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Abstract. We describe a full array of solenoidal elements in the high order transfer map
computation code COSY INFINITY, starting from a loop coil to any superposition of thick
straight solenoids. Since the fringe field of coils extends very far longitudinally, and at the
same time contains various nonlinearities due to the longitudinal dependence of the field,
accurate but fast field computation is necessary. In COSY, the 3D fields along the integration of
transfer map through such an element are computed using a Differential Algebra based PDE
solver, which is very fast and only requires information about the analytical axial potential.
By examples, we illustrate the feature of each solenoidal element and how to simulate realistic
beamlines containing combinations of solenoids and other elements.

PACS numbers: 02.60.Cb, 02.60.Gf, 02.60.Lj, 05.45.-a, 29.27.-a, 29.27.Eg, 41.85.-p,
41.85.Ja, 41.85.Lc

1. Introduction

The differential algebraic (DA) methods [1, 2] allow the efficient computation and
manipulation of high order Taylor transfer maps. When integrating transfer maps through
electromagnetic fields, the full 3D fields are computed as part of each integration time step
using DA PDE (partial differential equation) solvers. First, we address the mechanism of the
method of DA fixed point PDE solvers, and as will be seen, the method is very compact and
fast, and only requires the analytical axial potential for solenoidal elements.

After developing the theoretical background, we illustrate a variety of solenoidal
elements available in COSY INFINITY [3], and study their features. Compared to multipole
electromagnetic elements as dipoles, quadrupoles and so forth, the fringe fields of solenoids
extend for a long distance. Particularly because of this long extension of the fringe fields,
in practice it is important to be able to efficiently combine the fields consisting of several
solenoidal coils, which are also treated with the DA PDE solvers. This often even simplifies
the simulation efforts due to the shortened fringe fields created by the cancellation of fields
of counteracting coils, as will be seen in an example from a muon beam cooling cell
[4]. At last we show some examples of very atypical uses of standard electromagnetic
elements, producing solenoidal fields from non-solenoidal elements, or producing bending
fields from solenoidal elements. Such beam optical systems are particularly important in
several components of neutrino factory designs [4].
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2. DA fixed point PDE solvers

The idea of differential algebraic (DA) methods [1, 2, 5] is based on the observation that it
is possible to extract more information about a function than its mere values on computers.
One can introduce an operation T denoting the extraction of the Taylor coefficients of a pre-
specified order n of the function f ∈ Cn(Rv). In mathematical terms, T is an equivalence
relation, and the application of T corresponds to the transition from the function f to the
equivalence class [ f ] comprising all those functions with identical Taylor expansion in v
variables to order n; the classes are apparently characterized by the collection of Taylor
coefficients. Since Taylor coefficients of order n for sums and products of functions as well as
scalar products with reals can be computed from those of the summands and factors, the set of
equivalence classes of functions can be endowed with well-defined operations, leading to the
so-called Truncated Power Series Algebra (TPSA) [6, 7]. More advanced tools address the
composition of functions, their inversion, solutions of implicit equations, and the introduction
of common elementary functions[1]. For treatment of ODEs and PDEs, the power of TPSA
can be enhanced by the introduction of derivations ∂ and their inverses ∂−1, corresponding
to the differentiation and integration on the space of functions, resulting in the Differential
Algebra nDv. This structure allows the direct treatment of many questions connected with
differentiation and integration of functions, including the solution of the ODEs d�x/dt = �f (�x, t)
describing the motion and PDEs describing the fields [5].

To any element [ f ] ∈ nDv we define the depth λ ([ f ]) as

λ ([ f ]) =
{

Order of first nonvanishing derivative of f if [ f ] �= 0
n+1 if [ f ] = 0

.

In particular, any function f that does not vanish at the origin has λ ([ f ]) = 0.
Let O be an operator on the set M ⊂ nDmv , where nDmv is the set describing vector

functions �f = ( f1, ..., fm) from Rv to Rm. Then we say that O is contracting on M if for any�a,
�b ∈M with�a �=�b,

λ (O(�a)−O(�b))> λ (�a−�b).

In practical terms this means that after application of O , the derivatives in �a and�b agree to a
higher order than before application of O . For example, the antiderivation ∂−1

k is a contracting
operator. Contracting operators satisfy a fixed point theorem:

Theorem 1 (DA Fixed Point Theorem) Let O be a contracting operator on M ⊂ nDv that
maps M into M. Then O has a unique fixed point a ∈M that satisfies the fixed point problem
a = O(a). Moreover, let a0 be any element in M. Then the sequence ak = O(ak−1) for
k= 1,2, ... converges in finitely many steps (in fact, at most (n+1) steps) to the fixed point a.

