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The precise determination of the dynamics in accelerators with complicated field arrange-
ments such as Fixed Field Alternating Gradient accelerators (FFAG) depends critically
on the ability to describe the appearing magnetic fields in full 3D. However, frequently
measurements or models of FFAG fields postulate their behavior in the midplane only,
and rely on the fact that this midplane field and its derivatives determine the field in
all of space. The detailed knowledge of the resulting out-of-plane fields is critical for a
careful assessment of the vertical dynamics.

We describe a method based on the differential algebraic (DA) approach to obtain
the resulting out-of-plane expansions to any order in an order-independent, straightfor-
ward fashion. In particular, the resulting fields satisfy Maxwell’s equations to the order
of the expansion up to machine precision errors, and without any inaccuracies that can
arise from conventional divided difference or finite element schemes for the computation
of out-of-plane fields.

The method relies on re-writing the underlying PDE as a fixed point problem in-
volving DA operations, and in particular the differential algebraic integration operator.
We illustrate the performance of the method for a variety of practical examples, and
obtain estimates for the orders necessary to describe the fields to a prescribed accuracy.

1. Introduction

The differential algebraic (DA) methods1,2 allow the efficient computation and ma-

nipulation of high-order Taylor transfer maps. When integrating transfer maps

through electromagnetic fields, the full 3D fields are computed as part of each

integration time step using DA PDE (partial differential equation) solvers. First,

we address the mechanism of the method of DA fixed point PDE solvers, and as

will be seen, the method is very compact and fast, and only requires an analytic

representation of the field in the midplane.

Compared to multipole electromagnetic elements such as dipoles, quadrupoles

and so forth, the fringe fields in FFAGs and related accelerators are dominating and

extend for relatively long distance. After developing the theoretical background,

we study the practical performance of the method to illustrate the quality of the

1807

http://dx.doi.org/10.1142/S0217751X11053201


April 15, 2011 9:30 WSPC/Guidelines-IJMPA S0217751X11053201

1808 K. Makino, M. Berz & C. Johnstone

out-of-plane expansions for various examples, including a model of a dipole field

with known 3D field, as well as models of FFAG fringe fields based on Enge function

field falloff as implemented in the FFAG simulation tool FACT Particularly because

of this long extension of the fringe fields, in practice it is important to be able to

efficiently combine the fields of all poles together, and then hand the total midplane

field to the DA PDE solvers.

2. High-Order Derivatives of Fields

The idea of differential algebraic (DA) methods1–3 is based on the observation that

it is possible to extract more information about a function than its mere values on

computers. One can introduce an operation T denoting the extraction of the Taylor

coefficients of a pre-specified order n of the function f ∈ Cn(Rv). In mathemat-

ical terms, T is an equivalence relation, and the application of T corresponds to

the transition from the function f to the equivalence class [f ] comprising all those

functions with identical Taylor expansion in v variables to order n; the classes are

apparently characterized by the collection of Taylor coefficients. Since Taylor coeffi-

cients of order n for sums and products of functions as well as scalar products with

reals can be computed from those of the summands and factors, the set of equiva-

lence classes of functions can be endowed with well-defined operations, leading to

the so-called Truncated Power Series Algebra (TPSA).4,5 More advanced tools ad-

dress the composition of functions, their inversion, solutions of implicit equations,

and the introduction of common elementary functions.1 For treatment of ODEs and

PDEs, the power of TPSA can be enhanced by the introduction of derivations ∂

and their inverses ∂−1, corresponding to the differentiation and integration on the

space of functions, resulting in the Differential Algebra nDv. This structure allows

the direct treatment of many questions connected with differentiation and integra-

tion of functions, including the solution of the ODEs d~x/dt = ~f(~x, t) describing the

motion and PDEs describing the fields,6–8 and will be the key ingredient for the

computation of out-of-plane fields as discussed in the next section.

High-order out-of-plane expansions can be done via recursion formulas (see

Refs. 1, 9–11 and references therein) and require the higher derivatives of the

field falloff. One of the simplest applications of the DA method is to compute

these derivatives accurately. To illustrate the behavior of the method of computing

derivatives of very high orders, we show the results of the computation of one-

dimensional derivatives of a common ingredient in the analytic description of the

falloff of midplane fields in the vicinity of the edge of the magnet, the so-called

Enge function

E(s) =
1

1 + exp(a0 + a1(s/d) + ...+ ak(s/d)k
, (1)

where s is the distance to the magnet, the coefficients a0 to ak describe the shape

of the falloff, and the d is a scaling factor describing the half gap of the magnet
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Fig. 1. Fringe field falloff profile of the COSY default model for magnetic dipoles, and derivatives
1 through 5.

at the edge. The code COSY INFINITY contains a library of default coefficients

for common particle optical elements,12 but for specific devices, it is important to

determine the most suitable values of the coefficients.

