RELATIONS BETWEEN ELEMENTS OF TRANSFER MATRICES DUE TO THE CONDITION OF SYMPLECTICITY

H. WOLLNIK and M. BERZ

II. Physıkalisches Institut der Universtät Giessen, D-6300 Giessen, Fed. Rep. Germany

Received 30 January 1985

Abstract

Relations are derived between elements of transfer matrices. These relations result from the fact that the motion of charged particles from one profile plane to another can be described as a canonical transformation. The derived four first order relations are already known. Similarly, the higher order relations are very useful to check results of numerical ion optical calculations.

1. Introduction

The motion of charged particles in space and time can be described relative to a reference particle in canonically conjugate variables ($r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$) describing a point in a six-dimensional space as function of an independent variable like, for instance, the time t. Assuming a curvilinear coordinate system, such sets of canonically conjugate variables are

$$
\begin{align*}
& \left\{r_{k}\right\}=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\left(x, y, \Delta z, p_{x}, p_{v}, \Delta p_{z}\right) \tag{1a}\\
& \left\{r_{k}\right\}=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\left(x, y,-\Delta s, p_{x}, p_{y}, \Delta p\right) \tag{1b}\\
& \left\{r_{k}\right\}=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\left(x, y,-\Delta t, p_{x}, p_{y}, \Delta E\right) \tag{1c}
\end{align*}
$$

with $k=1,2,3,4,5,6$. Here s describes the path coordinate, t the time and E the total particle energy while x, y, z describe the position and p_{x}, p_{y}, p_{z} the corresponding components of the particle momentum p. For eq. (1a) the independent variable advantageously is the time t or the path coordinate s, for eq. (1b) it is the time t or the coordinate z along the optic axis and for eq. (1c) it is the path coordinate s or the z coordinate along the optic axis.

Knowing the position $r_{k 0}$ at a time t_{0} or position z_{0} or s_{0}, respectively, the objective of ion optical calculations [1-3] is to calculate a set of coordinates $\left\{r_{k 1}\right\}$ describing the position of a particle in phase space at a time t_{1} or position z_{1} or s_{1}, respectively. The relation between these two sets of canonically conjugate variables can be expanded in a Taylor's series and written as

$$
\begin{equation*}
r_{t 1}=\sum_{j=1}^{6} r_{j 0}\left\{\left(r_{l} \mid r_{j}\right)+\frac{1}{2} \sum_{k=1}^{6} r_{k 0}\left\{\left(r_{l} \mid r_{j} r_{k}\right)+\frac{1}{3} \sum_{l=1}^{6} r_{l 0}\left\{\left(r_{l} \mid r_{j} r_{k} r_{l}\right)+\cdots\right\}\right\}\right\}, \tag{2}
\end{equation*}
$$

with $r_{r}, r_{j}, r_{k}, r_{1} \cdots$ as defined in eqs. (1). The coefficients

$$
\left(r_{i} \mid r_{j}\right)=\left(\frac{\partial r_{i 1}}{\partial r_{j 0}}\right)_{r_{, 0}=0}
$$

determine the first order properties of the optical system connecting $r_{i 1}$ and $r_{j 0}$ while the coefficients

$$
\left(r_{t} \mid r_{j} r_{k}\right)=\left(\frac{\partial^{2} r_{t 1}}{\partial r_{j \partial} \partial r_{k 0}}\right)_{r_{, 0}=r_{t 0}=0}, \quad\left(r_{t} \mid r_{l} r_{k} r_{l}\right)=\left(\frac{\partial^{3} r_{j 1}}{\partial r_{j 0} \partial r_{k 0} \partial r_{l 0}}\right)_{r_{, 0}=r_{k 0}=r_{10}=0},
$$

etc. describe the higher order aberrations. Note that $\left(r_{1} \mid r_{r} r_{k}\right)$ is identical to $\left(r_{1} \mid r_{k} r_{j}\right)$ so that for $j \neq k$ the term $\left(r_{l} \mid r_{j} r_{k}\right)$ describes half of the total aberration coefficient proportional to $r_{j 0} r_{k 0}$.

2. The condition of symplecticity

Knowing eq. (2) one can compute the $6 * 6$ Jacobi matrix A with 36 elements:

$$
\begin{equation*}
w_{1 j}=\left(\frac{\partial r_{11}}{\partial r_{j 0}}\right) . \tag{3}
\end{equation*}
$$

Here i denotes the row number and j the column number of a specific matrix element where i and j both take values from 1 to 6 . Note here that differently than for eq. (2) the partial derivatives of eq. (3) are taken not only at $r_{j 0}=0$.

For the case that both r_{i} and r_{j} represent a set of canonically conjugate variables, it has been shown, for instance in ref. [4], that the above Jacobi matrix A fulfills the so-called symplectic condition

$$
\begin{equation*}
\mathbf{A}^{\mathrm{T}} \mathbf{J} \mathbf{A}=\mathbf{J}, \tag{4}
\end{equation*}
$$

where \mathbf{A}^{T} is the transpose of \mathbf{A} and where

$$
\mathbf{J}=\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0
\end{array}\right]
$$

Denoting the elements of the matrix ($\left.\mathbf{A}^{\top} \mathrm{J} \mathbf{A}\right)$ by v_{t}, this condition can also be written as

$$
\begin{equation*}
v_{1 j}=0, \quad \text { except for } \quad v_{14}=v_{25}=v_{36}=1, \tag{5a}
\end{equation*}
$$

with $i<j$ because of

$$
\begin{equation*}
v_{t \jmath}=-v_{\mu \mu} \tag{5b}
\end{equation*}
$$

Carrying out the matrix multiplication ($A^{\top} J A$) as required by eq. (4) one finds

$$
\begin{equation*}
v_{t \jmath}=w_{12} w_{4 J}-w_{4 \imath} w_{1 J}+w_{2 \imath} w_{5 J}-w_{5,} w_{2 J}+w_{3 \imath} w_{6 J}-w_{6 \iota} w_{3 J} \tag{6}
\end{equation*}
$$

which also shows that $v_{i j}$ equals $-v_{j l}$. Thus we can restrict ourselves to the case $i<j$ and require only eq. (5a) to be fulfilled.

In order to simplify further calculations, we can rewrite eq. (6) as:

$$
\begin{equation*}
v_{t J}=\sum_{\mu=1}^{3}\left(w_{\mu, t} w_{\mu+3, J}-w_{\mu+3,2} w_{\mu, \jmath}\right) \tag{7}
\end{equation*}
$$

The w_{t} of eqs. (3), (6) now can be obtained by differentiating in eq. (2) the Taylor's series of partial derivatives with respect to $r_{j 0}$:

$$
\begin{equation*}
w_{t J}=\left(r_{l} \mid r_{J}\right)+\sum_{k=1}^{6} r_{k 0}\left\{\left(r_{l} \mid r_{j} r_{k}\right)+\frac{1}{2} \sum_{l=1}^{6} r_{l 0}\left\{\left(r_{l} \mid r_{j} r_{k} r_{l}\right)+\cdots\right\}\right\} . \tag{8}
\end{equation*}
$$

