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Abstract

The differential algebraic methods, a natural tool for the description and determination of the solution of differential
equations, have proven useful for the computation of aberrations of any desired order in any particle optical system. Besides
conventional symplectic systems based on strongly or weakly focusing elements including fringe fields, they also readily
allow the treatment of spin dynamics as well as classical synchrotron radiation. In recent years, a variety of codes have been
written based on these techniques, including COSY INFINITY, which is currently used by approximately 150 registered
users. Several examples of recent applications employing high order methods will be given.

While the method makes the problem of computation of Taylor maps straightforward and their manipulation and analysis
convenient, for many applications it is important to have exact bounds of the truncation error. Recently it was shown how
such information can be determined conveniently and with rather limited effort. Furthermore, it is often important to know
the domain and the speed of convergence of the Taylor expansion. We will show that similar to the conventional DA
approach, such information can be obtained by carrying the three elementary operations of addition, multiplication, and
differentiation on the space of infinitely often differentiable functions to a suitable smaller space that can be described on a

computer.

1. Introduction

Particle optical systems are characterized by differential
equations ' = f(r, s) describing the evolution of the par-
ticle optical coordinates r as a function of the independent
variable s, which is usually chosen to be the arc length
along a reference trajectory. The function f is derived
from the Cartesian equations of motion and contains infor-
mation about the electromagnetic fields; the details of the
form of f can be found in Refs. [1-3] and many other
sources. The information about the optical system under
consideration is then described by the map .# relating
initial conditions r, at position s, to final conditions r;, at
position s, via

rf=l(r,-, Siy S7)-

In a very general sense, the solution of the differential
equation defining .# can be obtained by the manipulation
of functions. In the simplest cases, exact solutions may be
found; in other cases, it is necessary to resort to approxi-
mate methods. For example, if the functional dependence
of r, on s can be expanded in a Taylor series, the
directional derivative L,=f V + 3 (sometimes also re-
ferred to as ‘‘vector field”’ or ‘‘Lie derivative'’) can be
used to relate final coordinates to initial coordinates via the
propagator of the dynamical system

re=exp(As- L;)r,.

This propagator can be evaluated with high accuracy by
keeping sufficiently many terms. Another way to provide a
functional dependence between initial and final coordi-
nates is via a numerical integration algorithm.

In all of these cases, it is required to perform manipula-
tions in function spaces; the operations that are required
are addition and multiplication (and their inverse), differ-
entiation (and possibly its inverse) as well as possibly the
application of elementary functions. A space consisting of
a set A (here a set of functions) as well as an addition,
multiplication, and scalar multiplication satisfying the usual
conditions is called an algebra. If, furthermore, there is an
operation 9 satisfying

da+b)=0a+0b and d(a-b)=(9a)b+ a(db)

for all a, b € A, the structure is called a differential alge-
bra [4,5]; so in a formal sense, what is necessary is to
perform differential algebraic operations on function
spaces.

Unfortunately, function spaces cannot easily be repre-
sented on the computer — in a similar sense as real
numbers cannot be represented in their entirety. In the case
of real numbers, it proved useful to approximate real
numbers by floating point numbers, hoping that the re-
tained information, the first n digits, are sufficient to
describe whatever information is desired. To perform arith-
metic, it is important that the floating point representation
of sums and products can be obtained from those of the
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respective numbers. This can be achieved by introducing a
floating point addition @ as well as a floating point
multiplication . to perform the required operations. De-
noting the projection of a real number to the respective
floating point number by F, we then demand

F(a+b)=F(a)®F(b),
F(a-b)=F(a)OpF(b);

it is well known that the relations can only be satisfied
approximately, and this is the source of the errors in
practical computations. It is important to note that these
errors can be accounted for in a mathematically rigorous
way by using interval methods (see for example Ref. [6]).

