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Abstract

A method to obtain DA approximations of Poincaré maps directly from a DA approximation of the flow of the differential equation

for certain types of flows and Poincaré sections is presented. Examples of the performance of the method, its computational

implementation, and its use for problems in beam physics are given.
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1. Introduction

Poincaré maps are a standard tool in general dynamical
systems theory for the study of properties of a system
under consideration, e.g. the flow generated by an ordinary
differential equation. A Poincaré map essentially describes
how points on a plane Si (a Poincaré section) which is
transversed by such an orbit O (the reference orbit) and
which are sufficiently close to O get mapped onto another
plane Sf by the flow. A frequent application is the case
where Si ¼ Sf , and one of the most prominent applications
is the study of asymptotic stability of periodic or almost
periodic orbits.

For applications in Accelerator Physics, Poincaré maps
are important because the dynamics is usually described in
terms of so-called curvilinear coordinates, i.e. an orthogo-
nal coordinate system that is attached to a reference orbit
such that one of its axes points in the direction of its
velocity, another one in the direction of its acceleration
component perpendicular to the velocity, and so on; for
details see for example Refs. [1–4]. Instead of solving the
ODEs of the original system under consideration with time
as the independent variable, the ODEs are transformed
e front matter r 2006 Elsevier B.V. All rights reserved.
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such that the new independent variable is the arclength
along the reference orbit, and everything is described in
terms of the coordinates in the plane perpendicular to the
reference orbit.
The benefits of this approach are many: for imaging

systems like electron microscopes or other optical systems,
the method directly describes how particles originating in
the object plane Si are mapped into the image plane Sf ,
since what matters is the position on this image plane
where a detector or, in earlier days, photographic paper or
plates are located. Likewise, for dispersive systems, it
describes how particles of different energies are mapped
into different locations in a detector plane Sf . Finally, for
large storage rings and circular accelerators, one usually
picks one plane S in the ring and assesses long-term
stability by studying the Poincaré map for S ¼ Si ¼ Sf .
For many of the conventional particle optical systems,

the reference orbit and the dynamics in the corresponding
curvilinear coordinates is well-known [1,5]. However, for
some of the modern particle optical elements this is not the
case, and the mere formulation of the ODEs describing the
system under consideration represents a significant pro-
blem. Two of the prominent examples of such cases are the
dynamics in muon accelerators and storage rings, which
are characterized by very large emittances and unusual field
arrangements [6–8], and the analysis of modern high-
resolution large acceptance particle spectrographs, where
the details of the orbits in the fringe field regions of magnets
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play a prominent role [9–11]. In these cases it is still possible
to solve the underlying ODEs in conventional Cartesian
coordinates with time as an independent variable; but for
the connection with subsequent analysis, it is necessary to
transform the results to the form of a Poincaré map.

In the following sections, we will show how this can be
obtained using differential algebraic (DA) tools as in Refs.
[2,12]. We remark that the proposed algorithm is a part of
an extended method which allows the computation of
rigorous interval enclosures of the polynomial approxima-
tion of the Poincaré map discussed here.

2. Review: Essential DA-tools

The DA tools which are necessary to appreciate the
method are described in detail in Ref. [2]. However, we
wish to review briefly the two most important applications
of DA-methods as far as they relate to the problem which
is discussed here: the DA-integration method which is
employed to obtain high-order polynomial approximations
of the flow jðx0; tÞ and the functional inversion tools which
are necessary in later steps of the algorithm.

