14), (15) in the case of
r, = even, i.e. for i = 1 and

rk = even :

	

D,(r, ; rkr4)+D,(r,rk ; r4 )=0,

	

(21a)

which yields three relations with k E {1,4,6} while we find for

rk = odd :

	

only trivial relations.

For i = 3 we thus find the identity (r3 I r3) = 1 and for i =A 3 with eqs. (14) :

DI (r, ; rb)+(r31r,)=0, (19c)

which yields two relations with i E (1,4) .

5.5. The resulting relations between coefficients offirst order

Using the expressions of eqs. (12) as abbreviations, the eqs. (19a), (19b) read explicitly

(x l x)(PXI Px) -(PXIOx I PJ =1 , (20a)

(YIY)(Py 1 Py ) - (YI Py )(YI Py ) =1 , (20b)



In the case of r, = odd, i.e . for i = 2 we find for

rk = even :

	

only trivial relations,
rk =odd:

	

D,(r2rk ; r4 )+D2 (r2 ; rkr4 )=0,

which yields two relations with k E {2,5) .

6.2 . The casej E (2,5)
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(21b)

The condition i < j implies j = 2, i = 1 or j = 5, i E {1,2,3,4) . Thus the eqs. (16) yield D3 = 0. For i = 3
or k = 3 we find only trivial relations . For i * 3 and k 0 3, however, we find from eqs. (14), (15) in the case
of r, = even, i.e . i E {1,4) and

r,, = even :

	

only trivial relations,
rk =odd :

	

D,(r, ; rkr,)+D2(rrk ; r.)=0,

	

(21c)

which yields six relations with k E (2,5) . In the case of r, = odd, i.e . for i = 2, we find furthermore for

r.=even :

	

D2(r2 ; MO +D2 (r2rk ; rs )=0,

	

(21d)

which yields three relations with k E ( 1,4,6) while we find for

rk = odd :

	

only trivial relations .

6.3. The case j = 5

From eqs. (14)-(16) we infer also here that D, = D2 = D3 = 0 for arbitrary i <j resulting in only trivial
relations .

6.4. The case j = 6

Eq . (17a) here implies D3 (r,rk ; r.) = (r3 I r, rk ) and D3 (r,; rkr,) = 0. For t = 3 or k = 3 we find only trivial
relations . For i 0 3 and k * 3, however, we find from eqs. (14), (15), (17) in the case of r, = even, i.e. for
i E {1,4) and

rk =even :

	

D,(r, ; rkr6)+D,(rrk ; rb)= - (r3I rrk),

	

(21e)

which yields six relations with k E (1,4,6) while we find for
rk = odd :

	

only trivial relations .

In the case of r, = odd, i.e. for i E (2,5) we find furthermore for
rk = even :

	

only trivial relations
rk =odd:

	

D2 (r, ; rkr6)+D,(rrk ; rb)=- (r3Irrk),

which yields four relations with k E {2,5) .

6.5 The resulting equations

Using again the abbreviations of eqs. (12) the independent relations of Eqs. (21a)-(21d) read explicitly

(XI X )(PxlXPx) - (Pxl X)(X I XPJ+(X1xx)(Pxl Px)-(Px1 xx)(XI Px) = 0,
(xiX)(Px1 PxPx) - (Pxlx)(X1 PxPx) + (XIxpx)(Pxl Px) - (Pxi xpx)(x 1 PJ =0 ,

(21 f)

(22a)
(22b)
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where eqs . (221), (22m) carry no new information and are mere combinations of eqs . (22g), (22h) and eqs .
(22e), (22j), respectively . Explicitly the relations of eqs . (21e)-(21f) read

(x I x)(pxIxAE) - ( pxI x)(xIxaE)+(xI xx)(px I AE) - (pxI xx)(xIAE)

= (At I xx), (23a)

(xl x )(pxl PxAE) - (Pxl x)(xl Px4 E)+(xlxpx)(pxl 4 E) - ( pxl xpx)(xJAE)
= (d t I xpx), (23b)

(xl x)(pxJAEAE)-(Pxl x)(xl4EàE)+(xlx4E)(p.I AE) - ( p.I xAE)(xl4E)

= (At l x4 E), (23c)

(x l px)(px I xAE) - (px I px)(x I xAE) +(x l pxx)(px J AE) -(px l pxx)(x J AE)