The fixed point theorem is of great practical usefulness since it assures the existence of
a solution, and moreover allows its exact determination in a very simple way in finitely many
steps. The proof of the theorem can be found in [1]. The DA fixed point theorem has many
useful applications, in particular a rather straightforward solution of ODEs and PDEs [5].

The direct availability of the derivation ∂ and its inverse ∂−1 allows to devise efficient
numerical PDE solvers of any order. The DA fixed point theorem allows one to solve PDEs
iteratively in finitely many steps by rephrasing them in terms of a fixed point problem. The
details depend on the PDE at hand, but the key idea is to eliminate differentiation with respect
to one variable and replace it by integration. As an example, consider the rather general PDE
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where a1, a2, b1, b2, c1 c2 are functions of x, y, z. The PDE is re-written as

V = V |y=0+
∫ y

0

1
b2

{(
b2

∂V
∂y

)∣∣∣∣
y=0

−
∫ y

0

[
a1

b1

∂
∂x

(
a2

∂V
∂x

)
+
c1

b1

∂
∂ z

(
c2

∂V
∂ z

)]
dy

}
dy .

The equation is now in fixed point form. Now assume the derivatives of V and ∂V/∂y with
respect to x and z are known in the plane y = 0. If the right hand side is contracting with
respect to y, the various orders in y can be calculated by mere iteration.

As a particularly important example, consider the Laplace equation. It can be represented
in general curvilinear coordinates [8, 9]. In the special case of a curvilinear coordinate system,
the Laplace equation is obtained as [8, 9]

�V = 1
1+hx

∂
∂x

[
(1+hx)

∂V
∂x

]
+

∂ 2V
∂y2 +

1
1+hx

∂
∂ s

(
1

1+hx
∂V
∂ s

)
= 0.

In the case of a straight section, where h= 0, it reduces to nothing but the Cartesian Laplace
equation. The fixed point form of the Laplace equation in the planar curvilinear coordinates
is

V = V |y=0+
∫ y

0

(
∂V
∂y

)∣∣∣∣
y=0

dy

−
∫ y

0

∫ y

0

{
1
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∂
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[
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+

1
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∂
∂ s

(
1

1+hx
∂V
∂ s

)}
dydy .

In this form, the right hand side has the interesting property that, regardless of what function
V is inserted, the parts not depending on y are reproduced exactly, since all integrals introduce
y dependence. Because of the integral operation, for a given choice of x and s and considering
only the y dependence, the right hand side is contracting. In COSY INFINITY [3], the planar
curvilinear Laplace equation is solved by the following very compact code

POLD := P ;
HF := 1+H*DA(IX) ;
HI := 1/HF ;
LOOP I 2 NOC+2 2 ;

P := POLD - INTEG(IY,INTEG(IY,
HI*( DER(IX,HF*DER(IX,P)) + DER(IS,HI*DER(IS,P)) ) )) ;

ENDLOOP ;

Here the boundary condition V |y=0 +
∫ y

0 (∂V/∂y)|y=0 dy is provided through the
incoming form of P, which is obtained using the DA expression in COSY. The DA fixed
point iteration converges to the solution potential P in finitely many steps. DA(IX) represents
the identity for x, NOC is the current transfer map computation order, and DER(I,...) and
INTEG(I,...) correspond to the DA derivative and the DA anti-derivative operations with
respect to the variable specified by the first argument I, namely “∂xI” and “

∫ xI
0 dxI”. The full

3D field is derived from the solution potential P, using the elementary DA derivations ∂x, ∂y
and ∂s. In coded form, we have

BX := DER(IX,P) ;
BY := DER(IY,P) ;
BZ := DER(IS,P) ;

The advantages of the method are:

• Only the field in the midplane is needed
• The resulting field will always satisfy the stationary Maxwell equations
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• The method works to any order

Another important coordinate system often suitable for computations under considera-
tion are the cylindrical coordinates, in which the Laplace equation takes the simple form

�V = 1
r

∂
∂ r

(
r

∂V
∂ r

)
+

1
r2

∂ 2V
∂φ 2 +

∂ 2V
∂ s2 = 0.