Introducing these $w_{i j}$ into eq. (7) one finds after a straightforward substitution

$$
\begin{equation*}
v_{i j}=\sum_{\mu=1}^{3}\left\{F_{1, \mu}+\sum_{k=1}^{6} r_{k 0}\left\{F_{2, \mu}+\sum_{t=1}^{6} r_{l 0}\left\{F_{3, \mu}+\sum_{m=1}^{6} r_{m 0}\left\{F_{4, \mu}+\cdots\right\}\right\}\right\}\right\} \tag{9}
\end{equation*}
$$

where the $F_{\zeta, \mu}$ are given as:

$$
\begin{align*}
& F_{\zeta, \mu}= \frac{1}{(\zeta-1)}\left[\binom{\zeta-1}{0} D_{\mu}\left(r_{i} ; r_{k} r_{l} r_{m} \cdots r_{j}\right)\right. \\
&\left.+\binom{\zeta-1}{1} D_{\mu}\left(r_{i} r_{k} ; r_{l} r_{m} \cdots r_{j}\right)+\cdots+\binom{\zeta-1}{\zeta-1} D_{\mu}\left(r_{i} r_{k} r_{l} r_{m} \cdots ; r_{j}\right)\right], \\
& D_{\mu}\left(M_{m} ; M_{n}\right)=\left(r_{\mu} \mid M_{m}\right)\left(r_{\mu+3} \mid M_{n}\right)-\left(r_{\mu+3} \mid M_{m}\right)\left(r_{\mu} \mid M_{n}\right), \tag{10}
\end{align*}
$$

with $1 \leq i<j \leq 6$ and $k, l, m, n, \cdots \in\{1, \ldots, 6\}$ and M_{m} and M_{n} being monomials of the phase space coordinates $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$:

$$
\begin{aligned}
& M_{m}=\prod_{\zeta=1}^{6} r_{\xi}^{m_{5}}=r_{1}^{m_{1}} r_{2}^{m_{2}} r_{3}^{m_{3}} r_{4}^{m_{4}} r_{5}^{m_{5}} r_{6}^{m_{6}} \\
& M_{n}=\prod_{\zeta=1}^{6} r_{\zeta}^{n_{\xi}}=r_{1}^{n_{1} r_{2}^{n_{2}} r_{3}^{n_{3}} r_{4}^{n_{4}} r_{5}^{n_{5}} r_{6}^{n_{6}}},
\end{aligned}
$$

where n_{ζ} as well as m_{ζ} are nonnegative integers $0,1,2,3,4, \ldots$ Note here that

$$
\begin{aligned}
& \bar{n}=n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6} \leq \zeta \\
& \bar{m}=m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6} \leq \zeta
\end{aligned}
$$

and that very generally

$$
D_{\mu}\left(M_{m} ; M_{n}\right)=-D_{\mu}\left(M_{n} ; M_{m}\right) .
$$

Because of $v_{i j}=-v_{j t}$ and $1 \leq i<j \leq 6$, eq. (5a) represents 15 relations. Comparing the coefficients for all powers of $r_{k 0}, r_{10}, r_{m 0}, \ldots$ on both sides of eq. (9) one finds:

$$
\begin{align*}
& \sum_{\mu=1}^{3} F_{1, \mu}=\sum_{\mu=1}^{3} D_{\mu}\left(r_{i} ; r_{j}\right)=\delta_{i, j}, \tag{11a}\\
& \sum_{\mu=1}^{3} F_{2, \mu}=\sum_{\mu=1}^{3} D_{\mu}\left(r_{i} ; r_{k} r_{j}\right)+D_{\mu}\left(r_{i} r_{k} ; r_{j}\right)=0, \tag{11b}\\
& \sum_{\mu=1}^{3} F_{3, \mu}=\sum_{\mu=1}^{3} D_{\mu}\left(r_{i} ; r_{k} r_{l} r_{j}\right)+2 D_{\mu}\left(r_{i} r_{k} ; r_{l} r_{j}\right)+D_{\mu}\left(r_{i} r_{k} r_{i} ; r_{j}\right)=0 \tag{11c}\\
& \sum_{\mu=1}^{3} F_{4, \mu}=\cdots=0, \tag{11d}
\end{align*}
$$

etc. with $\delta_{t, j}=1$ for $(i, j)=(1,4),(2,5),(3,6)$ and $\delta_{t, j}=0$ for all other cases. Thus
a) eq. (11a) represents 15 relations between the 1 st order coefficients of eq. (2),
b) eq. (11b) represents $6 * 15$ relations between the 1 st and 2 nd order coefficients,
c) eq. (11c) represents $21 * 15$ relations between the 1 st , 2 nd and 3 rd order coefficients,
d) eq. (11d) represents $56 * 15$ relations between the 1 st, 2 nd, 3 rd and 4 th order coefficients, etc.

3. General consequences of the choice of the set of coordinates of eq. (1c)

For ion optical problems we like to choose the set of canonically conjugate variables of eq. (1c) with the independent variable being z, i.e., the coordinate along the optic axis, so that

$$
\begin{array}{ll}
r_{1}=x, & r_{4}=p_{x} \\
r_{2}=y, & r_{5}=p_{y} \\
r_{3}=\Delta t, & r_{6}=\Delta E \tag{12c}
\end{array}
$$

Here, as in any set of coordinates, some coefficients of eq. (2) always vanish so that finally the exuberantly large number of relations due to eqs. (11) is reduced considerably.

3.1. Time invariant fields

Since $x_{1}, y_{1}, p_{x 1}, p_{y 1}, \Delta E_{1}$ all do not depend on time explicitly, all partial derivatives of these coordinates vanish. This causes all coefficients of eq. (2) to vanish which contain a $r_{3}^{n_{3}}$ with $n_{3} \neq 0$ in the right hand side of the bracket, i.e.:

$$
\begin{equation*}
\left(r_{1} \mid \cdots r_{3}^{n_{3}} \cdots\right)=0 \tag{13a}
\end{equation*}
$$

or $\left(r_{1} \mid M_{n}\left[n_{3} \neq 0\right]\right)=0 \operatorname{except}\left(r_{3} \mid r_{3}\right)=1$.

3.2. Energy constancy

For most optical systems the particle energy stays unchanged or varies by the same factor for all particles of a beam. This causes all coefficients of eq. (2) to vanish which contain a " $\Delta E=r_{6}$ " in the left side of the bracket, i.e.:

$$
\begin{equation*}
\left(r_{6} \mid \cdots\right)=0, \tag{13b}
\end{equation*}
$$

or $\left(r_{6} \mid M_{n}\right)=0$ except $\left(r_{6} \mid r_{6}\right)=\eta$, with $\eta=1$ in the event that no accelerations had occurred at all.

3.3. Midplane symmetry

For most ion optical systems one postulates a plane of symmetry which in case of a sector magnet would be the midplane ($y=0$) in the magnet air gap. In this case all electromagnetic forces must be symmetric with respect to the plane $y=0$. Thus one finds for $m_{2}+m_{5}=$ odd

$$
\left(r_{1} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=\left(r_{3} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=\left(r_{4} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=\left(r_{6} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=0,(13 \mathrm{c})
$$

and for $m_{2}+m_{5}=$ even

$$
\begin{equation*}
\left(r_{2} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=\left(r_{5} \mid \cdots r_{2}^{m_{2}} r_{5}^{m_{5}} \cdots\right)=0 \tag{13d}
\end{equation*}
$$

The eqs. (13) can also be written as

$$
\left(r_{1} \mid M_{n}^{\text {odd }}\right)=\left(r_{3} \mid M_{n}^{\text {odd }}\right)=\left(r_{4} \mid M_{n}^{\text {odd }}\right)=\left(r_{6} \mid M_{n}^{\text {odd }}\right)=0,
$$

and

$$
\left(r_{2} \mid M_{n}^{\text {even }}\right)=\left(r_{5} \mid M_{n}^{\text {even }}\right)=0
$$

Here $M_{n}^{\text {odd }}$ stands for a M_{n} with $n_{2}+n_{5}=$ odd and $M_{n}^{\text {even }}$ stands for a M_{n} with $n_{2}+n_{5}=$ even.

