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Summary. A method to obtain polynomial approximations of Poincaré maps di-
rectly from a polynomial approximation of the flow or dynamical system for certain
types of flows and Poincaré sections is presented. Examples for the method and its
computational implementation are given.
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1 Introduction

Poincaré maps are a standard tool in general dynamical systems theory to
study qualitative properties of a dynamical system, e.g. the flow generated by
an ordinary differential equation, most prominently the asymptotic stability
of periodic or almost periodic orbits. A Poincaré map essentially describes
how points on a plane S (the Poincaré section) which is transversed by such
an orbit O (the reference orbit) and which are sufficiently close to O get
mapped back onto S by the flow. The two key benefits in this approach are
that long-term behavior of the the flow close to O can be analyzed through
the derivative of the Poincaré map at the intersection point of S and O, which
is available after just one revolution of O, and that the dimensionality of the
problem has been reduced by one, since the Poincaré map is defined on S and
neglects the “trivial” direction of the flow perpendicular to the surface.

In the numerical treatment of these problems one is faced with the question
of which numerical representations of a flow are particularly favorable in the
sense that they easily allow the computation of corresponding Poincaré maps
for a given reference orbit and Poincaré section. In this paper we will show that
high-order polynomial approximations of the flow, which have been obtained
either by automatic differentiation of an ODE solver with respect to initial
conditions or using differential algebraic (DA) tools as in [37,43], allow a direct
deduction of polynomial approximations of Poincaré maps of a certain type.
We focus on the case where the flow under consideration has been generated
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by an ODE. The proposed algorithm is a part of an extended method for the
computation of rigorous interval enclosures of the polynomial approximation
of the Poincaré map discussed here.

2 Overview of DA Tools

The DA tools necessary to appreciate the method are described in detail
in [37]. However, we wish to review briefly the two most important applica-
tions of DA-methods used for the problem discussed here: the DA-integration
method employed to obtain high-order polynomial approximations ϕ(x0, t)
of the flow and the functional inversion tools necessary in later steps of the
algorithm.

2.1 DA-Integration of ODEs

First we tackle the problem of obtaining a polynomial approximation of the
dependence on initial conditions of the solution of the initial value problem

ẋ(t) = f(x(t), t), x(0) = X0 + x0 , (1)

where f : R
ν ⊃ Uopen −→ R

ν is given as a composition of intrinsic functions
which have been defined in DA-arithmetic. This also entails that f exhibits
sufficient smoothness to guarantee existence and uniqueness of solutions for
all initial conditions. The vector X0 ∈ R

ν is constant, and the midpoint of
the domain box D = [−d1, d1] × . . . × [−dν , dν ] for the small relative initial
conditions x0 ∈ D. Typical box widths di are of the order 10−2 to 10−8. The
polynomial approximation ϕ(x0, t) of the flow of (1) we desire is an expansion
in terms of the independent time coordinate t and the initial conditions x0

relative toX0. The representation of this approximation is a DA-vector storing
the expansion coefficients up to a prespecified order n in a structured fashion.

The standard procedure of a Picard iteration yields a polynomial approx-
imation of the solution of (1) after repeated application of a Picard operator
on the initial conditions. This iteration in general increases the order of the
expansion by at least one in every step. Since a DA-vector can store coeffi-
cients up to order n, we expect that the iteration converges after finitely many
steps in the DA case.

Accordingly, the Picard operator in the DA-computation is defined by

C(·) := (X0 + x0) + ∂−1
ν+1f(·) ,

where f is computed in DA-arithmetic, and ∂−1
ν+1is the antiderivation operator,

essentially the integration with respect to the ν+1st variable t. With a suitable
definition of a contraction in the DA case, C is a contracting operator, and
fixed-point theorems exist which guarantee that repeated applications of C on
the initial condition DA-vector representation x(0) = X0 +x0 converge to the
DA-vector solution ϕ(x0, t) of (1) in finitely many steps. After this iteration
has converged, the time step is substituted for the time variable which yields
the final solutions only in terms of the initial conditions x0.
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2.2 Functional Inversion Using DA-Arithmetic

Next we review the functional inversion method used to obtain the inverse
M−1 of a function M, or rather a DA-vector which stores the coefficients
of M−1 up to the desired order. Assume we are given a smooth map M :
R

ν −→ R
ν s.t. M(0) = 0, and its linearization M is invertible at the origin.

