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Abstract

For some modern particle accelerators, including the planned muon collider, the accurate analysis of non-linear
time-of-#ight e!ects in the form of momentum compactions is critical for the preservation of bunch structure.
A Di!erential Algebra-based (DA) method is presented that allows the determination of o!-energy closed orbits and
chromaticities to any order. By performing a coordinate transformation to the o!-energy closed orbit, it is possible to
compute momentum compactions analytically.

This method has been implemented in the code COSY INFINITY and is tested for two cases where analytical
solutions can be obtained by hand; agreement to machine precision is found. By contrast, comparisons are made with
several codes that use conventional numerical methods for the determination of momentum compaction, and it is found
that these approaches sometimes yield rather inaccurate results, especially for higher orders. ( 1999 Elsevier Science
B.V. All rights reserved.

PACS: 29.27; 41.75; 41.75L

Keywords: Maps; Di!erential algebraic methods; Momentum compaction; O!-energy closed orbit; Chromaticity

1. Introduction

For some quasi-isochronous rings including the
recently proposed high luminosity 2 TeV muon}
muon collider [8], it is important to keep the bunch
length at minimum (3 mm) in the presence of mo-

mentum spread of 0.15%. Under these conditions,
the higher order momentum compaction factors
can induce a large spread in the time structure and
hence spoil isochronicity of the bunches [9]. For
realistic lattices one must rely on beam dynamics
codes for the computation of higher order mo-
mentum compactions. In this paper we derive
a Di!erential Algebraic method that allows the
computation of o!-energy closed orbits, chroma-
ticities, and momentum compactions to arbitrary
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order without the need of invoking any normal
form methods. The method is implemented in the
code COSY INFINITY. By contrast, tracking
codes such as MAD or SYNCH fail to give precise
answers at higher orders due to facts that will be
summarized in the last section of the paper. A com-
parison of results with a simple model that can be
calculated analytically up to order 3 is presented.

2. The di4erential algebraic theory

The momentum compaction is de"ned as the
relative orbit length variation of an o!-momentum
closed trajectory relative to the trajectory of the
reference particle. It is a function of the momentum
o!set d"(p!p

0
)/p

0
, and in Taylor expansion can

be written as
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Our goal is to calculate the coe$cients a
i
for

i"0, 1, 2,2. This will be accomplished to any
order by DA methods, and to i"2 analytically for
a simpli"ed FODO cell ring described in the next
section. Furthermore, the DA method allows com-
putation to arbitrary order of the quantities that
describe how the tunes depend on energy, the so-
called chromaticities. Both algorithms use the cal-
culation of the o!-energy closed orbit of a map.

The DA approach consists of the following steps.
First one determines the parameter-dependent
"xed point of the map, and then performs a linear
decoupling of the planes in case this is necessary.
After these steps one obtains a map which has
a block-diagonal Jacobian, each matrix element
being a DA vector containing the value of the
element and its derivatives with respect to para-
meters. This form allows the computation of the
parameter-dependent tune shifts and the
chromaticities within the DA framework using
a simple formula involving the trace and determi-
nant of the block matrices. Finally, to calculate the
momentum compaction, a last coordinate change is
necessary that transforms from the canonical
COSY variables that measure time-of-#ight to
TRANSPORT-like variables that measure path
length. In the following, the respective steps are
addressed in detail.

The parameter-dependent "xed point calculation
relies on the map inversion algorithm developed in
Refs. [3,4] and so an outline of the algorithm is in
order. All the maps of interest have no constant
parts, that is they are origin preserving. In this case
it is possible to compute the nth order inverse
N

n
of a map M

n
as long as the linear part M

1
, is

invertible, which is always the case for symplectic
maps. To this end, one writes M

n
"M

1
#MH

n
.

Letting " denote the composition of maps, we have
to nth order that
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This is a "xed point problem for N
n
. Beginning

iteration with N
n
"I

n
yields convergence to the

exact result in n steps because MH
n

is purely non-
linear.