If V does not depend on φ , namely V is rotationally symmetric, as in solenoid magnets, the
fixed point form of the Laplace equation is simplified to

V = V |r=0 −
∫ r

0

1
r

∫ r

0
r

∂ 2V
∂ s2 drdr,

and the right hand side is contracting with respect to r. Since we are only interested in cases in
whichV (s,r) is expressed in DA, if ∂ 2V/∂ s2 is nonzero, the integral

∫ r
0 r∂ 2V/∂ s2dr contains

r to a positive power. Thus, the factor 1/r in the outer integral simply lowers the power of r
by one, and the right hand side of the fixed point form can be evaluated in DA without posing
trouble. To perform the DA fixed point iteration for the purpose of obtaining the full potential
V (s,r), one only needs to prepare the on-axis potential expression V (s,r)|r=0 as the boundary
condition.

3. Single coil solenoid elements

We showed in the last section that for solenoid magnets, the DA PDE solver only requires
an analytical expression of the potential on axis. In this section, we provide the on-axis field
and potential of some solenoidal elements in the code COSY INFINITY [3] and discuss their
features. In the following, R is the radius of the coil, R1 and R2 are the inner and outer radii
of the coil if non-zero thickness is considered, I is the current, n is the number of turns per
meter, and the coil extends from s = 0 to s = l. While the on-axis forms are easily obtained,
the out of axis forms can usually not be represented in closed form as they involve elliptic
integrals; thus the ability of the DA PDE solver to generate the power series representation of
the full 3D field to any order is very useful. Once the on-axis field Bz(s) is known, an on-axis
potentialV (s) can be determined viaV (s) =

∫
Bz(s)ds. It is customary to omit the minus sign

known for the electric case for magnetic scalar potential.
The first solenoid element is the current loop, consisting of a thin circular wire of radius

R carrying the current I.
Current loop (COSY element CMR)

Bz,CMR(s) =
µ0I
2R

1[
1+(s/R)2

]3/2
, VCMR(s) =

µ0I
2R

s√
1+(s/R)2

.

The derivation of Bz,CMR(s) can be found in various text books on electromagnetism, for
example, see eq. (5.40) (with θ = 0) in [10].

The next element is a thin coil extending from s = 0 to s = l, made up of a single layer
of thin wire carrying current I with n windings per meter.
Thin solenoid (COSY element CMSI)

Bz,CMSI(s) =
µ0In

2

(
s√

s2+R2
− s− l√

(s− l)2+R2

)
,

VCMSI(s) =
µ0In

2

(√
s2+R2 −

√
(s− l)2+R2

)
.
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Bz,CMSI(s) can be obtained by integrating individual current loops positioned from s = 0 to
s = l as Bz,CMR(s) = n · ∫ l0 Bz,CMR(s− x)dx. Derivations of Bz,CMSI(s) can also be found in
various text books, for example, see problem 5.2 in [10], where cosθ1 = s/

√
s2+R2 and

cosθ2 = −(s− l)/
√
(s− l)2+R2 in our case. It is worth observing that in the middle, we

have

Bz,CMSI (l/2) =
µ0In

2
· l√
(l/2)2+R2

,

and if l� R, the field approaches the expected asymptotic value Bz,CMSI (l/2)→ µ0In.
The next element is a thick coil extending longitudinally from s= 0 to s= l, and radially

from r = R1 to r = R2, wound out of wire with a winding density n and carrying current I.
Thick solenoid (COSY element CMST)

Bz,CMST(s) =
µ0In

2(R2 −R1)


s log


R2+

√
R2

2+ s2

R1+
√
R2

1+ s2


− (s− l) log


R2+

√
R2

2+(s− l)2

R1+
√
R2

1+(s− l)2




 ,

VCMST(s) =
µ0In

4(R2 −R1)


s2 log


R2+

√
R2

2+ s
2

R1+
√
R2

1+ s
2


− (s− l)2 log


R2+

√
R2

2+(s− l)2

R1+
√
R2

1+(s− l)2




+R2

√
R2

2+ s2 −R1

√
R2

1+ s2 −R2

√
R2

2+(s− l)2+R1

√
R2

1+(s− l)2
]
.