2.1. DA-integration of ODEs

First, we tackle the problem of obtaining a polynomial
approximation of the dependence on initial conditions of
the solution of the initial value problem

_xðtÞ ¼ f ðxðtÞ; tÞ; xð0Þ ¼ X 0 þ x0 (2.1)

where f : Rn � Uopen�!Rn is given as a composition of
intrinsic functions which have been defined in DA-
arithmetic. As a byproduct this also entails that f exhibits
sufficient smoothness to guarantee existence and unique-
ness of solutions for all initial conditions. The vector X 0 2

Rn is constant and the midpoint of the domain box
D ¼ ½�di; di�

n, i 2 f1; . . . ; ng, for the small relative initial
conditions x0 2 D. Typical box widths di are of the order
10�2–10�8. The polynomial approximation jðx0; tÞ of the
flow of Eq. (2.1) we desire is an expansion in terms of the
independent time coordinate t and the relative initial
conditions x0, and the representation of this approximation
is a so-called DA-vector which stores the expansion
coefficients up to a desired order n in a structured fashion.

To achieve the aforementioned goal, we proceed by
recalling that the standard procedure of a Picard-iteration
yields a polynomial approximation of the solution of (2.1)
after repeated application of a Picard-operator on the
initial conditions. The iteration in general increases the
order of the expansion by one in every step, and since a
DA-vector can store coefficients up to a prespecified order
n, we expect that the iteration converges after finitely many
steps in the DA-case.

Accordingly, the Picard-operator in the DA-computa-
tion is defined by

Cð:Þ:¼ðX 0 þ x0Þ þ q�1nþ1f ð:Þ
where f is computed in DA-arithmetic and q�1nþ1 is the
antiderivation operator, essentially the integration with
respect to the ðnþ 1Þst variable t. It can now be shown
that C is a contracting operator (with a suitable definition
of a contraction) and fixed-point theorems exist which
guarantee that repeated application of C on the initial
condition xð0Þ ¼ X 0 þ x0 will converge to the DA-vector
representation of the solution jðx0; tÞ of (2.1) in finitely
many steps.

2.2. Functional inversion using DA-arithmetic

Next we wish to review the actual functional inversion
which is employed to obtain the inverse M�1 of a function
M, or rather a DA-vector which stores the expansion
coefficients of M�1 up to the desired order. Assume we are
given a smooth map M : Rn�!Rn s.t. Mð0Þ ¼ 0 and its
linearization M is invertible at the origin. This assures the
existence of a smooth inverse M�1 in a neighborhood of
the origin. If we write M ¼M þN, where N is the
nonlinear part and insert this into the fundamental
condition M �M�1 ¼ I, we easily obtain the relation

M�1 ¼M�1 � ðI�N �M�1Þ

and see that the desired inverse M�1 is a fixed point of the
operator Cð:Þ:¼M�1 � ðI�N � :Þ, which proves to be a
contraction using a suitable definition of a contracting
operator in the DA-picture. Hence the existence of the
fixed point M�1 of C is verified and M�1 can be obtained
through repeated iteration of C, beginning with the identity
I. Also in this case the iteration converges to M�1 in
finitely many steps.

3. Description of the method

3.1. Preliminary remarks

We begin our discussion by the assumption that the
ODE under consideration exhibits a periodic or almost
periodic solution jðX 0; tÞ which starts on a suitable
Poincaré section and returns after a period T, which has
been determined approximately e.g. by a high-order
Runge–Kutta-integration. Once such a periodic orbit
jðX 0; tÞ has been identified, we proceed by performing
the DA-integration of Eq. (2.1) for one cycle as described
in the last section. The goal is to use the new found local
dependence on the relative initial conditions x0 to make
statements about the qualitative properties of the periodic
orbit.
As Poincaré sections, we want to be able to consider as

large a class of surfaces as possible. A suitable assumption
is that the Poincaré section S � Rn is given in terms of a
function s : Rn�!R as S:¼fx 2 Rn : sðxÞ ¼ 0g. Since the
function s also needs to be expressed in terms of
elementary functions available in the computer environ-
ment for DA arithmetic, it is necessarily smooth, and hence
also the surface S. This should contain most types of
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surfaces which might be of practical interest, in particular,
the most common case where S is just an affine plane of the
form S:¼fx 2 Rn : x1 ¼ cg for some c 2 R; here we would
have sðxÞ ¼ x1 � c.