4. Consequences of eqs. (13) for the D_{μ} of eqs. (10)

To get a better overview over the different cases let us discuss the total disappearance of D_{1}, D_{2} and D_{3} separately, i.e. the cases in which both terms of each D_{μ} vanish simultaneously.

4.1. The total disappearance of D_{I}

From eqs. (13c), (13a) one finds $D_{1}\left(M_{m} ; M_{n}\right)=0$ for

$$
\begin{equation*}
M_{m}=M_{m}^{\text {odd }} \quad \text { or } \quad M_{n}=M_{n}^{\text {odd }} \tag{14a}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{3} \neq 0 \quad \text { or } \quad n_{3} \neq 0 . \tag{14b}
\end{equation*}
$$

Note here that the cases of eqs. (14) are the only ones in which D_{1} vanishes for arbitrary optical systems.
4.2. The total disappearance of D_{2}

From eqs. (13a), (13c), (13d) one finds $D_{2}\left(M_{m} ; M_{n}\right)=0$ for

$$
\begin{equation*}
M_{m}=M_{m}^{\text {even }} \quad \text { or } \quad M_{n}=M_{n}^{\text {even }}, \tag{15a}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{3} \neq 0 \quad \text { or } \quad n_{3} \neq 0 . \tag{15b}
\end{equation*}
$$

Note here also that the cases of eqs. (15) are the only ones in which D_{2} vanishes for arbitrary optical systems.

4.3. The total disappearance of D_{3}

From eq. (13b) one finds $D_{3}\left(M_{m} ; M_{n}\right)=0$, except for

$$
\begin{equation*}
M_{m}=r_{6} \quad \text { or } \quad M_{n}=r_{6}, \tag{16}
\end{equation*}
$$

which is the same (see the definition of M_{m} and M_{n} under eq. (10)) as stating

$$
m_{1}=m_{2}=m_{3}=m_{4}=m_{5}=0 \quad \text { and } \quad m_{6}=1,
$$

or

$$
n_{1}=n_{2}=n_{3}=n_{4}=n_{5}=0 \quad \text { and } \quad n_{6}=1 .
$$

In case one of the conditions of eq. (16) is fulfilled one finds for all nonvanishing D_{3} :

$$
\begin{align*}
& D_{3}\left(M_{m} ; r_{6}\right)=\left(r 3 \mid M_{m}\right), \tag{17a}\\
& D_{3}\left(r_{6} ; M_{n}\right)=-\left(r_{3} \mid M_{n}\right) . \tag{17b}
\end{align*}
$$

According to eq. (13c), however, even the D_{3} of eqs. (17) vanish if

$$
\begin{equation*}
M_{m}=M_{m}^{\text {odd }} \quad \text { or } \quad M_{n}=M_{n}^{\text {odd }} \tag{18}
\end{equation*}
$$

The restrictions imposed on the D_{1}, D_{2} and D_{3} by eqs. (14)-(18) shall now be used to simplify the relations of eqs. (11).

5. Relations between the first order coefficients of eq. (2)

For $\zeta=1$ in eq. (9) we find $\bar{n}=\bar{m}=1$, i.e. five m_{l} and n_{1} vanish while one m_{l} and one n_{1} equal 1 . In this case eq. (9) transforms to eq. (11a).

5.1. The case $j \in\{1,4\}$

The condition $i<j$ here implies $j=4$ and hence $i \in\{1,2,3\}$. Thus the eqs. (15), (16) yield $D_{2}=D_{3}=0$ and we find with eqs. (14) only one nontrivial relation:

$$
\begin{equation*}
D_{1}\left(r_{1} ; r_{4}\right)=\delta_{1.4}=1 . \tag{19a}
\end{equation*}
$$

5.2. The case $j \in\{2,5\}$

The condition $i<j$ here implies $j=2, i=1$ or $j=5, i \in\{1,2,3,4\}$. Thus the eqs. (14), (16) yield $D_{1}=D_{3}=0$ and we find with eqs. (15) only one nontrivial relation:

$$
\begin{equation*}
D_{2}\left(r_{2} ; r_{5}\right)=\delta_{2,5}=1 . \tag{19b}
\end{equation*}
$$

5.3. The case $j=3$

From eqs. (14)-(16) we infer that $D_{1}=D_{2}=D_{3}=0$ for arbitrary $i<j$ resulting in only trivial relations.

5.4. The case $j=6$

Since in this case r_{j} is even, the eqs. (15) yield $D_{2}=0$. Furthermore, eq. (17a) implies $D_{3}\left(r_{i} ; r_{6}\right)=\left(r_{3} \mid r_{1}\right)$. For $i=3$ we thus find the identity $\left(r_{3} \mid r_{3}\right)=1$ and for $i \neq 3$ with eqs. (14):

$$
\begin{equation*}
D_{1}\left(r_{i} ; r_{6}\right)+\left(r_{3} \mid r_{t}\right)=0 \tag{19c}
\end{equation*}
$$

which yields two relations with $i \in\{1,4\}$.

5.5. The resulting relations between coefficients of first order

Using the expressions of eqs. (12) as abbreviations, the eqs. (19a), (19b) read explicitly

$$
\begin{align*}
& (x \mid x)\left(p_{x} \mid p_{x}\right)-\left(p_{x} \mid x\right)\left(x \mid p_{x}\right)=1 \tag{20a}\\
& (y \mid y)\left(p_{y} \mid p_{y}\right)-\left(y \mid p_{y}\right)\left(y \mid p_{y}\right)=1 \tag{20b}
\end{align*}
$$

which are the well known results of Liouville's theorem, stating that the determinants of the first order transfer matrices for the x - and y-directions both equal one [5]. The eq. (19c) reads explicitly

$$
\begin{align*}
& (x \mid x)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid x\right)(x \mid \Delta E)=(\Delta t \mid x) \tag{20c}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{x}\right)(x \mid \Delta E)=\left(\Delta t \mid p_{x}\right) \tag{20d}
\end{align*}
$$

relations which are well known from ref. [6]. The eqs. (20c), (20d) determine longitudinal deviations $(\Delta t \mid \cdots)$ as functions of lateral deviations. Note here that there are three longitudinal first order terms [$\left.(\Delta t \mid x),\left(\Delta t \mid p_{x}\right),(\Delta t \mid \Delta E)\right]$, only one of which must be determined truly independently.

6. Relations between first and second order coefficients of eq. (2)

For $\zeta=2$ in eq. (9) we find either $\bar{n}=1, \bar{m}=2$ or $\bar{n}=2, \bar{m}=1$. In this case eq. (9) transforms to eq. (11b).