In order to determine the high-order derivatives of the Enge function necessary

for the out-of-plane expansion discussed later, it is merely required to evaluate

the expression of the Enge function (1) using DA arithmetic with the variable s

being one of the DA variables. To illustrate this feature, we show the field falloff

profile of the default model for magnetic quadrupoles in COSY INFINITY, and

their derivatives up to order five in Fig. 1, and to show that the orders do not

represent a limitation, orders 10, 20, and 30 in Fig. 2.
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Fig. 2. Fringe field falloff of the COSY default model for magnetic dipoles, derivatives 10, 20,
30, and 40.

The figures illustrate the ease with which it is possible to obtain derivatives

to very high orders using DA methods. Furthermore, different from conventional

numerical differentiation schemes, the values are accurate to mere round-off error

and are close to machine precision, which manifests itself in the absence of any

apparent noise in the representation of the higher derivatives.

3. DA Fixed Point PDE Solvers

As discussed in the previous section, for the treatment of ODEs and PDEs, the

power of TPSA can benefits from the introduction of derivations ∂ and their in-

verses ∂−1, corresponding to the differentiation and integration on the space of

functions, resulting in the Differential Algebra nDv. This structure allows the di-

rect treatment of many questions connected with differentiation and integration of

functions, including the solution of the ODEs d~x/dt = ~f(~x, t) describing the motion

and PDEs describing the fields.3

For any element [f ] ∈ nDv we define the depth λ([f ]) as

λ([f ]) =

{

Order of the first nonvanishing derivative of f if [f ] 6= 0

n+ 1 if [f ] = 0
.

In particular, any function f that does not vanish at the origin has λ([f ]) = 0.
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Let O be an operator on the set M ⊂ nD
m
v , where nD

m
v is the set describing

vector functions ~f = (f1, ..., fm) from Rv to Rm. Then we say that O is contracting

on M if for any ~a, ~b ∈ M with ~a 6= ~b,

λ(O(~a)−O(~b)) > λ(~a−~b).

In practical terms this means that after application of O, the derivatives in ~a and
~b agree to a higher order than before application of O. For example, the anti-

derivation ∂−1
k is a contracting operator. Contracting operators satisfy a fixed point

theorem:

Theorem 3.1. (DA Fixed Point Theorem) Let O be a contracting operator on

M ⊂ nDv that maps M into M. Then O has a unique fixed point a ∈ M that

satisfies the fixed point problem a = O(a). Moreover, let a0 be any element in M.

Then the sequence ak = O(ak−1) for k = 1, 2, ... converges in finitely many steps

(in fact, at most (n+ 1) steps) to the fixed point a.

The fixed point theorem is of great practical usefulness since it assures the

existence of a solution, and moreover allows its exact determination in a very simple

way in finitely many steps. The proof of the theorem can be found in.1 The DA fixed

point theorem has many useful applications, in particular a rather straightforward

solution of ODEs and PDEs.3

The direct availability of the derivation ∂ and its inverse ∂−1 allows to devise

efficient numerical PDE solvers of any order. The DA fixed point theorem allows

one to solve PDEs iteratively in finitely many steps by rephrasing them in terms

of a fixed point problem. The details depend on the PDE at hand, but the key

idea is to eliminate differentiation with respect to one variable and replace it by

integration. As an example, consider a rather general PDE

a1
∂

∂x

(

a2
∂

∂x
V

)

+ b1
∂

∂y

(

b2
∂

∂y
V

)

+ c1
∂

∂z

(

c2
∂

∂z
V

)

= 0,

where a1, a2, b1, b2, c1 c2 are functions of x, y, z. The PDE is re-written as

V = V |y=0 +

ˆ y

0

1

b2

{

(

b2
∂V

∂y

)∣

∣

∣

∣

y=0

−

ˆ y

0

[

a1

b1

∂

∂x

(

a2
∂V

∂x

)

+
c1

b1

∂

∂z

(

c2
∂V

∂z

)]

dy

}

dy .

The equation is now in fixed point form. Now assume the derivatives of V and

∂V/∂y with respect to x and z are known in the plane y = 0. If the right hand side

is contracting with respect to y, the various orders in y can be calculated by mere

iteration.