Another condition which needs to be met by S is that the
flow is transversal to it for all possible initial conditions
x0 2 D. Without this assumption a Poincaré map cannot
be defined meaningfully, and we check this condition in the
following way: at any point s 2 S the gradient rsðsÞ is
perpendicular to S, and the direction of the flow is f ðsÞ. So
we need to ensure that the scalar product hrsðsÞ; f ðsÞi does
not change its sign 8 s 2 S \ jðD;TÞ. In fact, we will even
demand the more stringent condition that
0e½hrsðjðx0;TÞÞ; f ðjðx0;TÞÞi�x02D, where ½gðxÞ�x2D de-
notes a rigorous interval enclosure of a function g over D.

3.2. Outline of the method

The general goal of the method is to define a
Poincaré map which is acting on a suitably chosen section
S using only information already available from the DA
vector representation of the flow. For every possible initial
condition, we wish to derive an expression of the crossing
time tcðx0Þ at which the trajectory originating at the said
initial value traverses the section S, and then reinsert this
time tcðx0Þ back into the DA vector jðx0; tÞ describing the
flow. This yields a polynomial jðx0; tcðx0ÞÞ only depending
on the initial conditions x0 which projects these values
almost exactly onto the Poincaré section, up to accuracy
restrictions depending on the approximation order. The
information about this crossing time is contained in the
flow and the geometry of S in an implicit way, hence we
need to use suitable tools for functional inversion in the
DA context as has been described above. The function
jðx0; tÞ as such cannot be invertible, since the dimension-
ality of its domain and range do not even agree. Instead, we
will introduce an auxiliary function cðx; tÞ which is
substantially easier to handle and yields all relevant results.
For cðx; tÞ to be invertible in the first place we need c to
map into Rnþ1. This motivates the following:

Definition 1 (Auxiliary function for j). Let j be a
polynomial representation for the flow under considera-
tion, and let S be a Poincaré section as described above
which is traversed by the flow. We then define the auxiliary

function c : Rnþ1 � D� I�!Rnþ1 by

ckðx; tÞ:¼xk 8k 2 f1; . . . ; ng

cnþ1ðx; tÞ:¼sðjðx; tÞÞ

where I � R is open interval s.t. T 2 I and cnþ1 is well-
defined.

Essentially, c contains the crucial part of the flow and is
‘‘filled up’’ with trivial identities in order to achieve
invertibility. It can be shown that the map c is indeed
invertible at the points fðx;TÞ 2 Rnþ1 : x 2 Dg. We can now
employ DA inversion tools to manipulate c and obtain the
inverse c�1ðx; tÞ. Naturally, because of the identities in c,
also c�1 will preserve these identities and hence only the
component c�1nþ1ðx; tÞ is nontrivial. Once we have estab-
lished c�1ðx; tÞ we evaluate it at the point y:¼ðx0; 0Þ to solve
for the crossing time as a function of x0 and set

tcðx0Þ:¼c
�1
nþ1ðx0; 0Þ.

However, jðx0; tcðx0ÞÞ still depends on all components of
x0, since the crossing time can be specified for the whole
domain box D. But the Poincaré map P is supposed to be
defined on the surface S, a n� 1-dimensional smooth
submanifold of Rn, so one of the coordinates should be
redundant. We can perform this restriction of P to S in the
following way:
We assume that 8x 2 jðD;TÞ \ S the implicit condition

sðxÞ ¼ 0 can be stated explicitly as xj ¼ ~sðx1; . . . ;
xj�1;xjþ1;xnÞ for some j 2 f1; . . . ; ng. This can always be
done locally, but it is not a very strict requirement that this be
true globally in the set jðD;TÞ \ S. From now on, we will
assume wlog that j ¼ 1, i.e. x1 ¼ ~sðx2; . . . ; xnÞ. Then we
define the Poincaré map P by setting x0;1 ¼ ~sðx0;2; . . . ;x0;nÞ

and t ¼ tcðx0Þ in jðx0; tÞ:

Pðx0Þ:¼½jð ~sð:Þ; :; tcð ~sð:Þ; :ÞÞ�ðx0;2; . . . ;x0;nÞ.