The derivation of the field for the thick solenoid is similar in spirit to the derivation of
Bz,CMSI(s). In fact, we have Bz,CMST(s) = 1/(R2 − R1) ·

∫ R2
R1
Bz,CMSI(s,R)dR. The factor

1/(R2 −R1) is necessary to maintain the meaning of n as the number of windings per meter,
i.e. In is the total current per meter. We observe that in the middle of the solenoid, we have

Bz,CMST (l/2) =
µ0In

2(R2 −R1)
l log


R2+

√
R2

2+(l/2)2

R1+
√
R2

1+(l/2)2


 .

If l � R1,R2, the log part in the right hand side of Bz,CMST (l/2) above is approximated as
follows:

log

(
R2+ l/2
R1+ l/2

)
≈ log

[(
1+

2R2

l

)(
1− 2R1

l

)]
≈ log

[
1+

2
l
(R2 −R1)

]
≈ 2
l
(R2 −R1) .

So the field approaches the asymptotic value Bz,CMST(l/2)→ µ0In.
Traditionally, also various other approximate representations of fields have been used

(see for example [11, 12, 13, 14]) that are based on particularly simple forms for the fields
or potentials; of these approximations, we have implemented two. One of them is the Glaser
lens, which is frequently used to approximately describe a lens made of a coil with finite but
short length and finite but small thickness.
Glaser lens (COSY element CML)

Bz,CML(s) =
B0

1+(s/R)2
, VCML(s) = B0Rarctan(s/R) .

The other frequently used approximation is for an extended coil of length l of small
thickness of the form.
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Figure 1. The axial field profile Bz(s) of various COSY solenoid elements. Left: Comparison
between the thin element CMSI, the tanh approximation element CMS, and the thick element
CMST. The length is l =1m. Right: Comparison of different lengths l =0.3m, 1m, 2m, 5m
and 10m for CMST. The (inner) radius is R1 =0.3m. For CMST, the outer radii R2 =0.33m
and R3 =0.5m are compared. The field strength is scaled relative to the asymptotic value µ0In.

Thin solenoid (tanh approximation) (COSY element CMS)

Bz,CMS(s) =
B0

2 tanh(l/2R)
[tanh(s/R)− tanh((s− l)/R)] , Bz,CMS (l/2) = B0.

VCMS(s) =
B0

2 tanh(l/2R)
R [log(cosh(s/R))− log(cosh((s− l)/R))] .

Here the hyperbolic tangents are used as simple approximations for the rise and fall-off of the
field at s= 0 and s= l, respectively.

As the analytical expressions of the on-axis field Bz(s) and the potential V (s) indicate,
the profiles of s-dependence are characterized by the ratio of the length l and the aperture
R. Figure 1 shows the axial field profile Bz(s) of the elements CMSI, CMS, and CMST of
length l =1m with the radius R1 =0.3m and the outer radius R2 =0.33m or R3 =0.5m (Left),
and the field profile of CMST of different lengths l =0.3m, 1m, 2m, 5m and 10m (Right).
The field strength is scaled relative to the asymptotic value µ0In, and B0 for CMS is given by
Bz,CMSI(l/2). As the length study picture shows, many realistic solenoids do not even reach
maximum fields close to the asymptotic value µ0In.

The tanh approximation as in the element CMS is commonly used because the on-axis
field drops more swiftly in the fringe region compared to the pure theoretical fields as CMSI
and CMST, which simplifies the simulation effort. On the other hand, the discrepancy from
the actual field becomes very large particularly for sufficiently thick solenoids, which are
important in practice because of their ability to provide high field strength. Figure 2 shows
the full 3D field distributions Bz(s,r) and Br(s,r) of the thick element CMST of length l =1m
with the radii R1 =0.3m and R2 =0.33m. The full 3D field is derived only from the on-axis
potential V (s) via the DA fixed point PDE solver.

Some matrix elements of fifth order transfer maps of these solenoid elements are listed
below in COSY notation for comparison, showing the differences in the linear and nonlinear
behavior. Similar to before, the length is l =1m, the (inner) radius is R= R1 =0.3m, and the



225

-0.5
0

0.5
1

1.5
s (m) 0

0.05

0.1

0.15

0.2

0.25

r (m)

0

0.2

0.4

0.6

0.8

1

Bz (T)

-0.5
0

0.5
1

1.5
s (m) 0

0.05

0.1

0.15

0.2

0.25

r (m)

-0.4

-0.2

0

0.2

0.4

Br (T)

Figure 2. The full 3D field distributions Bz(s,r) (Left) and Br(s,r) (Right) of the thick element
CMST (l=1m, R1=0.3m, R2=0.33m) derived only from the on-axis potentialV (s) =

∫
s Bz(s)

using the DA fixed point PDE solver. The field strength is scaled relative to the asymptotic
value µ0In.

outer radii used in CMST are R2 =0.33m and R3 =0.5m. The magnet strength is adjusted to
have µ0In= 1Tesla, and B0 for CMS is scaled to agree with Bz,CMSI(l/2).