A way to treat functions that is conceptually similar to
the truncation of numbers to n digits is to retain the first n
orders of their Taylor expansion. For the field of particle
optics, this approach is particularly useful because in most
cases it is not the map .# proper that is needed, but rather
its Taylor coefficients, the so-called aberrations. Similar to
the case of floating point numbers, the goal is to compute
the Taylor expansions for sum and products from those of
the individual functions; in addition, to account for the
differential algebraic structure, we need to do the same for
the derivative. Formally this can be achieved by introduc-
ing an addition @, a multiplication O, and a derivation
o1 such that
T(f+g)=T(f)&T(g).

T(f8)=T(f)OT(g),
T(3f) =9T(f).

First presented in Refs. [7,5], these concepts have been
utilized in the code COSY INFINITY {8-10], which cur-
rently has about 150 registered users, and a variety of other
codes [11-14]. COSY provides an object oriented lan-
guage environment for Differential Algebraic (DA) opera-
tions, and all of the physics as well as the user commands
are written in this environment. It allows the computation
of aberrations of any desired order for any particle optical
element, and has a large class of analysis features, some of
which are discussed below.

Similar to the way in which the error performed in
floating point operations can be rigorously estimated by
interval methods, it is possible to obtain estimates for the
error due to the approximation of the original functions
due to Taylor expansion [15]; different from the interval
methods for real number calculations, the interval bounds
for the remainders have a tendency to become very tight.
These methods are particularly useful for the determination
of exact bounds for particle stability [16].

2. Maps for complicated elements

Because of their generality, DA methods are particu-
larly useful for the computation of aberrations of compli-

cated elements. In all of these cases, as soon as the fields
of the element is known, its transfer map can be computed
to arbitrary order. For many cases, it is possible to describe
the fields of the particle optical elements under considera-
tion with sufficient accuracy by certain models. For exam-
ple, in the case of electric or magnetic multipoles, in many
cases the fringe-field fall-off can be described rather accu-
rately by the Enge formula, which describes the decrease
of the multipole strength as a function of position via

1

s sy
1+ exp a0+a1(g)+ +a5(g)

In the case of superimposed multipoles, the fall-off of each
of the multipole terms can be described by an Enge
function separately.

In a similar way, also the fringe field of bending
magnets and electrostatic deflectors can be described. In
the case of bending magnets, often the effective field
boundary is tilted and curved, usually to deliberately ob-
tain focusing and affect nonlinear terms, but sometimes
also as an artifact of the construction process. In such a
case of a rather complicated curve describing the effective
boundary of the field, the fall-off of the fringe field is
assumed to be governed by an Enge function depending on
the distance to the effective field boundary, depicted in
Fig. 1.

The result is a rather complicated algorithm describing
the midplane field, which then has to be differentiated
repeatedly to obtain the field in whole space. The computa-
tion of aberrations is complicated even more by the fact
that the curvature of the reference orbit continuously
changes, and unless the proper adjustments of position are
made, will not line up with the desired reference orbit
inside the magnet. This again entails that the actual deflec-
tion angle does not agree with the design angle between
the effective field boundaries, and in addition there will be
offsets in position and direction of the reference orbit.

Using the DA concept, COSY INFINITY can consider
all these effects and compute accurate aberration coeffi-
cients for general dipole magnets. It is believed that it is
the only code considering all the intricacies arising from
the complicated field shape as well as the unusual motion
of the reference orbit.

While the calculations performed by COSY are accu-
rate to the precision of the integration, particularly at
higher orders this level of sophistication has a price in
computation time. For all situations but those in which the

E(s)=

Fig. 1. A magnetic sector with tilted and curved effective field
boundaries. The dashed line is the reference orbit.
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highest level of sophistication is needed, it is useful to
offer efficient approximate ways to treat fringe field ef-
fects. A new DA method based on the principle of sym-
plectic scaling is introduced in a companion paper [17].

On the other hand, in some situations it is necessary to
provide an even higher level of accuracy of the field
description than what can be obtained from Enge models,
and frequently it is advisable to use measured data directly,
beyond their use to fit the proper parameters in the Enge
model. The strategy for the representation of the field
generated from measured data depends on whether mea-
surements are available only in the midplane or for the
whole space.