As a special case again consider the common instance
S:¼fx 2 Rn : x1 ¼ cg for some c 2 R. Then we have sðxÞ ¼
x1 � c and thus ~sðx2; . . . ;xnÞ ¼ c and Pðx0Þ:¼jðc; x0;2; . . . ;
x0;n; tcðc; x0;2; . . . ;x0;nÞÞ.

3.3. Summary of the algorithm

We conclude the presentation of the method by
summarizing the algorithmic steps:
(1)
 Obtain a DA-vector representation of the solution
jðx0; tÞ for one cycle.
(2)
 Verify that 0e½hrsðjðx0;TÞÞ; f ðjðx0;TÞÞi�x02D.

(3)
 Set up and invert the auxiliary function c using DA

functional inversion to obtain a DA-vector representa-
tion of c�1.
(4)
 Evaluate tcðx0Þ:¼c
�1
ðx0; 0Þ.
(5)
 Evaluate Pðx0Þ:¼jðx0; tcðx0ÞÞ.

(6)
 Restrict Pðx0Þ to S by replacing x0;1 by ~sðx0;2; . . . ;x0;nÞ.
4. Example: A muon cooling ring

The method as described above has been implemented in
the COSY Infinity environment [13], which offers support
for the DA-vector data type and its operations. In fact,
COSY even supports the remainder-enhanced DA-vector
or Taylor Model data type, which offers rigorous error
estimates on the polynomial DA-representation, and we
hope to extend the method described above in such a way
that also validated error bounds for the Poincaré map can
be obtained.
The system we wish to analyze is a problem from

accelerator physics, a simple muon cooling ring based on
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continuous gas-based cooling and continuous re-accelera-
tion. Focusing is provided by a quadrupole-based FO-
DO system; for details refer to Refs. [7,8,14]. The ODEs
governing the motion are described as

_x1 ¼ x3

_x2 ¼ x4

_x3 ¼ x4 � ð1þ kqrxy þ khr2xyÞ � a �
x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

q þ a �
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

q

_x4 ¼ x3 � ð1þ kqrxy þ khr2xyÞ � a �
x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

q � a �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 þ x2

2

q

where a describes the cooling and re-acceleration strength,
kq is the quadrupole focusing strength, and kh is the
sextupole strength. In the following simulations, we choose
the specific values a ¼ 0:1, a focusing scheme based on a
12-fold FODO structure described by kq ¼ 10 sinð12tÞ; and
a sextupole strength of kh ¼ 3.

We consider the initial values xð0Þ:¼X 0 þ x0 with
X 0:¼ð0; 1; 1; 0Þ

T and D:¼½�10�4; 10�4�4. The centerpoint
X 0 lies on a periodic orbit of the form jðX 0;tÞ ¼

ðcosðtÞ;� sinðtÞ;� sinðtÞ;� cosðtÞÞ and hence has a period
of T ¼ 2p. However, no other orbit originating in the box
X 0 þ ðDnf0gÞ is periodic, but instead is slowly pulled
towards the invariant solution jðX 0;tÞ with an asymptotic
phase, i.e. jðX 0 þ x0;tÞ !t!1 jðX 0;t� yðx0ÞÞ for some
phase yðx0Þ.

For this example, we compute the Poincaré map for two
planes S1 and S2 before and after one of the 12 FODO
cells, so that they form an angle of 2p=12. This map is
suitable to be iterated by the COSY beam tracking routines
to produce graphics output.