_ (Qt I pxx), (23d)

(x1px)(px1 pxaE ) - (pxl px)(xlpxAE )+(xlp,px)(pxl3E) - ( pxl p,px)(xlàE)

= (At I PxPx), (23e)

(x1Px)(PxJAEAE) - ( pxl px)(xJAEAE)+(xl px 4 E)(PxJAE) - (Pxl Px AE)(xJAE)

_ (atl pxaE), (23f)

(YlY)(py 1 YaE) - (Py l y)(Yl yAE)+(xiyy)(P.I AE) - (Pxl yy)(xl 3 E)

= (at l YY), (23g)

(yly)(py l pYAE) - (py ly)(Yl pYAE)+(xlypy )(Pxl àE)-(Pxlyp,)(xl àE)

= (at l YPY ), (23h)

(y l py )(Py l yàE) - (Py l py )(Yl yàE)+(xipy y)(pxJAE) - (Pxl Pyy)(xl àE)

= (At l PY Y), (23i)

(Y l py )(Py 1 pYAE) - (Py l Py)(Yl pYAE)+(xl py py )(P,I AE)-(P,1 Py py )(xl 4 E)

= (at 1 pp,), (23J)

(xlx)(Pxl 4 EPx) - (Pxlx)(xl àEPx)+(xlx4 E)(Px1 Px) - (p,IxàE)(x1 p_,)= 0, (22c)

(x l Px)(Px I YY) - (Pxl Px)(xl YY)+(YI PxY)(P,I Y) - (P, I Pxy)(YI Y) = 0, (22d)

(x l PX)(Pxl Py Y) - (Pxl P")(x1 PYY)+(YI PP-,)(p, 1Y) - (P,l PrPy )(YIY) =0 , (22e)

(xlx)(PXIYY) - (Pxl x )(x1YY) +(YIxy)(Py 1Y) - (P,Ixy)(YIY) = 0, (22f)

(xI x )(Pxl PYY) - (Pxlx)(xlPY Y)+(Ylxpy )(P,IY) - (Py lxp,)(YIY) = 0, (22g)

(xlx)(PXIYPY) - (Pxl x )(xlYPY )+(YIxy)(Py 1Py ) - (P,Ixy)(YIPy ) = 0, (22h)

(xlx)(Pxl Py Py ) - (Pxlx)(xl PyPy )+(YIXPy )(Py 1 Py ) - (Py IxPy )(YI P,) = 0, (22i)

(x I Px)(PXIYPY ) - (Px)Px)( x IYPY)+(YI PxY)(P,yl Py) - (PY l Pxy)(YI P') 0, (22j)

(x l Px)(Pxl PyPy ) - (Pxl Px)( x 1PyPy)+(YI Pxpy )(p,1 P' ) - (Py l PxP Y )(Y1 Py ) = 0, (22k)

(YlY)(Py lxPY ) - (Py IY)(YlxPY )+(YIYx)(Py 1 Py ) - (Py 1Yx)(Y1 Py ) = 0, (221)

(YIY)(Py l Pxpy ) -(Py IY)(YI PXPy ) + (YIYPx)(Py1 PJ - (Py 1YPx)(YI Py ) =0, (22m)

(YIY)(Py JAEPy ) - (py 1Y)(YIQEP,)+(YIY4 E)(Py 1Py) - (P,IY4E)(YIPy ) =0 , (22n)
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where the eqs . (23d), (23i) carry no new information and are mere combinations of eqs . (23b), (22c) and
eqs . (23h), (22n), respectively .

Knowing all first order matrix elements the eqs. (22), (23) describe the following relations between the
matrix elements of second order :

a) the eqs . (22a)-(22b) represent 2 independent relations between the 6 geometric matrix elements

(XI xx),(XIxpx),(xiPxPx) , ( PxIxx),(PxIxpx),(PxI PxPx)
leaving 4 matrix elements to be determined independently ;

b) eq . (22c) represents 1 independent relation between the 6 chromatic x-matrix elements

(x1xAE), (x1Px4 E), (x1AE4 E), (PxI xAE), (PXI p.�äE), (P., IAEAE)

leaving 5 matrix elements to be determined independently ;
c) eq. (22n) represents 1 independent relation between the 4 chromatic y-matrix elements