This assures the existence of a smooth inverse M−1 in a neighborhood of the
origin. If we write M = M + N , where N is the nonlinear part, and insert
this into the fundamental condition M◦M−1 = I, we obtain the relation

M−1 = M−1 ◦ (I −N ◦M−1)

and see that the desired inverse M−1 is a fixed point of the operator C(·) :=
M−1 ◦ (I −N◦ ·). Since C is a contraction, the existence of the fixed point
M−1 of C is verified, and M−1 can be obtained through repeated iteration of
C, beginning with the identity I. Also in this case the iteration converges to
M−1 in finitely many steps, which is intuitively clear: If at one iteration step
M−1 is determined up to order m, then C(M−1) is determined at least up to
order m+ 1, since N is purely nonlinear.

3 Description of the Method

3.1 Preliminary Remarks

We begin our discussion with the assumption that (1) exhibits a periodic
solution ϕ(X0, t) which starts on a suitable Poincaré section and returns after
a period T , which has been determined, e.g. by a high-order Runge-Kutta
integration. As described in the previous section, there exist DA-arithmetic
integration methods which allow us to transport the domain box X0 + D,
where D = [−d1, d1]× ...× [−dν , dν ], through one cycle of the period. In the
last time step we keep the full expansion of the final solution ϕ(x0, t) in terms
of the variables x0 and the time t. The problem of constructing the Poincaré
map has thus been reduced to the construction of a map which projects the
set {ϕ(x0, T ) : x0 ∈ D} to the surface S.

We want to consider as large a class of surfaces as possible as Poincaré
sections. A suitable assumption is that the Poincaré section S ⊂ R

ν is given
in terms of a function σ : R

ν −→ R as S := {x ∈ R
ν : σ(x) = 0}. Since

the function σ also needs to be expressed in terms of elementary functions
available in the computer environment for DA arithmetic, it is necessarily
smooth, and hence so is the surface S. This contains most surfaces of practical
interest, in particular the most common case where S is an affine plane S :=
{x ∈ R

ν : x1 = c} for some c ∈ R; then σ(x) = x1 − c.

3.2 Construction of the Crossing Time

The goal of the next step is to derive an expression for the crossing time tc(x0)
at which the trajectory starting at the initial condition x0 ∈ D crosses the
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surface S. From an analytic standpoint the existence of such a time tc(x0)
is only guaranteed locally at X0, but since usually D is small and σ and the
vector field f are regular, the crossing time can often be defined for all x0 ∈ D.
Once we have obtained a DA-vector representing tc(x0), then P(x0) can be
found easily by inserting the crossing time into the flow

P(x0) := ϕ(x0, tc(x0)) , (2)

where the right hand side is evaluated in DA-arithmetic. We proceed by con-
structing an artificial function ψ(x0, t) by

ψk(x0, t) := xk ∀ k ∈ {1, ..., ν}
ψν+1(x0, t) := σ(ϕ(x0, t)) .

The value tc(x0), depending on the variables x0, is determined by the condition

σ(ϕ(x0, tc(x0))) = 0 , (3)

and ψ contains both the constraint (3) and the independent variables x0.
Because of (3), tc(x0) satisfies

ψ(x0, tc(x0)) = (x0, 0) .

If ψ is invertible at (x0, tc(x0)) we can evaluate

ψ−1(x0, 0) = ψ−1(ψ(x0, tc(x0))) = (x0, tc(x0))
T

and immediately extract the DA-vector representation of tc(x0) in terms of
x0 in the last component. However, here the invertibility of ψ at the point
(x0, tc(x0)) is guaranteed by the transversality of the flow at S. This leads to
the definition of

tc(x0) := ψ−1
ν+1(x0, 0) ,

which allows us to obtain the final Poincaré map by construction (2).

3.3 Summary of the Algorithm

To conclude the presentation of the method, we summarize the algorithm:

1. Determine the period T approximately for the periodic orbit.
2. Choose a suitable Poincaré section S.
3. Obtain a DA-vector representation of the solution ϕ(x0, t) for one period
T . Preserve the full expansion in x0 and t in the last step.

4. Set up and invert the auxiliary function ψ using DA functional inversion
to obtain a DA-vector representation of ψ−1.

5. Resolve tc(x0) := ψ−1(x0, 0).
6. Obtain P(x0) := ϕ(x0, tc(x0)).
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4 Examples

The method described above has been implemented in the COSY Infinity [42]
programming language, which supports the DA-vector data type and its oper-
ations. The code lists for the example calculations are available upon request
from the authors. The COSY output lists the Taylor expansion coefficients
of tc(x0) and P(x0) sorted by order, with the last five columns showing the
respective powers of the expansion variables x0,1 through x0,4 and t.