6.1. The case $j \in\{1,4\}$

The condition $i<j$ implies $j=4$ and $i \in\{1,2,3\}$. Thus the eqs. (16) yield $D_{3}=0$. For $i=3$ or $k=3$ we find only trivial relations. For $i \neq 3$ and $k \neq 3$, however, we find from eqs. (14), (15) in the case of $r_{t}=$ even, i.e. for $i=1$ and

$$
\begin{equation*}
r_{k}=\text { even }: \quad D_{1}\left(r_{1} ; r_{k} r_{4}\right)+D_{1}\left(r_{1} r_{k} ; r_{4}\right)=0 \tag{21a}
\end{equation*}
$$

which yields three relations with $k \in\{1,4,6\}$ while we find for

$$
r_{k}=\text { odd }: \quad \text { only trivial relations. }
$$

In the case of $r_{t}=$ odd, i.e. for $i=2$ we find for

$$
\begin{array}{ll}
r_{k}=\text { even: } & \text { only trivial relations }, \\
r_{k}=\text { odd: } & D_{1}\left(r_{2} r_{k} ; r_{4}\right)+D_{2}\left(r_{2} ; r_{k} r_{4}\right)=0, \tag{21b}
\end{array}
$$

which yields two relations with $k \in\{2,5\}$.

6.2. The case $j \in\{2,5\}$

The condition $i<j$ implies $j=2, i=1$ or $j=5, i \in\{1,2,3,4\}$. Thus the eqs. (16) yield $D_{3}=0$. For $i=3$ or $k=3$ we find only trivial relations. For $i \neq 3$ and $k \neq 3$, however, we find from eqs. (14), (15) in the case of $r_{t}=$ even, i.e. $i \in\{1,4\}$ and

$$
\begin{array}{ll}
r_{k}=\text { even }: & \text { only trivial relations, } \\
r_{k}=\text { odd: } & D_{1}\left(r_{t} ; r_{k} r_{J}\right)+D_{2}\left(r_{t} r_{k} ; r_{J}\right)=0, \tag{21c}
\end{array}
$$

which yields six relations with $k \in\{2,5\}$. In the case of $r_{1}=$ odd, i.e. for $i=2$, we find furthermore for

$$
\begin{equation*}
r_{k}=\text { even }: \quad D_{2}\left(r_{2} ; r_{k} r_{5}\right)+D_{2}\left(r_{2} r_{k} ; r_{5}\right)=0, \tag{21d}
\end{equation*}
$$

which yields three relations with $k \in\{1,4,6\}$ while we find for

$$
r_{k}=\text { odd }: \quad \text { only trivial relations }
$$

6.3. The case $j=5$

From eqs. (14)-(16) we infer also here that $D_{1}=D_{2}=D_{3}=0$ for arbitrary $i<j$ resulting in only trivial relations.

6.4. The case $j=6$

Eq. (17a) here implies $D_{3}\left(r_{1} r_{k} ; r_{j}\right)=\left(r_{3} \mid r_{t} r_{k}\right)$ and $D_{3}\left(r_{t} ; r_{k} r_{j}\right)=0$. For $\iota=3$ or $k=3$ we find only trivial relations. For $i \neq 3$ and $k \neq 3$, however, we find from eqs. (14), (15), (17) in the case of $r_{t}=$ even, i.e. for $i \in\{1,4\}$ and

$$
\begin{equation*}
r_{k}=\text { even : } \quad D_{1}\left(r_{i} ; r_{k} r_{6}\right)+D_{1}\left(r_{1} r_{k} ; r_{6}\right)=-\left(r_{3} \mid r_{t} r_{k}\right), \tag{21e}
\end{equation*}
$$

which yields six relations with $k \in\{1,4,6\}$ while we find for
$r_{k}=$ odd: only trivial relations.
In the case of $r_{t}=$ odd, i.e. for $i \in\{2,5\}$ we find furthermore for

$$
\begin{array}{ll}
r_{k}=\text { even: } & \text { only trivial relations } \\
r_{k}=\text { odd: } & D_{2}\left(r_{i} ; r_{k} r_{6}\right)+D_{1}\left(r_{t} r_{k} ; r_{6}\right)=-\left(r_{3} \mid r_{i} r_{k}\right), \tag{21f}
\end{array}
$$

which yields four relations with $k \in\{2,5\}$.

6.5 The resulting equations

Using again the abbreviations of eqs. (12) the independent relations of Eqs. (21a)-(21d) read explicitly

$$
\begin{align*}
& (x \mid x)\left(p_{x} \mid x p_{x}\right)-\left(p_{x} \mid x\right)\left(x \mid x p_{x}\right)+(x \mid x x)\left(p_{x} \mid p_{x}\right)-\left(p_{x} \mid x x\right)\left(x \mid p_{x}\right)=0, \tag{22a}\\
& (x \mid x)\left(p_{x} \mid p_{x} p_{x}\right)-\left(p_{x} \mid x\right)\left(x \mid p_{x} p_{x}\right)+\left(x \mid x p_{x}\right)\left(p_{x} \mid p_{x}\right)-\left(p_{x} \mid x p_{x}\right)\left(x \mid p_{x}\right)=0, \tag{22b}
\end{align*}
$$

$$
\begin{align*}
& (x \mid x)\left(p_{x} \mid \Delta E p_{x}\right)-\left(p_{x} \mid x\right)\left(x \mid \Delta E p_{x}\right)+(x \mid x \Delta E)\left(p_{x} \mid p_{x}\right)-\left(p_{x} \mid x \Delta E\right)\left(x \mid p_{x}\right)=0, \tag{22c}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid y y\right)-\left(p_{x} \mid p_{x}\right)(x \mid y y)+\left(y \mid p_{x} y\right)\left(p_{v} \mid y\right)-\left(p_{v} \mid p_{x} y\right)(y \mid y)=0, \tag{22d}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid p_{y} y\right)-\left(p_{x} \mid p_{x}\right)\left(x \mid p_{y} y\right)+\left(y \mid p_{x} p_{y}\right)\left(p_{y} \mid y\right)-\left(p_{y} \mid p_{x} p_{y}\right)(y \mid y)=0, \tag{22e}\\
& (x \mid x)\left(p_{x} \mid y y\right)-\left(p_{x} \mid x\right)(x \mid y y)+(y \mid x y)\left(p_{y} \mid y\right)-\left(p_{y} \mid x y\right)(y \mid y)=0, \tag{22f}\\
& (x \mid x)\left(p_{x} \mid p_{y} y\right)-\left(p_{x} \mid x\right)\left(x \mid p_{y} y\right)+\left(y \mid x p_{y}\right)\left(p_{y} \mid y\right)-\left(p_{y} \mid x p_{y}\right)(y \mid y)=0, \tag{22~g}\\
& (x \mid x)\left(p_{x} \mid y p_{y}\right)-\left(p_{x} \mid x\right)\left(x \mid y p_{y}\right)+(y \mid x y)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid x y\right)\left(y \mid p_{y}\right)=0, \tag{22h}\\
& (x \mid x)\left(p_{x} \mid p_{y} p_{y}\right)-\left(p_{x} \mid x\right)\left(x \mid p_{y} p_{y}\right)+\left(y \mid x p_{y}\right)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid x p_{y}\right)\left(y \mid p_{v}\right)=0, \tag{22i}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid y p_{y}\right)-\left(p_{x} \mid p_{x}\right)\left(x \mid y p_{y}\right)+\left(y \mid p_{x} y\right)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid p_{x} y\right)\left(y \mid p_{y}\right)=0, \tag{22j}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid p_{y} p_{y}\right)-\left(p_{x} \mid p_{x}\right)\left(x \mid p_{y} p_{y}\right)+\left(y \mid p_{x} p_{y}\right)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid p_{x} p_{y}\right)\left(y \mid p_{y}\right)=0, \tag{22k}\\
& (y \mid y)\left(p_{y} \mid x p_{y}\right)-\left(p_{y} \mid y\right)\left(y \mid x p_{y}\right)+(y \mid y x)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid y x\right)\left(y \mid p_{y}\right)=0, \tag{221}\\
& (y \mid y)\left(p_{y} \mid p_{x} p_{y}\right)-\left(p_{y} \mid y\right)\left(y \mid p_{x} p_{y}\right)+\left(y \mid y p_{x}\right)\left(p_{y} \mid p_{y}\right)-\left(p_{y} \mid y p_{x}\right)\left(y \mid p_{y}\right)=0, \tag{22m}\\
& (y \mid y)\left(p_{y} \mid \Delta E p_{y}\right)-\left(p_{y} \mid y\right)\left(y \mid \Delta E p_{y}\right)+(y \mid y \Delta E)\left(p_{y} \mid p_{y}\right)-\left(p_{v} \mid y \Delta E\right)\left(y \mid p_{y}\right)=0, \tag{22n}
\end{align*}
$$