(YIYAE), (Y I p,,4 E), (P,IYàE), (Py 1 p,,dE)

leaving 3 matrix elements to be determined independently ;
d) eqs . (22d)-(22m) represent 8 independent relations which describe all 8 geometric y-matrix elements

(note here that eq . (20b) holds)

(YIYX), (YIYPX), (Y I P,x), (Y I Pypx), (Py 1YX), (Py 1 YPx), (Py 1 Pyx), (PY I PY PX)
as functions of the 6 geometric x-matrix elements

(xl YY), (xiyp-"), (x1 PyPv ), (PXIYY), (PYIYPy), (PxI pp,)

so that none of these y-matrix elements must be determined independently .
e) eqs. (23a)-(23j) represent 7 independent relations which describe all 8 longitudinal matrix elements

(atIxx), (AtI xpx), (AtI PXPx), (AtI xAE), (AtI PxAE), (atI YY), (AtI YPy ), (AtI Pypy )

as functions of the x-matrix elements leaving (4t IdEAE) as the only longitudinal matrix element to be
determined independently .

7 . Relations between first, second and third order coefficients of eq. (2)

For d = 3 in eq . (9) we find either n = 1, m = 3 or ii = m = 2 or n = 3, m = 1 . In this case eq . (9)
transforms to eq. (11c) .

7.1 . The case jE (1,4)

The condition i <j again implies j = 4 and i E (1,2,3) . Thus the eqs . (16) yield D, = 0. For i = 3 or
k = 3 or 1= 3 we find only trivial relations . For i * 3, k * 3 and 1 * 3, however, we find from eqs . (14), (15)
in the case of r, = even, i .e ., for i = 1 and

r,, = even,

	

r, = even
Dl (r, ; rk rrr4)+2D,(r,rk ; rlr4 )+D, (r, rk r, ; r4 )=0,

	

(24a)
which yields 9 relations with k E {1,4,6) and IE (1,4,6) while we find for :

rk = even,

	

r,= odd :

	

only trivial relations,
rk = odd,

	

r,= even :

	

only trivial relations,
rk = odd,

	

r,= odd :
Djrj ; rkrlr4)+2D2(r,rk ; r,r4)+Dl(r,rkr, ; r4 )=0,

	

(24b)
which yields 4 relations with k E (2,5) and 1 E (2,5) .
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In the case of r, = odd, i.e . for i = 2 we find for

rk = even,

	

r,= even :

	

only trivial relations,
rk = even,

	

r, =odd

D2(r2 ; rkr,r4)+ 2Dz(r2rk ; rlr4)+D,(rzrkr, ; r4)=0,

	

(24c)

which yields 6 relations with k E ( 1,4,6) and 1E ( 2,5) while we find for

rk = even,

	

r, = even :

	

only trivial relations,
rk = odd,

	

r, =even :

DZ(rz ; rkr,r4)+ 2 D,(rzrk; r,r4)+Dl(rzrkr, ; r4 )=0,

	

(24d)

which yields 6 relations with k E {2,5) and 1 E {1,4,6) .

rk = odd,

	

r,=odd :

	

only trivial relations .

7.2. The case j E { 2,5 )

For i = 3, k = 3 or l = 3 we again find only trivial relations. For i * 3, k =* 3 and 1 * 3, however, we

which yields 4 relations with k E (2,5) and IE ( 2,5) .

7.3. The case j = 3

From eqs. (14)-(16) we infer also here that D, = DZ = D3 = 0 for arbitrary i <j resulting in only trivial
relations.

obtain from eqs. (14), (15) in the case of r, = even, i.e . for i E (1,4) and

rk = even, r, = even : only trivial relations,
rk = even, r, = odd
D,(r, ; rk rlr, )+2D,(rrk ; r,r, )+DZ (rrk r, ; r,)=0, (24e)

which yields 18 relations with k E ( 1,4,6) and 1E ( 2,5) while we find for
rk = odd, r, = even :
DI (rl ; rkr,r,)+2Dz (rrk ; r,r,)+DZ (rrk r, ; r)=0, (24f)

which yields 18 relations with k E ( 2,5) and l E ( 1,4,6) and for
rk = odd, r, = odd : only trivial relations.