4.1 The Planar Kepler Problem

As a first example we study the planar Kepler problem,

ẋ1 = x2

ẋ2 = − x1

(x2
1 + x2

3)
3/2

ẋ3 = x4

ẋ4 = − x3

(x2
1 + x2

3)
3/2

,

where we choose the initial conditions x(0) = X0 + x0 . Here X0 =
(0,−1, 1, 0)T is the midpoint of the domain D for x0 and the starting point
for the reference orbit, and D = [−10−4, 10−4]4. The reference orbit is pe-
riodic with a period T = 2π. The Poincaré section on which we project is
S := {x ∈ R

4 : x1 = 0}.
The Kepler problem serves as a good test case, since not only the reference

orbit, but all orbits originating in X0 + D are periodic. This means every
trajectory crosses S at the same point where it originated after one revolution.
Thus the ith component Pi(x0) of the Poincaré map is the identity with
respect to the expansion variable x0,i. In the following, we show the results of
the expansion coefficients of the crossing time tc(x0) and the final components
of P(x0) after an 18th order computation. The result for the crossing time
tc(x0) is

I COEFFICIENT ORDER EXPONENTS

1 0.2731858587386304E-13 0 0 0 0 0 0

2 0.3905776925772165E-03 1 1 0 0 0 0

3 -.7362216057939549E-02 1 0 1 0 0 0

4 0.7362216057939555E-02 1 0 0 1 0 0

5 -.1651789475691988E-16 1 0 0 0 1 0

...

197 0.1730482119203762E-18 7 1 1 3 2 0

198 0.1875627603432954E-18 7 0 2 3 2 0

199 -.1075817722340857E-18 7 1 2 1 3 0

200 0.1018021833717433E-18 7 1 1 2 3 0

201 0.1149402904334884E-18 7 0 2 2 3 0,
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where this is the expansion around the period T = 2π. We see that tc(x0) has
no constant part up to roughly machine precision and scales almost linearly
with the variables x0,1 to x0,4, the second order terms are already significantly
smaller.

Next we display the final result for the first component P1(x0). If the
computed Poincaré map projects to the surface S, then its constant part
must vanish. Indeed this is what we see up to leftover terms of negligible
magnitude:

I COEFFICIENT ORDER EXPONENTS

1 -.2488159282559507E-19 2 0 2 0 0 0

2 -.2482865326639168E-19 2 0 0 2 0 0.

Finally we give the result for P2(x0). In this case we restricted the Poincaré map
P to S by setting x0,1 = 0. We see that P2(x0) preserves the first order identity in
the x0,2 variable up to a scaling factor of 10−4, the domain half width. This rescaling
supports validated computation.

I COEFFICIENT ORDER EXPONENTS

1 -.9999999999999988 0 0 0 0 0 0

2 0.1000000000000023E-03 1 0 1 0 0 0

3 -.1695071177393755E-17 1 0 0 1 0 0

4 -.1850766989750646E-18 1 0 0 0 1 0

5 0.3388131789017201E-19 2 0 2 0 0 0

...

34 0.2649298927416580E-19 7 0 2 5 0 0

35 -.2439099199128762E-19 7 0 5 1 1 0

36 0.5124187266775200E-19 7 0 4 2 1 0

37 0.5711061765338940E-19 7 0 3 3 1 0

38 0.2743591506567708E-19 7 0 2 4 1 0.

The results for P3(x0) and P4(x0) are similar to P2(x0).

4.2 A Muon Cooling Ring

In accelerator physics, a muon cooling ring is a simple representation of a device
made up of solenoids, RF cavities, and hydrogen absorbers that is designed to ‘cool’
a muon particle beam, i.e. reduce the volume of phase space the beam occupies; for
details see [5, 348,421]. Its equations of motion are

ẋ1 = x3

ẋ2 = x4

ẋ3 = x4 − α
p
x2

3 + x2
4

x3 +
α

p
x2

1 + x2
2

x2

ẋ4 = −x3 − α
p
x2

3 + x2
4

x4 − α
p
x2

1 + x2
2

x1 ,

where α ∈ [0, 1] is the cooling parameter (α = 1 being the fastest cooling), and
we consider the initial values x(0) = X0 + x0 with X0 = (0, 1, 1, 0)T and D =
[−10−4, 10−4]4. The centerpoint X0 lies on a periodic orbit of the form ϕ(0, t) =



High-Order Representation of Poincaré Maps 65

(cos(t),− sin(t),− sin(t),− cos(t)) with a period of T = 2π. However, no other orbit
originating in the box X0 +(D\{0}) is periodic, but instead is slowly pulled towards
the invariant solution ϕ(0, t) with an asymptotic phase. This should be visible from
the eigenvalues of the Poincaré map for the section S := {x ∈ R