where eqs. (221), (22 m) carry no new information and are mere combinations of eqs. (22g), (22 h) and eqs. (22e), (22j), respectively. Explicitly the relations of eqs. (21e)-(21f) read

$$
\begin{align*}
& (x \mid x)\left(p_{x} \mid x \Delta E\right)-\left(p_{x} \mid x\right)(x \mid x \Delta E)+(x \mid x x)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid x x\right)(x \mid \Delta E) \\
& \quad=(\Delta t \mid x x) \tag{23a}\\
& (x \mid x)\left(p_{x} \mid p_{x} \Delta E\right)-\left(p_{x} \mid x\right)\left(x \mid p_{x} \Delta E\right)+\left(x \mid x p_{x}\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid x p_{x}\right)(x \mid \Delta E) \\
& \quad=\left(\Delta t \mid x p_{x}\right) \tag{23b}\\
& (x \mid x)\left(p_{x} \mid \Delta E \Delta E\right)-\left(p_{x} \mid x\right)(x \mid \Delta E \Delta E)+(x \mid x \Delta E)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid x \Delta E\right)(x \mid \Delta E) \\
& \quad=(\Delta t \mid x \Delta E) \tag{23c}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid x \Delta E\right)-\left(p_{x} \mid p_{x}\right)(x \mid x \Delta E)+\left(x \mid p_{x} x\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{x} x\right)(x \mid \Delta E) \\
& \quad=\left(\Delta t \mid p_{x} x\right) \tag{23d}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid p_{x} \Delta E\right)-\left(p_{x} \mid p_{x}\right)\left(x \mid p_{x} \Delta E\right)+\left(x \mid p_{x} p_{x}\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{x} p_{x}\right)(x \mid \Delta E) \\
& \quad=\left(\Delta t \mid p_{x} p_{x}\right) \tag{23e}\\
& \left(x \mid p_{x}\right)\left(p_{x} \mid \Delta E \Delta E\right)-\left(p_{x} \mid p_{x}\right)(x \mid \Delta E \Delta E)+\left(x \mid p_{x} \Delta E\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{x} \Delta E\right)(x \mid \Delta E) \\
& \quad=\left(\Delta t \mid p_{x} \Delta E\right)
\end{align*}
$$

$(y \mid y)\left(p_{y} \mid y \Delta E\right)-\left(p_{y} \mid y\right)(y \mid y \Delta E)+(x \mid y y)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid y y\right)(x \mid \Delta E)$

$$
\begin{equation*}
=(\Delta t \mid y y) \tag{23~g}
\end{equation*}
$$

$(y \mid y)\left(p_{y} \mid p_{y} \Delta E\right)-\left(p_{y} \mid y\right)\left(y \mid p_{y} \Delta E\right)+\left(x \mid y p_{y}\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid y p_{y}\right)(x \mid \Delta E)$

$$
\begin{equation*}
=\left(\Delta t \mid y p_{y}\right) \tag{23h}
\end{equation*}
$$

$$
\begin{align*}
& \left(y \mid p_{y}\right)\left(p_{y} \mid y \Delta E\right)-\left(p_{y} \mid p_{y}\right)(y \mid y \Delta E)+\left(x \mid p_{y} y\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{y} y\right)(x \mid \Delta E) \\
& \quad=\left(\Delta t \mid p_{y} y\right) \tag{23i}
\end{align*}
$$

$\left(y \mid p_{y}\right)\left(p_{y} \mid p_{y} \Delta E\right)-\left(p_{y} \mid p_{y}\right)\left(y \mid p_{y} \Delta E\right)+\left(x \mid p_{y} p_{y}\right)\left(p_{x} \mid \Delta E\right)-\left(p_{x} \mid p_{y} p_{y}\right)(x \mid \Delta E)$

$$
\begin{equation*}
=\left(\Delta t \mid p_{y} p_{y}\right) \tag{23j}
\end{equation*}
$$

where the eqs. (23d), (23i) carry no new information and are mere combinations of eqs. (23b), (22c) and eqs. (23 h), (22 n), respectively.

Knowing all first order matrix elements the eqs. (22), (23) describe the following relations between the matrix elements of second order:
a) the eqs. (22a)-(22b) represent 2 independent relations between the 6 geometric matrix elements

$$
(x \mid x x),\left(x \mid x p_{x}\right),\left(x \mid p_{x} p_{x}\right),\left(p_{x} \mid x x\right),\left(p_{x} \mid x p_{x}\right),\left(p_{x} \mid p_{x} p_{x}\right)
$$

leaving 4 matrix elements to be determined independently;
b) eq. (22c) represents 1 independent relation between the 6 chromatic x-matrix elements

$$
(x \mid x \Delta E),\left(x \mid p_{x} \Delta E\right),(x \mid \Delta E \Delta E),\left(p_{x} \mid x \Delta E\right),\left(p_{x} \mid p_{x} \Delta E\right),\left(p_{x} \mid \Delta E \Delta E\right)
$$

leaving 5 matrix elements to be determined independently;
c) eq. (22 n) represents 1 independent relation between the 4 chromatic y-matrix elements

$$
(y \mid y \Delta E),\left(y \mid p_{v} \Delta E\right),\left(p_{v} \mid y \Delta E\right),\left(p_{y} \mid p_{v} \Delta E\right)
$$

leaving 3 matrix elements to be determined independently;
d) eqs. $(22 \mathrm{~d})-(22 \mathrm{~m})$ represent 8 independent relations which describe all 8 geometric y-matrix elements (note here that eq. (20b) holds)

$$
(y \mid y x),\left(y \mid y p_{x}\right),\left(y \mid p_{v} x\right),\left(y \mid p_{y} p_{x}\right),\left(p_{y} \mid y x\right),\left(p_{y} \mid y p_{x}\right),\left(p_{y} \mid p_{y} x\right),\left(p_{y} \mid p_{y} p_{x}\right)
$$

as functions of the 6 geometric x -matrix elements

$$
(x \mid y y),\left(x \mid y p_{y}\right),\left(x \mid p_{y} p_{y}\right),\left(p_{x} \mid y y\right),\left(p_{x} \mid y p_{y}\right),\left(p_{x} \mid p_{y} p_{y}\right)
$$

so that none of these y-matrix elements must be determined independently.
e) eqs. (23a)-(23j) represent 7 independent relations which describe all 8 longitudinal matrix elements

$$
(\Delta t \mid x x),\left(\Delta t \mid x p_{x}\right),\left(\Delta t \mid p_{x} p_{x}\right),(\Delta t \mid x \Delta E),\left(\Delta t \mid p_{x} \Delta E\right),(\Delta t \mid y y),\left(\Delta t \mid y p_{y}\right),\left(\Delta t \mid p_{y} p_{y}\right)
$$

as functions of the x-matrix elements leaving $(\Delta t \mid \Delta E \Delta E)$ as the only longitudinal matrix element to be determined independently.