In the case of r, = odd, i.e . i = 2 and j = 5 we furthermore find for
rk = even, r, = even
D2(rz ; rkrlr5)+ 2 Dz(rzrk ; rtr5)+D2(r2rkr, ; r5)=0, (24g)

which yields 9 relations with k E {1,4,6) and 1 E {1,4,6) while we find for

rk = even, r, = odd : only trivial relations,
rk = odd, r, = even : only trivial relations,
rk = odd, r, = odd:
DZ(rz ; rkrlr5)+2D,(rzrk ; rt r5)+D2 (rz rkr, ; r5)=0, (24h)



7.4 . The case j = 6

Eq.(17a)here implies D3(rrkr,; rb )=(r3 Irrk r,)and D3(r, ; rk r,rb)=D3(rrk ; r,rb)=0. For i=3 or k=3
or 1= 3 there are only trivial relations. For i 0 3 and k =* 3 and l * 3 on the other hand we find in the case
of r, = even ; i.e . for i E (1,4) and
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which yields 12 relations again with k E (2,5) and lE ( 1,4,6) .

rk = odd,

	

r, =odd : only trivial relations.

Analogously to sects 5.5 and 6 .5 the eqs. (24) could now also be written explicitly . Knowing all coefficients
of first and second order the eqs. (24) represent

a) 4 relations between the 8 geometric matrix elements

(r, IXXX), (r, I XxPX), (r, I XPxP.) , (r, I PxPxPx) ,

with r, E ( x, px ) ;
b) 7 relations between the 12 chromatic matrix elements

(r, I xxAE), (r, I xpxAE), (r, I PxpxAE), (r, I x4EAE), (r, I Px4EAE), (r, I DEQEAE),

with r, E (x,px ) ;
c) 3 relations between the 6 chromatic matrix elements

(r, I yxAE), (r, I YPx4E), (r, I YDE4E), (r, I pyx4E), (r, I Pypx AE ) , (r, I Py4EAE),

with r, E { y, p,, ) ;
d) 24 relations between the 24 geometric matrix elements

(r, I YXX), (r, I YXPxl , (r, I YPXPx), (r, I YYY), (r, I YYP ' )> (r, I YP ' P ' ),

(r, I p'XX), (r, I P'XPx), (r, I Py pxPx), (r, I Py YY), (r, I P,YP,), (r, I P,P,P,),

with r, E ( y, p,, ) ;

rk = even, r, = even

D,(r, ; rk r,rb )+2D,(rrk ; r,rb)+D,(rrkr, ; rb)= - (r3I rrkr,), (24i)

which yields 18 relations with k G {1,4,6} and 1E {1,4,6} while we find for

rk = even, r, = odd : only trivial relations,

rk = odd, r, = even : only trivial relations,

rk = odd, r, = odd :

Dl (r, ; rk r,rb )+ 2Dz (rrk ; r,rb)+Dl(rrkr, ; rb)= - (r3I rrkrt), (24J)

which yields 8 relations with k E (2,5) and 1 E (2,5) .
In the case of r, = odd, i.e . i E (2,5) we furthermore find for

rk = even, r, = even : only trivial relations,

rk = even, r, = odd :

D2 (r, ; rk r,rb )+2Dz (rrk ; r,rb)+D,(rrkr, ; rj= -(r3I rrkrt), (24k)

which yields 12 relations with k E (1,4,6) and 1E (2,5) while we find for

rk = odd, r, = even :

D2 (r, ; rk r,rb )+2D,(rrk ; r,rb )+D,(rrk r, ; r6) = -(r3I rrkr,), (241)
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e) 50 relations between the 32 longitudinal matrix elements (At

	

) leaving only (At I AEAEAE) to be
determined independently .

8. The transformation of coordinates

Even though the sets of canonically conjugate variables of eq. (1) are used advantageously to describe
the motion of charged particles, they have not been used traditionally but rather the set

with At = t - t o and AK= K- Ko . Here Ko is the energy of the reference particle, to is the time it takes
this reference particle to traverse the optical system and x' = dx/dt, y' = d y/dt are the slopes in the x-
and y-directions, respectively.