CMSI:
x_f a_f y_f b_f xayb

0.7937713 -0.1431056 -0.4573031 0.8243452E-01 1000
0.8436961 0.7938225 -0.4860026 -0.4572141 0100
... ... ... ... ....

-0.4911018E-01-0.4490695 -0.3866000 -0.8418896 0014
0.2409343 -0.6962362E-01 0.1265599 -0.2574890 0005

CMS:
0.8152097 -0.1403695 -0.4257566 0.7331028E-01 1000
0.8629072 0.8152097 -0.4506673 -0.4257566 0100
... ... ... ... ....

-0.2386703E-01-0.3563119 -0.3615158 -0.7512712 0014
0.2331341 -0.5329836E-01 0.1522912 -0.2406150 0005

CMST with R1, R2:
0.7953672 -0.1399478 -0.4582230 0.8061561E-01 1000
0.8446078 0.7954184 -0.4865284 -0.4581341 0100
... ... ... ... ....

-0.4865521E-01-0.3911095 -0.3711714 -0.7356460 0014
0.2426523 -0.5600330E-01 0.1324498 -0.2326217 0005

CMST with R1, R3:
0.8034393 -0.1239508 -0.4628757 0.7140094E-01 1000
0.8494714 0.8034915 -0.4893318 -0.4627851 0100
... ... ... ... ....

-0.4406906E-01-0.2077903 -0.3039852 -0.3947231 0014
0.2456954 -0.1146626E-01 0.1444507 -0.1507266 0005
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The thinner case of CMST with R1 and R2 agrees with the map of CMSI to approximately
two digits. On the other hand, the map of CMS agrees with that of CMSI to approximately
only one digit. This again shows that the tanh approximation element CMS has to be used
with care.

4. Multiple coil solenoids

If a system consists of several solenoids, it is often crucial to be able to treat the whole
solenoidal system as one element with superimposed solenoidal field, because the fringe field
extension is particularly long for solenoids. In this section, we present such an example
from muon beam ionization cooling systems. The example is a 2.75m sFOFO muon beam
ionization cooling cell in Muon Feasibility Study II [4]. There are three coils in the cell,
and the starting position of each coil is 0.175m, 1.21m, and 2.408m. The outer two coils
are 0.167m long with the inner and outer radii 0.33m and 0.505m and the current density is
75.2A/mm2. The middle one is 0.33m long with the radii 0.77m and 0.85m and the current
density 98.25A/mm2 [4]. The pictures in Figure 3 show the coil layout and the superimposed
axial field profile Bz(s) as well as the full 3D field distributions of Bz(s,r) and Br(s,r) that
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Figure 3. The coil layout, the superimposed axial field profile Bz(s), and the full 3D field
distributions of Bz(s,r) and Br(s,r) of a 2.75m sFOFO cell [4]. Bz(s,r) and Br(s,r) are derived
only from the on-axis potential using the DA fixed point PDE solver.
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are obtained via the DA fixed point PDE solver. Since the thickness of coils is very large, the
superimposed field maintains high strength throughout the cell except for the ends of the cell,
where the axial field drops to zero due to the alternating field direction in the preceding and
following cells. In fact, the drop of the axial field to zero simplifies the computation of high
order transfer maps by beginning and ending the computation at a zero crossing of the field,
although of course the original reason for the design need for field flips is to enhance cooling
efficiency [4].

The muon beam cooling cell has accelerating cavities and absorbers situated inside the
solenoids. We can treat such systems with the transfer map in a split operator framework
approach by slicing the cell into short pieces so that the effects of each element can be
superimposed by inserting a short negative drift [5]. For example, the 2.75m sFOFO cell
is sliced into about 80 pieces [5].

5. Vertical solenoidal fields and misalignment

The modern concept of designing beam optical systems is to perform each of the common
tasks of bending, focusing, and nonlinear correction by separate elements; but there are
situations in which this simple concept would lead to significant sacrifices. For example,
the beam optical systems for rare and short-lived particles often require complicated setups
including combined function electromagnetic elements to manipulate the beam efficiently, an
example of which has been provided above. Sometimes misalignment by displacement and
tilts of regular kind of single function elements can achieve the necessary combined fields.
The complication brought by the misalignment has to be studied carefully, because sometimes
it may lead to unexpected beam dynamics.