First, we show the results for the crossing time tc and the
components of P after an 14th order computation with a
choice of a ¼ 0:1, kh ¼ 3 and kq ¼ 10. The polynomial
coefficients are scaled to the phase-space coordinate widths
of 10�4; as a result, each coefficient directly shows the
maximum contribution that the corresponding term can
make, which helps readability. For the crossing time tc we
obtain
I
 Coefficient
 Order
 Exponents
1
 �0.2107121099493938E�01
 1
 1
 0
 0
 0
 0

2
 0.9347612653241022E�02
 1
 0
 1
 0
 0
 0

3
 �0.1201628825073957E�01
 1
 0
 0
 1
 0
 0

4
 0.2946295382772426E�02
 1
 0
 0
 0
 1
 0

5
 �0.1066867771975123E�06
 2
 2
 0
 0
 0
 0

6
 0.6346330104788356E�07
 2
 1
 1
 0
 0
 0

7
 0.5162610528656688E�06
 2
 0
 2
 0
 0
 0

8
 0.2072768191336032E�05
 2
 1
 0
 1
 0
 0

9
 �0.1221608485172613E�05
 2
 0
 1
 1
 0
 0

10
 0.1203023359953680E�05
 2
 0
 0
 2
 0
 0

11
 0.9954413063005544E�08
 2
 1
 0
 0
 1
 0

12
 �0.1069046574180368E�05
 2
 0
 1
 0
 1
 0

13
 �0.2865490547207094E�06
 2
 0
 0
 1
 1
 0
14
 �0.1679258946667011E�07
 2
 0
 0
 0
 2
 0
..

.

95
 0.1412525551591218E�16
 5
 1
 0
 2
 2
 0

96
 �0.8773781577679656E�17
 5
 0
 1
 2
 2
 0

97
 �0.8503558663031080E�17
 5
 2
 0
 0
 3
 0

98
 0.7544699027997683E�17
 5
 1
 1
 0
 3
 0

99
 �0.9698655865255742E�17
 5
 1
 0
 1
 3
 0
Inserting this into the flow jðx0; tÞ and restricting
jðx0; tÞ to S yields that P1ðx0Þ is given by
I
 Coefficient
 Order
 Exponents
1
 0.5551115123125783E�16
 0
 0
 0
 0
 0
 0

2
 �0.2475735600348810E�19
 4
 0
 0
 0
 4
 0

3
 �0.3388692518831476E�19
 5
 0
 3
 2
 0
 0

4
 0.3333120608373854E�19
 5
 0
 2
 3
 0
 0

5
 �0.3552515768008433E�19
 5
 0
 2
 2
 1
 0

6
 0.3530916534253391E�19
 5
 0
 1
 3
 1
 0
which is indeed zero up to roundoff error, as expected. For
the component P2ðx0Þ we get
I
 Coefficient
 Order
 Exponents
1
 1.000000000000000
 0
 0
 0
 0
 0
 0

2
 0.4057920121836106E�04
 1
 0
 1
 0
 0
 0

3
 0.1403405185907984E�04
 1
 0
 0
 1
 0
 0

4
 0.4821854587969232E�04
 1
 0
 0
 0
 1
 0

5
 �0.6880188908023518E�08
 2
 0
 2
 0
 0
 0

6
 0.2218250197573597E�09
 2
 0
 1
 1
 0
 0

7
 0.1569939973211117E�08
 2
 0
 0
 2
 0
 0

8
 0.3959964998800090E�08
 2
 0
 1
 0
 1
 0

9
 �0.5900424606672487E�08
 2
 0
 0
 1
 1
 0

10
 0.1484090992045488E�08
 2
 0
 0
 0
 2
 0
..

.