In case there are only measurements of the midplane,
the challenges are on the one hand to smooth the data in a
reasonable way compatible with the measurement accu-
racy. But perhaps more importantly, it is necessary to infer
the out-of-plane information from them, a process that
requires high-order differentiation [1,2,18]. It is well known
that numerical differentiation of measured data is a subtle
issue, and substantial thought has gone into the design of
higher order differentiators suppressing spurious effects
(see for example Ref. {19]).

We favor a method in which the measured data are
actually interpolated by smooth functions, which then can
be differentiated. As it turns out, for the objective of
preserving the proper higher order derivatives, the method
of Gaussian interpolation is very useful. For this purpose,
Gaussian functions are placed at the measurement points,
and their height is adjusted to fit the measured data; this
approach is conceptually similar to the use of Gaussian
beamlets for the simulation of space charge [20]. While
generally being a least squares problem, in many cases a
very good approximation to the optimal choices of heights
can actually be obtained by simply scaling them with the
value of the measured data at that point. By adjusting the
width of the Gaussian, the amount of resulting smoothing
can be adjusted. The resulting field in the midplane is then
given by

B,()= £8,(7) pH;) |

s
i

because of the rapid decrease of the Gaussian, it is suffi-
cient to restrict the sum to a few nearest grid points. The
resulting field can be differentiated as often as necessary to
perform the required out-of-plane expansion. As it turns
out, the Gaussian method is particularly successful in
preserving the high order derivatives of the functions. To
judge the ability of the Gaussian method to extract higher
derivatives properly, we interpolated various known func-
tions by Gaussians and compared their known higher order
derivatives with those found from the Gaussian method.
The results are shown in Table 1.

The description of measured fields by Gaussian interpo-
lation and their use for the computation of transfer maps

Table 1
Accuracy of derivative calculation for Gaussian interpolation

Function Error in  Error in Error in
function third derivative fifth derivative
flxy=1 1072 1078 107
fx)=x 107'2 1077 1074
Alx)=cos x 1077 10°% 1074
flx)=exp(—x?) 1077 10°° 107*

are available directly within COSY, and have been used
for a variety of projects, including the study of the S800
spectrograph described in the next section.

In case field information is not only available inside the
midplane but also in other planes, such information can be
used beneficially for other field models. In case the con-
ventional out-of-plane expansion based on a Gaussian
midplane model does not reproduce the out-of-plane field
data with sufficient accuracy, fully three-dimensional mod-
els are appropriate. In particular, we studied image charge
models, where it proved advantageous to choose the distri-
bution of the image charges in a Gaussian way. Such
models can be used to mode! the total field [21], or they
can be used to superimpose a weak correction field to the
field predicted by the midplane method.

3. Spectrographs

The fact that DA methods allow a fully rigorous de-
scription of particle motion to even high orders makes
them particularly suitable for the study of precision instru-
ments such as spectrographs, electron microscopes, and
systems for lithography. In all of these cases, the methods
allow the determination of transfer maps as soon as the
electromagnetic fields of the system are known.

We want to illustrate these methods for the case of the
S800 [22], a high-resolution particle spectrograph under
construction at NSCL at MSU. In this case, the desired
energy resolution of 20000 as well as the rather large used
aperture of the dipole magnets of +15 cm requires the
consideration of the aberrations of the device to at least
order five and possibly order seven. Due to saturation
effects and overlapping fringe fields, it was decided to
measure the fields in five planes. The information will then
be used for a global field description as outlined in the last
section.

Due to the multitude and size of the high-order aberra-
tions occurring in the S800, a conventional correction of
aberrations appears to be impossible. To account for the
influence of aberrations, not only the positions of the
particles are measured at the focal plane, but also their
angles by means of a second detector separated by the
first. The obtained information of horizontal positions and
directions, together with the fact that the particle went
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through the target slit, implicitly determines the entire
trajectory of the particle uniquely. Thus it also determines
the particle’s energy, and also the angles a and b, which
shed additional light on the nuclear reaction at hand.