7. Relations between first, second and third order coefficients of eq. (2)

For $\zeta=3$ in eq. (9) we find either $\bar{n}=1, \bar{m}=3$ or $\bar{n}=\bar{m}=2$ or $\bar{n}=3, \bar{m}=1$. In this case eq. (9) transforms to eq. (11c).

7.1. The case $j \in\{1,4\}$

The condition $i<j$ again implies $j=4$ and $i \in\{1,2,3\}$. Thus the eqs. (16) yield $D_{3}=0$. For $i=3$ or $k=3$ or $l=3$ we find only trivial relations. For $i \neq 3, k \neq 3$ and $l \neq 3$, however, we find from eqs. (14), (15) in the case of $r_{1}=$ even, i.e., for $i=1$ and

$$
\begin{align*}
& r_{k}=\text { even }, \quad r_{l}=\text { even: } \\
& D_{1}\left(r_{1} ; r_{k} r_{l} r_{4}\right)+2 D_{1}\left(r_{1} r_{k} ; r_{l} r_{4}\right)+D_{1}\left(r_{1} r_{k} r_{l} ; r_{4}\right)=0, \tag{24a}
\end{align*}
$$

which yields 9 relations with $k \in\{1,4,6\}$ and $l \in\{1,4,6\}$ while we find for:

$$
\begin{array}{lll}
r_{k}=\text { even }, & r_{l}=\text { odd: } & \text { only trivial relations, } \\
r_{k}=\text { odd }, & r_{l}=\text { even: } & \text { only trivial relations }, \\
r_{k}=\text { odd }, & r_{l}=\text { odd: } & \\
D_{1}\left(r_{1} ; r_{k} r_{l} r_{4}\right)+2 D_{2}\left(r_{1} r_{k} ; r_{l} r_{4}\right)+D_{1}\left(r_{1} r_{k} r_{l} ; r_{4}\right)=0 \tag{24b}
\end{array}
$$

which yields 4 relations with $k \in\{2,5\}$ and $l \in\{2,5\}$.

In the case of $r_{1}=$ odd, i.e. for $i=2$ we find for

$$
\begin{align*}
& r_{k}=\text { even }, \quad r_{l}=\text { even: only trivial relations, } \\
& r_{k}=\text { even }, \\
& r_{l}=\text { odd: } \tag{24c}\\
& D_{2}\left(r_{2} ; r_{k} r_{l} r_{4}\right)+2 D_{2}\left(r_{2} r_{k} ; r_{l} r_{4}\right)+D_{1}\left(r_{2} r_{k} r_{l} ; r_{4}\right)=0,
\end{align*}
$$

which yields 6 relations with $k \in\{1,4,6\}$ and $l \in\{2,5\}$ while we find for

$$
\begin{align*}
& r_{k}=\text { even }, \quad r_{l}=\text { even: only trivial relations, } \\
& r_{k}=\text { odd }, \\
& r_{l}=\text { even: } \tag{24d}\\
& D_{2}\left(r_{2} ; r_{k} r_{l} r_{4}\right)+2 D_{1}\left(r_{2} r_{k} ; r_{l} r_{4}\right)+D_{1}\left(r_{2} r_{k} r_{l} ; r_{4}\right)=0
\end{align*}
$$

which yields 6 relations with $k \in\{2,5\}$ and $l \in\{1,4,6\}$.
$r_{k}=$ odd, $\quad r_{l}=$ odd: only trivial relations.

7.2. The case $j \in\{2,5\}$

For $i=3, k=3$ or $l=3$ we again find only trivial relations. For $i \neq 3, k \neq 3$ and $l \neq 3$, however, we obtain from eqs. (14), (15) in the case of $r_{t}=$ even, i.e. for $i \in\{1,4\}$ and

$$
\begin{align*}
& r_{k}=\text { even, } \quad r_{l}=\text { even: only trivial relations, } \\
& r_{k}=\text { even }, \quad r_{l}=\text { odd: } \\
& D_{1}\left(r_{i} ; r_{k} r_{l} r_{j}\right)+2 D_{1}\left(r_{l} r_{k} ; r_{l} r_{j}\right)+D_{2}\left(r_{l} r_{k} r_{l} ; r_{j}\right)=0, \tag{24e}
\end{align*}
$$

which yields 18 relations with $k \in\{1,4,6\}$ and $l \in\{2,5\}$ while we find for

$$
\begin{align*}
& r_{k}=\text { odd, } \quad r_{l}=\text { even: } \\
& D_{1}\left(r_{1} ; r_{k} r_{l} r_{j}\right)+2 D_{2}\left(r_{i} r_{k} ; r_{l} r_{j}\right)+D_{2}\left(r_{t} r_{k} r_{l} ; r_{J}\right)=0 \tag{24f}
\end{align*}
$$

which yields 18 relations with $k \in\{2,5\}$ and $l \in\{1,4,6\}$ and for

$$
r_{k}=\text { odd }, \quad r_{l}=\text { odd }: \quad \text { only trivial relations }
$$

In the case of $r_{i}=$ odd, i.e. $i=2$ and $j=5$ we furthermore find for

$$
\begin{align*}
& r_{k}=\text { even, } \quad r_{l}=\text { even: } \\
& D_{2}\left(r_{2} ; r_{k} r_{l} r_{5}\right)+2 D_{2}\left(r_{2} r_{k} ; r_{l} r_{5}\right)+D_{2}\left(r_{2} r_{k} r_{l} ; r_{5}\right)=0 \tag{24~g}
\end{align*}
$$

which yields 9 relations with $k \in\{1,4,6\}$ and $l \in\{1,4,6\}$ while we find for

$$
\begin{array}{lll}
r_{k}=\text { even }, & r_{l}=\text { odd: } & \text { only trivial relations, } \\
r_{k}=\text { odd }, & r_{l}=\text { even: } & \text { only trivial relations }, \\
r_{k}=\text { odd }, & r_{l}=\text { odd: } & \\
D_{2}\left(r_{2} ; r_{k} r_{l} r_{5}\right)+2 D_{1}\left(r_{2} r_{k} ; r_{l} r_{5}\right)+D_{2}\left(r_{2} r_{k} r_{l} ; r_{5}\right)=0 \tag{24h}
\end{array}
$$

which yields 4 relations with $k \in\{2,5\}$ and $l \in\{2,5\}$.

7.3. The case $j=3$

From eqs. (14)-(16) we infer also here that $D_{1}=D_{2}=D_{3}=0$ for arbitrary $i<j$ resulting in only trivial relations.