As a particularly important example, consider the Laplace equation. It can be

represented in general curvilinear coordinates.6,8 In the special case of a curvilinear

coordinate system, the Laplace equation is obtained as6,8

4V =
1

1 + hx

∂

∂x

[

(1 + hx)
∂V

∂x

]

+
∂2V

∂y2
+

1

1 + hx

∂

∂s

(

1

1 + hx

∂V

∂s

)

= 0.
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In the case of a straight section, where h = 0, it reduces to nothing but the Carte-

sian Laplace equation. The fixed point form of the Laplace equation in the planar

curvilinear coordinates is

V = V |y=0 +

ˆ y

0

(

∂V

∂y

)
∣

∣

∣

∣

y=0

dy

−

ˆ y

0

ˆ y

0

{

1

1 + hx

∂

∂x

[

(1 + hx)
∂V

∂x

]

+
1

1 + hx

∂

∂s

(

1

1 + hx

∂V

∂s

)}

dydy .

In this form, the right hand side has the interesting property that, regardless of

what function V is inserted, the parts not depending on y are reproduced exactly,

since all integrals introduce y dependence. Because of the integral operation, for a

given choice of x and s and considering only the y dependence, the right hand side

is contracting. In COSY INFINITY,13 the planar curvilinear Laplace equation is

solved by the following very compact code:

POLD := P ;

HF := 1+H{*}DA(IX) ; HI := 1/HF ;

LOOP I 2 NOC+2 2 ;

P := POLD - INTEG(IY,INTEG(IY, HI{*}( DER(IX,HF{*}DER(IX,P))

+ DER(IS,HI{*}DER(IS,P)) ) )) ;

ENDLOOP ;

Here the boundary condition V |y=0 +
´ y

0
(∂V/∂y)|y=0 dy is provided through

the incoming form of P, which is obtained using the DA expression in COSY. The

DA fixed point iteration converges to the solution potential P in finitely many steps.

DA(IX) represents the identity for x, NOC is the current transfer map computation

order, and DER(I,...) and INTEG(I,...) correspond to the DA derivative and

the DA anti-derivative operations with respect to the variable specified by the first

argument I, namely “∂xI
” and “

´ xI

0
dxI”. The full 3D field is derived from the

solution potential P, using the elementary DA derivations ∂x, ∂y and ∂s. In coded

form, we have

BX := DER(IX,P) ; BY := DER(IY,P) ; BZ := DER(IS,P);

The advantages of the method are:

• only the field in the midplane is needed;

• the resulting field will always satisfy the stationary Maxwell equations;

• the method works to any order.
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Although this is not of primary interest for the computation of fields of FFAGs,

we briefly also discuss another important coordinate system, the cylindrical coor-

dinates, in which the Laplace equation takes the simple form

4V =
1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2
∂2V

∂φ2
+

∂2V

∂s2
= 0.

If V does not depend on φ, namely V is rotationally symmetric, as in solenoid

magnets, the fixed point form of the Laplace equation is simplified to

V = V |r=0 −

ˆ r

0

1

r

ˆ r

0

r
∂2V

∂s2
drdr,

and the right hand side is contracting with respect to r. Since we are only interested

in cases in which V (s, r) is expressed in DA, if ∂2V/∂s2 is nonzero, the integral
´ r

0
r ∂2V/∂s2dr contains r to a positive power. Thus, the factor 1/r in the outer

integral simply lowers the power of r by one, and the right hand side of the fixed

point form can be evaluated in DA without posing trouble. To perform the DA fixed

point iteration for the purpose of obtaining the full potential V (s, r), one only needs

to prepare the on-axis potential expression V (s, r)|r=0 as the boundary condition.

4. Behavior of the Out-of-Plane Expansion for an Analytical Model

In order to assess the ability to utilize the high-order derivatives of the fields in

the midplane within the above framework for an out-of-plane expansion, we study

a representative example for which an analytical field representation in 3D exists.

Specifically, we consider the magnetic field of an arrangement of two rectangular

uniformly magnetized iron bars. The bars extend to infinity from the inner surfaces

characterized by y = ±d parallel to the midplane, which is located at y = 0.

We denote by x1,2 and z1,2 the horizontal coordinates of the four corners of the

magnet, so that the magnetized material of the bars is located inside x1 ≤ x ≤ x2

and z1 ≤ z ≤ z2.