The parameter-dependent "xed point z (d) is
a periodic orbit of the map M

n
satisfying the condi-

tion (z (d), d)"M
n
(z (d), d). To make the map origin

preserving, which in turn implies that the partial
derivatives of the transfer map with respect to para-
meters alone vanish [4], we perform a coordinate
transformation, which in fact is a non-linear trans-
lation depending only on the parameters. To this
end we introduce the map Iz

n
, containing a unity

map in the upper block describing the phase space
variables and zeros elsewhere. Substracting Iz

n
on

both parts we have

(0, d)"(M
n
!Iz

n
) (z (d), d)

and thus,

(z (d), d)"(M
n
!Iz

n
)~1(0, d),

from which we read o! z (d) in the non-parameter
lines. If energy is treated as a parameter, then z (d)
is the o!-energy closed orbit. A closer inspection
reveals that the inverse of the map (M

n
!Iz

n
) exists

if and only if the phase space part of M
n
does not

have 1 as an eigenvalue. However, this corresponds
to a fundamental resonance that is always avoided
in the design of repetitive systems.

Next, the linear decoupling of the phase planes is
performed by diagonalization of the linear part of
the map already expanded around the parameter-
dependent "xed point [3]. This is always possible if
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we stipulate pairwise distinct eigenvalues; in prac-
tice this restriction is not important since if it is not
met the system is again on a linear resonance. Also,
since we are interested in stable systems, the eigen-
values lie on the complex unit circle. So the linear
part of the map in the eigenvector basis has the
form

Ķ
C
"A

e*k1

e~*k1 0

}

}

0 e*kv

e~*kv
B .

We note that the eigenvectors associated with these
eigenvalues form complex conjugate pairs which
are complex because the underlying matrix was
real.

Next we perform another change of basis after
which the matrix is real. For each conjugate pair of
eigenvalues, we choose the real and imaginary parts
of the corresponding eigenvectors as two basis vec-
tors. The result is a matrix in block-diagonal form,
the matrix elements of which depend on the para-
meters d, and which thus has the form

Ķ
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In the light of the preceding paragraphs, the
matrix elements are now actually DA vectors con-
taining the derivatives with respect to the para-
meters d up to order n!1. We note that all the
basis changes are in fact similarity transformations,
and combined with the fact that a su$cient condi-
tion for a 2]2 matrix to be symplectic is to merely
have determinant 1, all the transformation matrices
can be scaled such that the "nal map is still sym-
plectic if the underlying one was symplectic. Now

we can apply the simple formula involving just the
trace and the determinant of the matrix [3,4]

k
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where ¹
j
and D

j
are the trace and determinant of

the 2]2 matrices, to compute the DA vector [k
j
]

describing the derivatives of the tune with respect
to the system parameters. We obtain
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where all elementary operations and the computa-
tion of arccos are now DA operations. Again, if
energy is a parameter, then the coe$cients of the
relative energy deviation in the expansions of
[k

j
]
n~1

are the chromaticities.
The momentum compaction can now be readily

calculated. Once the o!-energy closed orbit z (d) is
known, one last coordinate change is necessary. All
DA map computation tools implemented in COSY
INFINITY use symplectic coordinates, and in par-
ticular chromatic and longitudinal e!ects are de-
scribed in terms of the time-of-#ight and energy.
Using the DA-based transformation to TRANS-
PORT-like coordinates [7] based on path length
and momentum, we obtain the DA dependence of
the closed orbit on momentum. The "nal step in the
computation of the momentum compaction is to
calculate the relative change of the length of the
o!-momentum closed orbit with respect to the on-
momentum closed orbit.

3. The simpli5ed FODO cell

As our model for the analytic calculation of the
momentum compaction, we choose a simpli"ed
FODO cell for which the quantities of interest can
be obtained analytically, and which is shown in
Fig. 1. We take the half cell as consisting of a half
focusing thin quadrupole (located at FF@) followed
by a homogeneous magnetic dipole and a half de-
focusing thin quadrupole (located at DD@). We re-
peat this cell until it forms a closed ring. Also, we
neglect any fringe "eld e!ects. The two quadrupoles
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Fig. 1. Outline of the half FODO cell. FF@ } thin focusing
quadrupole; DD@ } thin defocusing quadrupole; h

0
} de#ection

angle for the homogeneous magnet between the quadrupoles.
Shown are the reference orbit (l

0
) and the o!-momentum closed

orrbit (l).