The use of DA methods allows a direct solution of this
problem. In the transfer map .# describing the system,
exploit the fact that the initial horizontal coordinate of the
particle is determined since it went through the target slit;
furthermore, we ignore the parts of the map that are
irrelevant for the current problem, the time of flight part,
and the energy part, which here merely says that final
energy equals initial energy. We obtain the reduced nonlin-
ear relationship

Xy a,
a Yi

f - ’
Yr b,
b, 3,

which contains the measurable quantities on the left and
the quantities of interest, namely 8 as well as @ and b, on
the right as the arguments of the map. Thus, by inverting
the nonlinear map ., we can determine the required
information. But the inversion of nonlinear maps is just
one of several algorithms that can be performed conve-
niently within the DA framework; it is beyond the scope of
this paper to provide details about the inversion algorithm,
and we refer the reader to {18,23].

4. Spin dynamics

A rather recent problem in particle optics is the study
of the dynamics of the spin of charged particles. This is
relevant in several new areas, including the transport of
polarized beams, the preservation of polarization during
acceleration over a multitude of turns in circular accelera-
tors, and finally the use of polarized electrons for contrast
enhancement in electron microscopy.

Quite analogous to orbit dynamics, also spin dynamics
can be treated in an elegant way using DA methods. The
motion of magnetic moments is described in classical
approximation by the BMT equation

ds
— =wXsg,
dt

where

w=k(—(l +Gy)B

G 1 E
+——(P-B)P(G+————)P><—),
1+ L+ ¢

and k=e¢/ymyc, G=(g—2}/g, P=p/myc. Due to the
special linear structure, it follows that the solution of the
motion is an orthogonal matrix A(r) describing the spin
transformation, the coordinates of which depend on the
orbital variables.

It turns out that the study of spin motion is best done
by considering the evolution of the elements of the spin
matrix; rephrasing the spin motion in these coordinates
yields the equations of motion

Az, s)=W(z, s) -A(z, 5);

this merely adds nine additional equations to the orbit
equations of motion, but does not require introduction of
any additional free variables beyond the six orbital quanti-
ties. The computation of the spin map can then be achieved
by DA integration of motion. Similar to the orbital case,
for the autonomous case it is also useful to express the
problem by a propagation operator exp(L f). However, in
this case the exact form of the vector field L is substan-
tially more complicated and will be discussed elsewhere
[24].

5. Other applications

There are many other applications for which the use of
DA methods has proven useful within the last years; while
the scope of this paper may not allow their detailed
discussion, we want to refer the reader to the relevant
literature.

Using methods of computational theorem proving [25]
and recently a new Lie-algebraic theory describing high-
order achromats [26], it was possible to construct four-cell
systems totally free of all aberrations up to a certain order.
Various designs that were generated with COSY INFIN-
ITY based on these methods include third order [27],
fourth order [28]. and recently even fifth order [29] achro-
mats.

For the study of repetitive systems like accelerators and
storage rings, DA-based arbitrary order normal form meth-
ods have been developed [30]. These methods allow the
computation of amplitude dependent tune shifts and shed
light on nonlinear resonant behavior of repetitive systems;
they have been used for the analysis and correction of the
SSC low energy booster, the IUCF ring, and the PSRII
ring.

Besides the study of resonances, normal form methods
can also be used to perform fully rigorously guarantee
long-term stability of repetitive systems utilizing argu-
ments similar to those of the Ljapunov and Nekhoroshev
stability theories. These methods, described in detail in
Refs. [16,31], make use of the RDA approach discussed
above and have been used for various stability estimates
yielding guaranteed stability for up to approximately 10
turns.
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Finally, the DA methods are also useful for calculations
in the field of glass optics. Recently, routines have been
developed that allow the calculation of arbitrary order
effects for glass optical systems, consisting of spherical
and aspherical lenses, spherical, parabolic, and aspherical
mirrors, as well as prisms [8].
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