In some cases also a slightly different set [7] is used

with eqs . (lc) and (26) we obtain the transformation from this set of coordinates to the canonical
coordinates r, :

Here po stands for the momentum of the reference particle and Eo for its energy. Similarly one obtains the
inverse transformation q, = AQr . Assume now that the transformation between profile planes at zo and z 1 is
given both in symplectic coordinates and those of eqs . (26) :

The eqs . (29) allow to express the partial derivatives of Tr in terms of partials of A9r, Tq and A r9 .

k, = Trkro, (28a)

ka~
= Tvk9o, (28b)

Then we can infer from eqs . (28)

T, =A9r . T9 - Ar9, (29a)

T9 =Ar9 . T, -A9r . (29b)

r1 = A, (gl, . . .,q6)=q1, (27a)

r2 = Azr(gl, . . . .q6) = q2, (27b)

r3=A3~(gl, . . .,q6)=q3, (27c)

ra =Aâ
r
(g1 . . . . . q6) = g4PO, (27d)

r5 = A5 (gl, . . .,q6)=g5P0, (27e)

r6 =A6r(gl, . . . . q6) = g6E0' (27f)

q, =X, ga=a=(Plpo)x'l 1+x'2+y'2, (26a)

q2 = Y, q5 = b = ( Plpo )Y'l l + x'2 +y'2 , (26b)

q3 =At, q6=AE/E=SE , (26c)

g1 =X, qa '= x (25a)

92 = Y, 45 = Y" (25b)

R3 =4t, q6 =4K/Ko =k, (25c)



The nonvanishing partials of Aq' and Arq are easily found from eqs . (26) as

ar, _ ar2 = ar3 = 1

	

aq, = aqz = aq3 = 1,

	

(30a)
aq, aq2 aq3	ar, ar2 ar3

ar4 - ars	aq4-	__aqs- 1

	

(3ob)
aq4

	

aqs

	

PO'

	

ar4	ar s

	

Po '
ar6 =

E,0

	

aq6 = 1

	

(30c)aq6

	

3r6

	

Eo .

Consider now the partial derivatives

used in eq . (2) . Applying the chain rule twice we obtain

6

(r, l rk

	

_

	

ar,

	

-y
ar'l

	

laq

KI-

	

ark ) rko =0

	

K=1

	

agKl~

	

) q,

	

ark0

	

r~o_o

6 6
y- f ar,,

=i

	

)

	

( aq, )

K= i

	

agK1

	

qK,=o

	

agXO

	

qro=o

( a

a

q

rk

,,

o

o )

rtO=o

The fact that for K * i and X :# k the partial derivatives of Aqr and Arq vanish (see eqs . (28), (30)) simplifies
eq . (31) to

_

	

ar,

	

_
~

ar,,

	

) agko
(ri I rk) - ( ark / rAO =O -	aq,l

	

q,,=0(q, l qk

	

( arko

	

rko=0

In a very similar way one obtains the transformation rule for partial derivatives of second and third order :

z
(r,lrkrll -( aa aC

	

=(âr, l )

	

(q,1gkql)(aq
k0 )

	

(ag101

	

,
k0 l0 r,,o=rro=0

	

q,l =0

	

k0 rho =0 l0 r,o=0

l

	

a 3
r' 1( r

	

r r r, l

	

k l m)
__
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ark0arlOar.0 J r0- r/0-r,0-0A

-( ar,, )
(q, I qkqqm )

( agk0 )

	

~agl0)

	

( agm0 )
l

aq,l q,,=0

	

arko rko=0 arl0 r,o=0 arm0 rmo=0>

(31)

(32a)

(32b)

(32c)

as well as analogous expressions for higher order terms .
With eqs . (32) the relations due to symplecticity can be derived also in the noncanonical coordinates of

eq . (26) . For this purpose, one only must express all matrix elements (r, I r,), (r, I rkrl), (r, I rkrl rm ),

	

- - -

	

in
eqs . (20), (22) etc . in terms of the matrix elements in the noncanonical coordinates (q, I qk), (q, I gkql),
using eqs. (32) .

The same pattern as used for the coordinates defined in eqs . (26) can be used for any other set of
coordinates, especially those of eqs . (25) . However, since in most cases the transformations Aqr and Arq are
nonlinear, higher order partial derivatives remain in eqs . (30) . This usually leads to more complex relations
than those in eqs . (32) .

For discussions we thank A.J . Dragt, E. Forest and C . Iselin . For financial support we are grateful to the
Bundesminister fuer Forschung und Technologie .
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