7.4. The case $j=6$

Eq. (17a) here implies $D_{3}\left(r_{t} r_{k} r_{i} ; r_{6}\right)=\left(r_{3} \mid r_{i} r_{k} r_{l}\right)$ and $D_{3}\left(r_{i} ; r_{k} r_{l} r_{6}\right)=D_{3}\left(r_{1} r_{k} ; r_{l} r_{6}\right)=0$. For $i=3$ or $k=3$ or $l=3$ there are only trivial relations. For $i \neq 3$ and $k \neq 3$ and $l \neq 3$ on the other hand we find in the case of $r_{t}=$ even; i.e. for $i \in\{1,4\}$ and

$$
\begin{align*}
& r_{k}=\text { even, } \quad r_{l}=\text { even: } \\
& D_{1}\left(r_{l} ; r_{k} r_{l} r_{6}\right)+2 D_{1}\left(r_{l} r_{k} ; r_{l} r_{6}\right)+D_{1}\left(r_{t} r_{k} r_{l} ; r_{6}\right)=-\left(r_{3} \mid r_{t} r_{k} r_{l}\right) \tag{24i}
\end{align*}
$$

which yields 18 relations with $k \in\{1,4,6\}$ and $l \in\{1,4,6\}$ while we find for

$$
\begin{array}{lll}
r_{k}=\text { even }, & r_{l}=\text { odd: } & \text { only trivial relations, } \\
r_{k}=\text { odd }, & r_{l}=\text { even: } & \text { only trivial relations, } \\
r_{k}=\text { odd }, & r_{l}=\text { odd: } & \\
D_{1}\left(r_{l} ; r_{k} r_{l} r_{6}\right)+2 D_{2}\left(r_{l} r_{k} ; r_{l} r_{6}\right)+D_{1}\left(r_{l} r_{k} r_{l} ; r_{6}\right)=-\left(r_{3} \mid r_{l} r_{k} r_{l}\right), \tag{24j}
\end{array}
$$

which yields 8 relations with $k \in\{2,5\}$ and $l \in\{2,5\}$.
In the case of $r_{t}=$ odd, i.e. $i \in\{2,5\}$ we furthermore find for

$$
\begin{array}{ll}
r_{k}=\text { even }, & r_{l}=\text { even: only trivial relations, } \\
r_{k}=\text { even }, & r_{l}=\text { odd: } \\
D_{2}\left(r_{t} ; r_{k} r_{l} r_{6}\right)+2 D_{2}\left(r_{t} r_{k} ; r_{t} r_{6}\right)+D_{1}\left(r_{t} r_{k} r_{l} ; r_{6}\right)=-\left(r_{3} \mid r_{t} r_{k} r_{l}\right) \tag{24k}
\end{array}
$$

which yields 12 relations with $k \in\{1,4,6\}$ and $l \in\{2,5\}$ while we find for

$$
\begin{align*}
& r_{k}=\text { odd, } \quad r_{l}=\text { even: } \\
& D_{2}\left(r_{l} ; r_{k} r_{l} r_{6}\right)+2 D_{1}\left(r_{t} r_{k} ; r_{l} r_{6}\right)+D_{1}\left(r_{l} r_{k} r_{l} ; r_{6}\right)=-\left(r_{3} \mid r_{t} r_{k} r_{l}\right) \tag{241}
\end{align*}
$$

which yields 12 relations again with $k \in\{2,5\}$ and $l \in\{1,4,6\}$.

$$
r_{k}=\text { odd }, \quad r_{l}=\text { odd: only trivial relations. }
$$

Analogously to sects 5.5 and 6.5 the eqs. (24) could now also be written explicitly. Knowing all coefficients of first and second order the eqs. (24) represent
a) 4 relations between the 8 geometric matrix elements

$$
\left(r_{t} \mid x x x\right),\left(r_{t} \mid x x p_{x}\right),\left(r_{t} \mid x p_{x} p_{x}\right),\left(r_{t} \mid p_{x} p_{x} p_{x}\right)
$$

with $r_{i} \in\left\{x, p_{x}\right\}$;
b) 7 relations between the 12 chromatic matrix elements

$$
\left(r_{t} \mid x x \Delta E\right),\left(r_{t} \mid x p_{x} \Delta E\right),\left(r_{t} \mid p_{x} p_{x} \Delta E\right),\left(r_{\imath} \mid x \Delta E \Delta E\right),\left(r_{l} \mid p_{x} \Delta E \Delta E\right),\left(r_{l} \mid \Delta E \Delta E \Delta E\right),
$$

with $r_{t} \in\left\{x, p_{x}\right\}$;
c) 3 relations between the 6 chromatic matrix elements

$$
\left(r_{t} \mid y x \Delta E\right),\left(r_{1} \mid y p_{x} \Delta E\right),\left(r_{t} \mid y \Delta E \Delta E\right),\left(r_{\imath} \mid p_{y} x \Delta E\right),\left(r_{\imath} \mid p_{y} p_{x} \Delta E\right),\left(r_{t} \mid p_{y} \Delta E \Delta E\right)
$$

with $r_{t} \in\left\{y, p_{y}\right\}$;
d) 24 relations between the 24 geometric matrix elements

$$
\begin{aligned}
& \left(r_{l} \mid y x x\right),\left(r_{l} \mid y x p_{x}\right),\left(r_{l} \mid y p_{x} p_{x}\right),\left(r_{l} \mid y y y\right),\left(r_{t} \mid y y p_{y}\right),\left(r_{t} \mid y p_{y} p_{v}\right) \\
& \left(r_{t} \mid p_{y} x x\right),\left(r_{i} \mid p_{y} x p_{x}\right),\left(r_{t} \mid p_{y} p_{x} p_{x}\right),\left(r_{i} \mid p_{y} y y\right),\left(r_{i} \mid p_{y} y p_{v}\right),\left(r_{t} \mid p_{v} p_{y} p_{y}\right)
\end{aligned}
$$

with $r_{t} \in\left\{y, p_{y}\right\}$;
e) 50 relations between the 32 longitudinal matrix elements ($\Delta t \mid \cdots$) leaving only ($\Delta t \mid \Delta E \Delta E \Delta E$) to be determined independently.

8. The transformation of coordinates

Even though the sets of canonically conjugate variables of eq. (1) are used advantageously to describe the motion of charged particles, they have not been used traditionally but rather the set

$$
\begin{array}{ll}
\bar{q}_{1}=x, & \bar{q}_{4}=x^{\prime}, \\
\bar{q}_{2}=y, & \bar{q}_{5}=y^{\prime}, \\
\bar{q}_{3}=\Delta t, & \bar{q}_{6}=\Delta K / K_{0}=k, \tag{25c}
\end{array}
$$

with $\Delta t=t-t_{0}$ and $\Delta K=K-K_{0}$. Here K_{0} is the energy of the reference particle, t_{0} is the time it takes this reference particle to traverse the optical system and $x^{\prime}=\mathrm{d} x / \mathrm{d} t, y^{\prime}=\mathrm{d} y / \mathrm{d} t$ are the slopes in the x and y-directions, respectively.

In some cases also a slightly different set [7] is used

$$
\begin{array}{ll}
q_{1}=x, & q_{4}=a=\left(p / p_{0}\right) x^{\prime} / \sqrt{1+x^{\prime 2}+y^{\prime 2}}, \\
q_{2}=y, & q_{5}=b=\left(p / p_{0}\right) y^{\prime} / \sqrt{1+x^{\prime 2}+y^{\prime 2}}, \\
q_{3}=\Delta t, & q_{6}=\Delta E / E=\delta_{E}, \tag{26c}
\end{array}
$$

with eqs. (1c) and (26) we obtain the transformation from this set of coordinates to the canonical coordinates r_{i} :

$$
\begin{align*}
& r_{1}=A_{1}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{1}, \tag{27a}\\
& r_{2}=A_{2}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{2}, \tag{27b}\\
& r_{3}=A_{3}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{3}, \tag{27c}\\
& r_{4}=A_{4}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{4} p_{0}, \tag{27d}\\
& r_{5}=A_{5}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{5} p_{0}, \tag{27e}\\
& r_{6}=A_{6}^{q r}\left(q_{1}, \ldots, q_{6}\right)=q_{6} E_{0} . \tag{27f}
\end{align*}
$$

Here p_{0} stands for the momentum of the reference particle and E_{0} for its energy. Similarly one obtains the inverse transformation $q_{1}=A_{1}^{q r}$. Assume now that the transformation between profile planes at z_{0} and z_{1} is given both in symplectic coordinates and those of eqs. (26):

$$
\begin{align*}
& k_{r_{1}}=T_{r} k_{r 0} \tag{28a}\\
& k_{q_{1}}=T_{q} k_{q 0} \tag{28b}
\end{align*}
$$

Then we can infer from eqs. (28)

$$
\begin{align*}
& T_{r}=A^{q r} \cdot T_{q} \cdot A^{r q}, \tag{29a}\\
& T_{q}=A^{r q} \cdot T_{r} \cdot A^{q r} . \tag{29b}
\end{align*}
$$

The eqs. (29) allow to express the partial derivatives of T_{r} in terms of partials of $A^{q r}, T_{q}$ and $A^{r q}$.