Table 1
Comparison of momentum compactions up to order 3 for
N"150 and S"0.5 among SYNCH, MAD and Theory [9]

a SYNCH MAD Theory

a
0

0.00171503 0.00171503 0.0017150314
a
1

0.00267272 0.00267421 0.0026727345
a
2

0.00105371 0.00064879 !0.0000931587

have the same integrated strength S"K¸, where
¸ is the quadrupole length and K is the normalized
strength

K"

B
5

d ) s

where B
5

denotes the #ux at the pole tip, d the
aperture, and s the rigidity of the reference particle.
The thin lens approximation of the quadrupoles is
characterized by simultaneously letting the length
¸ go to zero and the strength K go to in"nity in
such a way that the product K )¸ stays constant.

The o!-momentum closed orbit is characterized
by D(d) and D@(d), the dispersion function and its
derivative with respect to the independent variable
s, which satisfy

x"D(d) ) d and x@"D@(d) ) d.

Expanding the dispersion function in terms of mo-
mentum, we have

D"D
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Due to the symmetry of this cell, D@(0)"D@(l
0
)"0

at the entrance and exit of the half FODO cell. We

denote by DK and D[ the value of the dispersion
function at the position of the focusing and de-
focusing thin quadrupoles. Since the thin quadru-
poles are zero length insertions, the dipoles "ll all
the space; correspondingly, the orbit length of the
reference particle in the half FODO cell is given by
l
0
"o

0
h
0
, and the orbit length of an o!momentum

particle is given by l"oh . In homogeneous mag-
netic "elds, the radii of curvature o and o

0
are

related via o"o
0
(1#d).

If the ring consists of 2N half cells, the total orbit
lengths are

C
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which implies the relation
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From this relation it is possible to determine the
"rst few momentum compaction factors, and we
obtain
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We refer to [6] for details. The dispersion functions
are calculated by a geometric approach, which
yields for the momentum compaction coe$cients
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Table 2
Comparison of a

2
between COSY and Theory as a function of number of cells, N, and integrated and normalized quadrupole strengths, S

N S COSY Theory Di!erence

15 0.01 !0.1039087182704954E-04 !0.1039087110467499E-04 0.7223745510592057E-12
15 0.1 !0.6512543497970690E-01 !0.6512543498123186E-01 0.1524960713261692E-11
15 0.3 !0.2492853707345641 !0.2492853707353571 0.7930045509141337E-12
15 0.5 !0.1015105143950459 !0.1015105143935272 0.1518618564233520E-11
15 0.9 !0.2268338355443578E-01 !0.2268338355385421E-01 0.5815695147681765E-12
150 0.01 !0.6481116063749162E-01 !0.6481116063981612E-01 0.2324501702233306E-11
150 0.1 !0.1030331541577536E-01 !0.1030331541548904E-01 0.2863178444334480E-12
150 0.3 !0.2245570800125087E-03 !0.2245570799716262E-03 0.4088247210383422E-13
150 0.5 !0.9315865569873918E-04 !0.9315865603642507E-04 0.3376858932454055E-12
150 0.9 !0.7508271108848054E-04 !0.7508271042677211E-04 0.6617084267676598E-12

Here S was replaced with S/(2p meter) in order to
make the parameter dimensionless, and t"
tan (h

0
/2). Again, for details we refer to [6].

4. Comparison between various tracking codes
and COSY

As pointed out in [9,10] comparison of a
i

with tracking codes such as MAD and SYNCH
gives agreement for i"0, 1 but not i"2. The rea-
sons of disagreement are attributed to various
factors related to inaccurate tracking of o!-
momentum particles (in the kick approximation)
and numerical errors due to numerical di!erenti-
ations. Table 1 shows an example for S"0.5 and
N"150.

In contrast, the comparison of a
2

calculated in
this report and given in Eq. (2), and the results from
the code COSY [1,2,5] show excellent agreement
up to at least 10 digits. Moreover, the agreement is
over the full range of the involved variables, namely
the integrated quadrupole strengths S and the num-
ber of the cells N. Table 2 shows the results for
a small ring with N"15 and a large ring with
N"150, and values of S in the range [0.0, 0.9].

We conclude that the method outlined in this
paper and implemented in COSY INFINITY
allows the computation of high order momentum
compactions to essentially machine precision, with-

out limitations due to inaccuracies of tracking, nu-
merical schemes to "nd the "xed point, and
numerical di!erentiation to determine derivatives
of the "xed point with respect to momentum.
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