For this bar magnet one can obtain an analytic solution for the magnetic field
~B (x, y, z), see for example Refs. 14–16. The fields are given by

By (x, y, z) =
B0

4π

∑

i,j

(−1)
i+j

[

arctan

(

Xi · Zj

Y+ ·R+
ij

)

+ arctan

(

Xi · Zj

Y− ·R−

ij

)]

Bx (x, y, z) =
B0

4π

∑

i,j

(−1)
i+j

[

ln

(

Zj +R−

ij

Zj +R+
ij

)]

Bz (x, y, z) =
B0

4π

∑

i,j

(−1)
i+j

[

ln

(

Xi +R−

ij

Xi +R+
ij

)]

, (2)

where Xi = x − xi, Y± = d ± y, Zi = z − zi, and R±

ij =
(

X2
i + Z2

j + Y 2
±

)
1

2 . The

geometric layout and midplane field of such a magnet is shown in Fig. 3.
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Fig. 3. The midplane field distribution of the bar magnets. The rectangular cross-section of the
bars [−0.5, 0.5]× [−0.5, 0.5] is clearly marked on the graph.

This particular field arrangement can serve as useful test case for assessing the

performance of computational methods. By itself, it represents a special case of

the field of a magnetic dipole. But moreover, because the out-of-plane expansion

schemes above are linear in the fields, it is also very indicative of the general behavior

of any such methods, since most more complicated fields such as those in FFAGs

are merely made by superimposing dipole-type fields of various apertures.

We next utilize the DA-based out-of-plane expansion method to determine the

predicted field in space. Figure 4 shows the predicted fields at 25%, 50% and 75%

of the aperture d. The left picture shows the vertical component By of the field,

the middle picture shows Bx. The field component Bz is not shown directly since

it is merely symmetric to Bx. The right picture shows the Bx and Bz components

of the field as vectors for better clarity. The out-of-plane expansions were carried

out to order 21.

It is quite apparent that the resulting field distributions are very smooth, sug-

gesting the absence of major computational errors and inaccuracies. We now quan-

titatively analyze the quality of the out-of-plane expansion by a direct comparison

with the true values of the field given by Eq. (2) and focus our attention to the

dependence of the error on the expansion order that is being utilized. Furthermore,

since the out-of-plane expansion is expected to lose accuracy with larger distance,

we also study the quality of the expansion for distances to the midplane of 0.25d,

0.5d, and 0.75d. For each computation order and distance from the plane, we eval-

uate the errors over a rectangular grid of 41× 41 points for x and z in [−1,+1].

We calculate both the average error of the representation as out-of-plane expan-

sion, as well as its maximum. We record results for out-of-plane expansions of orders

3, 5, . . ., 21 of the fields, corresponding to orders 4, 6, . . ., 22 in the scalar potential.

Since the field By is symmetric with respect to y, odd orders do not appear in its

expansion with respect to y. Similarly, since the Bx and Bz fields are antisymmetric

with respect to y, these fields do not exhibit even orders. So in order to show the

trend of the accuracy with order, it is convenient to increase the orders by two in
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Fig. 4. Field distribution of the bar magnet in the x and y planes at y = 0% (midplane), 25%,
50%, and 75% of the half aperture d. The distributions of By and Bx are shown in 3D plots, and
the Bx–Bz behavior is shown by vectors.

each step, and by choosing these orders to be odd, the actual highest appearing

order of the By field is one order lower, while the highest appearing order for the

Bx and Bz fields responsible for focusing effects is of the order shown.

Figure 5 shows a logarithmic plot for the resulting computational accuracies for

the field component By. The other components are not shown since their behavior

for each data point is within a few percent of those of By and thus lead to nearly

indistinguishable plots. It can be seen that at the lowest order of 3 for Bx and Bz ,

the accuracies only range from about 10−3 to 10−1, while at order 11 they reach

10−10 to 10−2, and at order 21 they achieve 10−16 to 10−4.

5. Out-of-Plane Expansion in Realistic FFAG Models

We now turn our attention to actual fields as they would appear in FFAG magnets.