The nonvanishing partials of $A^{q r}$ and $A^{r q}$ are easily found from eqs. (26) as

$$
\begin{array}{ll}
\frac{\partial r_{1}}{\partial q_{1}}=\frac{\partial r_{2}}{\partial q_{2}}=\frac{\partial r_{3}}{\partial q_{3}}=1, & \frac{\partial q_{1}}{\partial r_{1}}=\frac{\partial q_{2}}{\partial r_{2}}=\frac{\partial q_{3}}{\partial r_{3}}=1, \\
\frac{\partial r_{4}}{\partial q_{4}}=\frac{\partial r_{5}}{\partial q_{5}}=p_{0}, & \frac{\partial q_{4}}{\partial r_{4}}=\frac{\partial q_{5}}{\partial r_{5}}=\frac{1}{p_{0}}, \\
\frac{\partial r_{6}}{\partial q_{6}}=E_{0}, & \frac{\partial q_{6}}{\partial r_{6}}=\frac{1}{E_{0}} . \tag{30c}
\end{array}
$$

Consider now the partial derivatives

$$
\left(\frac{\partial r_{i}}{\partial r_{k}}\right)_{r_{k 0=0}}=\left(r_{1} \mid r_{k}\right)
$$

used in eq. (2). Applying the chain rule twice we obtain

$$
\begin{align*}
\left(r_{t} \mid r_{k}\right) & =\left(\frac{\partial r_{t}}{\partial r_{k}}\right)_{r_{10}=0}=\sum_{\kappa=1}^{6}\left(\frac{\partial r_{i 1}}{\partial q_{\kappa 1}}\right)_{q_{k 1}=0}\left(\frac{\partial q_{\kappa 1}}{\partial r_{k 0}}\right)_{r_{k 0-0}} \\
& =\sum_{\kappa=1}^{6} \sum_{\lambda=1}^{6}\left(\frac{\partial r_{i 1}}{\partial q_{\kappa 1}}\right)_{q_{k 1}=0}\left(\frac{\partial q_{\kappa 1}}{\partial q_{\lambda 0}}\right)_{q_{\lambda 0}=0}\left(\frac{\partial q_{\lambda 0}}{\partial r_{k 0}}\right)_{r_{\lambda 0}=0} . \tag{31}
\end{align*}
$$

The fact that for $\kappa \neq i$ and $\lambda \neq \mathrm{k}$ the partial derivatives of $A^{q r}$ and $A^{r q}$ vanish (see eqs. (28), (30)) simplifies eq. (31) to

$$
\begin{equation*}
\left(r_{1} \mid r_{k}\right)=\left(\frac{\partial r_{1}}{\partial r_{k}}\right)_{r_{k 0}=0}=\left(\frac{\partial r_{11}}{\partial q_{i 1}}\right)_{q_{11}=0}\left(q_{i} \mid q_{k}\right)\left(\frac{\partial q_{k 0}}{\partial r_{k 0}}\right)_{r_{k 0}=0} \tag{32a}
\end{equation*}
$$

In a very similar way one obtains the transformation rule for partial derivatives of second and third order:

$$
\begin{align*}
\left(r_{t} \mid r_{k} r_{t}\right)= & \left(\frac{\partial^{2} r_{11}}{\partial r_{k 0} \partial r_{10}}\right)_{r_{k 0}=r_{10}=0}=\left(\frac{\partial r_{11}}{\partial q_{11}}\right)_{q_{11}=0}\left(q_{t} \mid q_{k} q_{t}\right)\left(\frac{\partial q_{k 0}}{\partial r_{k 0}}\right)_{r_{k 0}=0}\left(\frac{\partial q_{10}}{\partial r_{l 0}}\right)_{r_{10}=0}, \tag{32b}\\
\left(r_{t} \mid r_{k} r_{1} r_{m}\right) & =\left(\frac{\partial^{3} r_{r 1}}{\partial r_{k 0} \partial r_{10} \partial r_{m 0}}\right)_{r_{k 0}=r_{10}=r_{m 0}=0} \\
& =\left(\frac{\partial r_{11}}{\partial q_{11}}\right)_{q_{11}=0}\left(q_{t} \mid q_{k} q_{l} q_{m}\right)\left(\frac{\partial q_{k 0}}{\partial r_{k 0}}\right)_{r_{k 0}=0}\left(\frac{\partial q_{10}}{\partial r_{l 0}}\right)_{r_{10}=0}\left(\frac{\partial q_{m 0}}{\partial r_{m 0}}\right)_{r_{m 0}=0}, \tag{32c}
\end{align*}
$$

as well as analogous expressions for higher order terms.
With eqs. (32) the relations due to symplecticity can be derived also in the noncanonical coordinates of eq. (26). For this purpose, one only must express all matrix elements $\left(r_{t} \mid r_{k}\right),\left(r_{t} \mid r_{k} r_{l}\right),\left(r_{t} \mid r_{k} r_{l} r_{m}\right), \cdots$ in eqs. (20), (22) etc. in terms of the matrix elements in the noncanonical coordinates $\left(q_{\imath} \mid q_{k}\right),\left(q_{\imath} \mid q_{k} q_{l}\right), \cdots$ using eqs. (32).

The same pattern as used for the coordinates defined in eqs. (26) can be used for any other set of coordinates, especially those of eqs. (25). However, since in most cases the transformations $A^{q r}$ and $A^{r q}$ are nonlinear, higher order partial derivatives remain in eqs. (30). This usually leads to more complex relations than those in eqs. (32).

For discussions we thank A.J. Dragt, E. Forest and C. Iselin. For financial support we are grateful to the Bundesminister fuer Forschung und Technologie.

References

[1] K.L. Brown, R. Belbeoch and P. Bounın, Rev. Sci. Instr. 35 (1964) 481.
[2] H. Wollnik, Nucl. Instr. and Meth. 52 (1967) 250.
[3] H. Matsuda and H. Wollnik, Nucl. Instr. and Meth. 77 (1970) 283, 103 (1972) 117.
[4] W. Thirring, Lehrbuch der Mathematischen Physik. Vol. 1, Klassische Dynamische Systeme, Wien (1977) and A.J. Dragt, Lectures on Nonlınear Orbit Dynamics, AIP Conf. Proc., vol. 87 (1982).
[5] A.P. Banford, The Transport of Charged Particle Beams (E. and F.N. Spon Ltd., London, 1966).
[6] H. Wollnik and T. Matsuo, Int. J. Mass Spectr. and Ion Phys. 37 (1981) 209.
[7] H. Wollnı, Optics of Charged Particle Beams, in preparation.