We show an example using a design of the 60◦ arc cell of a compact muon storage
ring [4]. The cell was designed to achieve a very high degree of compactness using half
overlapping coils as shown in Figure 4. The double layered part has a strong dipole field of
7 Tesla, and the single layered part has a dipole field component of around half that strength.
In addition, the latter region exhibits a skew quadrupole field which is used for focusing
purposes, as well as small high order multipole components introduced mostly because of the
limited horizontal width of the coils. The longitudinal magnet layout produces a longitudinal
field component, breaking midplane symmetry, and the on-axis longitudinal field, in other
words the solenoidal filed, is as strong as 2.2 Tesla; Figure 4 shows the strength as a function

s
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Figure 4. The longitudinal magnet layout (Left) and the on-axis field profile of solenoidal
field component Bz(s) (Right) of a design of the 60◦ arc cell of a compact muon storage ring
[4].
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of position s. By using the technique discussed in the previous section for superimposed
solenoidal fields, the effects of the solenoidal field of the 60◦ arc cell can be included in the
beam dynamics study.

Due to limitations of space, we refrain from providing details about the results of
simulations of the resulting particle dynamics; various such results are given in [4].

Another interesting example of misalignment is a design of a muon beam cooling
ring using short solenoids with large aperture [15] that are tilted horizontally to deflect the
reference orbit of the beam and overall lead to the possibility of operating without dipoles
[16]. Utilizing the COSY commands for misalignment, it is also possible to analyze such
bending beamlines consisting of only solenoidal elements.

Acknowledgments

The work was supported by the Illinois Consortium for Accelerator Research, the US
Department of Energy, an Alfred P. Sloan Fellowship and the National Science Foundation.

References

[1] M. Berz. Modern Map Methods in Particle Beam Physics. Academic Press, San Diego, 1999.
[2] M. Berz. Differential algebraic description of beam dynamics to very high orders. Particle Accelerators,

24:109, 1989.
[3] M. Berz and K. Makino. COSY INFINITY Version 8.1 - user’s guide and reference manual. Technical

Report MSUHEP-20704, Department of Physics and Astronomy, Michigan State University, East
Lansing, MI 48824, 2001. See also http://cosy.pa.msu.edu.

[4] S. Ozaki et al. for the Muon Collaboration. Feasibility study-II of a muon-based neutrino source. Technical
Report 52623, Muon Collider Collaboration, BNL, 2001.

[5] K. Makino, M. Berz, D. Errede, and C. J. Johnstone. High order map treatment of superimposed cavities,
absorbers, and magnetic multipole and solenoid fields. Nuclear Instruments and Methods, in print, 2003.

[6] M. Berz. The new method of TPSA algebra for the description of beam dynamics to high orders. Technical
Report AT-6:ATN-86-16, Los Alamos National Laboratory, 1986.

[7] M. Berz. The method of power series tracking for the mathematical description of beam dynamics. Nuclear
Instruments and Methods, A258:431, 1987.

[8] K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis, Michigan State
University, East Lansing, Michigan, USA, 1998. Also MSUCL-1093.

[9] K. Makino and M. Berz. Perturbative equations of motion and differential operators in nonplanar
curvilinear coordinates. International Journal of Applied Mathematics, 3,4:421–440, 2000.

[10] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 1975.
[11] W. Glaser. Grundlagen der Elektronenoptik. Springer, Wien, 1952.
[12] X. Jiye. Aberration Theory in Electron and Ion Optics. Advances in Electronics and Electron Physics,

Supplement 17. Academic Press, Orlando, Florida, 1986.
[13] P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 1-2. Academic Press, London, 1989.
[14] K. G. Steffen. High Energy Beam Optics. Wiley-Interscience, New York, 1965.
[15] J. S. Berg, R. C. Fernow, and R. B. Palmer. An alternating solenoid focused ionization cooling ring.

The Muon Collider and Neutrino Factory Notes MUC-NOTE-COOL-THEORY-0239, Fermi National
Accelerator Laboratory, 2002. See http://www-mucool.fnal.gov/notes/notes.html.

[16] J. S. Berg, R. C. Fernow, and R. B. Palmer. Private communication, 2002.