We utilize a field model based on superposition of individual combined function
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Fig. 5. Relative error of By of the bar magnet field depending on the out-of-plane expansion
order at y = 25%, 50%, 75% of the half aperture d as a function of the out-of-plane expansion
order of the fields; the corresponding order of the potentials is higher by 1. The average error
value (black markers) and the maximum error value (transparent markers) are plotted. Relative
errors of Bx and Bz behave essentially the same way.

dipole fields as discussed in Ref. 17. Figure 6 shows the typical layout of such a

FFAG ring, here made of nine individual cells, each of which contains two halves

of a bending magnet (green) and a smaller magnet (red) bending in the opposite

direction, both with a half aperture of 1 cm. The edges are carefully chosen so as

to maintain horizontal and vertical tune stability.18–20

The fields are modeled utilizing an Enge falloff from the edges shown in the

models, where the coefficients of the Enge function have been carefully adjusted

to represent the situation of a permanent magnet, which constitutes one of the

contemplated methods of constructing the magnet. Figure 7 shows the falloff of the

resulting magnet on the right, and COSY’s default fringe field falloff for dipoles on

the left. Note that the FFAG falloff is steeper, leading to larger derivatives, and

thus larger azimuthal out-of-plane field components.

As a result of the fringe fields thus imposed, the midplane field profile for By

turns from the hard edge model shown in the leftmost picture of Fig. 8 to that

shown in the rightmost one. For comparison, the softer falloff based on standard

COSY dipoles is shown in the middle.

We now turn our attention to the performance of the DA-based out-of-plane

expansion method described above and used in the code COSY. Figure 9 shows

the predicted fields at 25%, 50% and 75% of the aperture d. The left picture shows

the vertical component By of the field, the middle picture shows Bx. The right pic-

ture shows the Bx and Bz components of the field as vectors for better clarity.
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Fig. 6. Layout of a 9 cell model of non-scaling FFAG.
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Fig. 7. Fringe field falloff profile based on Enge models. Left: default COSY dipole model, and
right: model based on a permanent magnet, deemed more realistic for FFAG models.
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Fig. 9. Field distribution of a 80◦ section in the x and y planes—in the midplane and at y =
2.5 mm, 5 mm, 7.5 mm planes. The distributions of By and Bθ are shown in 3D plots, and the
Br–Bθ behavior is shown by vectors. 0.20 ≤ r ≤ 0.44 mm.

The out-of-plane expansions were carried out to order 21. It is apparent that the

complexity of the resulting fields increases with larger distance to the midplane,

and a rich amount of structure develops especially in the Bx field responsible for

focusing.

We now quantitatively analyze the quality of the out-of-plane expansion. Differ-

ent from the case of the bar magnet studied in the previous section, the exact value

of the field is not known. So we perform our comparisons of accuracy of lower-order

expansion by a comparison to an expansion of order 25 and assume that the dif-

ferences with expansions of lower orders are meaningful estimates for the errors of

these expansions. Again, since the out-of-plane expansion is expected to lose accu-

racy with larger distance, we also study the quality of the expansion for distances

to the midplane of 0.25d, 0.5d, and 0.75d. For each computation order and distance
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Fig. 10. Relative error of By depending on the out-of-plane expansion order at y = 2.5 mm,
5 mm, 7.5 mm planes. Shown are average error (black markers) and maximum error (transparent
markers). The relative error of Bθ behaves almost identical, and the relative error of Br is slightly
lower but with the same overall behavior.

from the plane, we evaluate the errors over a grid in polar coordinates of 25 × 81

points in radius and azimuthal angle.

As before, we calculate both the average error of the representation as out-

of-plane expansion, as well as its maximum. We record results for out-of-plane

expansions of orders 3, 5, . . ., 21 of the fields, corresponding to orders 4, 6, . . . , 22

in the scalar potential. Since the field By is symmetric with respect to y, again odd

orders do not appear in its expansion with respect to y, and likewise in Bx and Bz

even orders do not appear.

Figure 10 shows a logarithmic plot for the resulting computational accuracies

for the field component By. As before, the other components are not shown since

their behavior for each data point is within a few percent of those of By and thus

lead to nearly indistinguishable plots. It can be seen that at the lowest order of 3

for Bx and Bz, the accuracies only range from about 10−4 to 10−1, while at order

11 they reach 10−11 to 10−3, and at order 21 they achieve 10−16 to 10−6.

To conclude, we see that for high-accuracy simulations, especially far away from

the midplane, it is necessary to utilize rather high orders in the field expansions.

While computations of tunes and related quantities require information only near

the midplane, the study of detailed dynamics such as the computation of dynamic

aperture limits requires careful consideration of all nonlinear effects including repre-

sentations of high order.17 Of particular consequence is the violation of the symplec-

tic symmetry inherent in the dynamics in FFAGs, which arises whenever erroneous

field representations are chosen.
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