36
 0.2905642684509707E�19
 5
 0
 4
 1
 0
 0

37
 0.3555459693963146E�19
 5
 0
 3
 1
 1
 0

38
 �0.9121533983931736E�19
 5
 0
 2
 2
 1
 0

39
 0.8209709912306776E�19
 5
 0
 1
 3
 1
 0

40
 �0.2773032070261215E�19
 5
 0
 0
 4
 1
 0
for P3ðx0Þ:
I
 Coefficient
 Order
 Exponents
1
 1.000000000000000
 0
 0
 0
 0
 0
 0

2
 0.3916009498009659E�14
 1
 0
 1
 0
 0
 0

3
 0.9999999999976929E�04
 1
 0
 0
 1
 0
 0

4
 �0.6735131658115734E�15
 1
 0
 0
 0
 1
 0

5
 �0.5073800545630164E�08
 2
 0
 2
 0
 0
 0

6
 0.5939776450415390E�08
 2
 0
 1
 1
 0
 0

7
 �0.1806310552295999E�08
 2
 0
 0
 2
 0
 0

8
 0.1202564475352457E�07
 2
 0
 1
 0
 1
 0

9
 �0.7241099329147064E�08
 2
 0
 0
 1
 1
 0
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Fig.

ring.
�0.2320522246878191E�08
1. Tracking of six particles for the fir
2

st 10 turn
0

s in
0

the m
0

uon
2

cool
0

..

.

47
 0.4870521605534692E�18
 5
 0
 1
 2
 2
 0

48
 �0.1330388468272154E�18
 5
 0
 0
 3
 2
 0

49
 �0.8160539983180998E�19
 5
 0
 2
 0
 3
 0

50
 0.9361435018707453E�19
 5
 0
 0
 2
 3
 0

51
 �0.3132073512809148E�19
 5
 0
 1
 0
 4
 0
and for P4ðx0Þ:
I
 Coefficient
 Order
 Exponents
Fig. 2. Tracking of six particles for the first 20 turns in the muon cooling

ring.
1
 �0.5551115123125783E�16
 0
 0
 0
 0
 0
 0

2
 �0.9657136347505140E�04
 1
 0
 1
 0
 0
 0

3
 0.5966243086151465E�04
 1
 0
 0
 1
 0
 0

4
 0.1191088537008158E�03
 1
 0
 0
 0
 1
 0

5
 �0.1332746698395360E�07
 2
 0
 2
 0
 0
 0

6
 �0.1368532466582279E�07
 2
 0
 1
 1
 0
 0

7
 0.2399464571937943E�08
 2
 0
 0
 2
 0
 0

8
 �0.2076327780857213E�09
 2
 0
 1
 0
 1
 0

9
 0.3328742850177919E�08
 2
 0
 0
 1
 1
 0

10
 �0.1163278287959000E�08
 2
 0
 0
 0
 2
 0
..

.

Fig. 3. Tracking of six particles for the first 50 turns in the muon cooling
48
 0.7596735610932742E�18
 5
 0
 1
 2
 2
 0

ring.
49
 �0.7681001402837021E�19
 5
 0
 0
 3
 2
 0
50
 0.9040407096077550E�19
 5
 0
 2
 0
 3
 0

51
 �0.2515146267314533E�18
 5
 0
 1
 1
 3
 0

52
 0.5404827028051936E�19
 5
 0
 0
 2
 3
 0
In the following we utilize the Poincaré maps just
obtained to perform a tracking analysis of the system.
Specifically, we use the rescaled maps P2ðx0Þ and P3ðx0Þ

and perform beam tracking using the COSY Infinity TR-
routine. A total of n ¼ 6 particles are launched on the x-
axis at the positions n � 4 cm. Figs. (1–3) show the evolution
of the motion over 10 turns, 20 turns, and 50 turns,
respectively. The cooling action of the system is clearly
visible, resulting in the apparent collapse towards the
origin. Fig. 4 shows the dynamics displayed in normal form
ing

Fig. 4. Tracking of six particles for the first 50 turns in the muon cooling

ring, displayed in normal form coordinates.
coordinates [2,15], which decouples horizontal and vertical
motion and, in the case of the damping, leads to a motion
that follows a perfect logarithmic spiral.
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