4 : x1 = 0}. Again,
we show the results for the crossing time tc(x0) and the components of P(x0) after
an 18th order computation with a choice of α = 0.1. For the crossing time tc(x0) we
obtain:

I COEFFICIENT ORDER EXPONENTS

1 0.2041481078081152E-13 0 0 0 0 0 0

2 -.4881805626857354E-02 1 1 0 0 0 0

3 0.1420453958184906E-03 1 0 1 0 0 0

4 -.1420453958184956E-03 1 0 0 1 0 0

5 0.1804749589528265E-02 1 0 0 0 1 0

...

66 -.1728272108226884E-14 4 0 0 2 2 0

67 -.1380573416990237E-15 4 1 0 0 3 0

68 0.5285647002734696E-17 4 0 1 0 3 0

69 0.4817909040734367E-14 4 0 0 1 3 0

70 0.6371702406569035E-16 4 0 0 0 4 0.

This is the expansion around the period T = 2π. Inserting this into the flow
ϕ(x0, t) and restricting ϕ(x0, t) to S yields that for P1(x0) all expansion coefficients
are zero. For the component P2(x0) we get:

I COEFFICIENT ORDER EXPONENTS

1 1.000000000000000 0 0 0 0 0 0

2 0.7300927710720673E-04 1 0 1 0 0 0

3 0.2699072289279350E-04 1 0 0 1 0 0

4 -.5747288684637408E-06 1 0 0 0 1 0

5 -.1174080052084289E-08 2 0 2 0 0 0

...

31 -.3092279715866550E-16 4 0 1 1 2 0

32 0.5188804928611400E-16 4 0 0 2 2 0

33 0.7267117814015809E-18 4 0 1 0 3 0

34 -.3574718550317267E-17 4 0 0 1 3 0

35 -.4144960345719535E-17 4 0 0 0 4 0;

for P3(x0):

1 1.000000000000000 0 0 0 0 0 0

2 -.3619742360532049E-19 1 0 1 0 0 0

3 0.1000000000000003E-03 1 0 0 1 0 0

4 -.1167493942379190E-08 2 0 2 0 0 0

5 0.2334987884782753E-08 2 0 1 1 0 0

...

30 -.9698631674909994E-17 4 0 1 1 2 0

31 0.3092775905473012E-16 4 0 0 2 2 0

32 0.7881782248585311E-18 4 0 1 0 3 0

33 -.3750583012239952E-17 4 0 0 1 3 0

34 -.4166566008579194E-17 4 0 0 0 4 0;
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and for P4(x0):

I COEFFICIENT ORDER EXPONENTS

1 0.2775557561562886E-16 0 0 0 0 0 0

2 0.5747288684637220E-06 1 0 1 0 0 0

3 -.5747288684637250E-06 1 0 0 1 0 0

4 0.7306674999405320E-04 1 0 0 0 1 0

5 0.4038817974889429E-12 2 0 2 0 0 0

...

31 0.3038943603851730E-18 4 0 1 1 2 0

32 -.5017859446188993E-17 4 0 0 2 2 0

33 0.2175112902784127E-18 4 0 1 0 3 0

34 -.2064794267030274E-16 4 0 0 1 3 0

35 0.1176604677592068E-17 4 0 0 0 4 0.

If we compute the eigenvalues of the linear part P (x0,2, x0,3, x0,4) of P(x0), when
viewed as a function of x0,2, x0,3, and x0,4, we get λ1 = 1 and λ2,3 ≈ 0.73038 ±
i(0.00574). λ1 is connected to the identity in the linear part of P3(x0) with respect
to x0,3, and the magnitude of less than 1 for λ2 and λ3 is a consequence of the
cooling action in x2- and x4-directions, the desired effect of the muon cooler.

Fig. 1. Tracking of six particles for the first 50 turns in the muon cooling ring.

We use the Poincaré map for a detailed study of the dynamics by using it to
iterate an ensemble of initial conditions through repeated orbits around the ring.
This is an approach frequently followed in beam physics [37, 157], since it replaces
time consuming integration of ODEs for one revolution by mere application of a
polynomial. The results are shown in Fig. 1, showing the behavior in the transverse
x0,2-x0,4-plane of an ensemble of six particles launched on the x0,2-axis at the points
n · 4 cm for n = 1, . . . , 6. The tracking picture is obtained after repeated application
of the transverse components of the Poincaré map for 50 turns, and clearly exhibits
the desired cooling effect near the attracting center.


