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ABSTRACT

HIGH ORDER FINITE ELEMENT METHODS

TO COMPUTE TAYLOR TRANSFER MAPS

By

Shashikant Manikonda

In beam physics, map methods are important techniques for the design and analysis

of lattice structures. The computation of the transfer map for an electric or magnetic

element requires the multipole decomposition of the field in the region where the beam

passes. In the first part of this dissertation we present new techniques to extract the

multipole decomposition of the electric or magnetic field from the measured field data

or from the knowledge of the current distribution.

The new high precision technique developed to obtain the multipole decomposi-

tion of the field from the measured field data solves the Laplace equation using the

Helmholtz vector decomposition theorem and differential algebraic methods. This

technique requires the field to be specified on a closed surface enclosing the volume

of interest. The method outperforms the conventional finite difference and finite el-

ement methods in both the execution speed and the precision achieved. We extend

this technique to obtain a verified solution to the Laplace equation by using the Tay-

lor model methods. We also parallelize this technique and implement it on a high

performance cluster.



We then present a new high precision technique to find the magnetic field of an

arbitrary current distribution. The technique uses the Biot-Savart law and differential

algebra methods to compute the magnetic field. Using this technique we develop new

computational tools to design accelerator magnets.

Both these techniques can also be combined to solve the Poisson equation when

the source distribution is specified inside a volume and the field is specified on the

surface enclosing the volume. Besides providing a natural multipole decomposition

of the field both these tools have the unique advantage of always producing purely

Maxwellian fields.

We demonstrate the utility of these techniques in solving practical problems by

applying them to real life applications. We present the design and analysis of a

novel combined function multipole magnet with an elliptic cross section that can

simplify the correction of aberrations in the large acceptance fragment separators for

radioactive ion accelerators. We then apply the Laplace field solver to the measured

magnetic field data of the dipole magnet of the MAGNEX spectrometer and extract

the multipole decomposition of the magnetic field. Finally, we present the linear

and high order ion optic simulations for the proposed design of the superconducting

fragment separator (Super-FRS) and also apply the field solver technique to extract

the transfer map for the magnetic field data obtained through the TOSCA simulation

for the Super-FRS quadrupole magnet.
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CHAPTER 1

Introduction

The advent of computers has provided new means to solve the problems in physics.

Traditionally, the choice of the technique to numerically solve a PDE is driven by the

factors faster execution and the minimal use of the computational resources. Both

these factors are purely practical limitations due to the limited time and resources. In

the traditional numerical techniques the requirement of fast execution and minimal

use of resources can only be achieved at the cost of limiting the precision of the

numerical result. However, for many problems in physics that investigate phenomena

and processes at high energy (TeV) or in relatively small (nano/femto) length and

time scales, highly accurate results are an absolute necessity which the traditional

numerical methods can not provide. For instance, the Large hadron collider (LHC)

accelerator being built at CERN is designed for an energy of 14 TeV at the interaction

point and luminosity of 1035cm�2 sec�1 [5], and this requires magnets to be designed

with a magnetic �eld precision of 4BB � 10�4 [37]. The modeling and study of

such instruments require high precision numerical tools. This leads to an additional

constraint for modern numerical techniques of obtaining very high precision results.

The traditional numerical techniques can not achieve all of the three conditions at

the same time, and hence fail to solve many modern problems. This leads us to
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investigate new numerical techniques that are not only fast and make e¢ cient use of

the computational resources, but also give high precision results.

One of the limitations with the conventional techniques comes from the fact that

the mathematical functions cannot be directly used on a computer. The treatment

of a function is done based on the treatment of numbers, and as a result, virtually

all the classical numerical algorithms are based on the mere evaluation of functions

at speci�c points. One way to overcome this di¢ culty is through the use of the local

Taylor expansion of a function about a point. We are then able to extract more

information about the function than just the value at a speci�c point. Once again

due to the limitation of the computational resources it is necessary to truncate the

Taylor expansion.

Algebraic operations like +;�; � and composition can be de�ned on truncated Tay-

lor expansions, leading to an algebra called the truncated power series algebra (TPSA)

[7]. The power of TPSA can be further enhanced by the introduction of derivations @

and their inverses, corresponding to the di¤erentiation and integration on the space

of functions. The resulting structure is called a Di¤erential Algebra (DA) [67, 47].

The Di¤erential Algebra provides a framework to develop techniques and algorithms

to use a truncated Taylor expansion of a function on a computer. The numerical

techniques based on DA have the unique advantage of getting high accuracy at a very

small cost of the execution time and the computational resources compared to the

traditional techniques.

In beam physics, the DA techniques were �rst introduced by M. Berz 1989 [12, 10,

9, 11] to compute the high-order Taylor expansions of the transfer maps. The beam

physics codes based on the DA techniques have become indispensable tools to the

design and analysis of accelerator lattices. In recent years the DA techniques have

been applied to solve DAEs, ODEs and PDEs [50, 42, 43, 28].
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CHAPTER 2

Background information

In this chapter we present the background behind the work presented in this disser-

tation. We start by de�ning a vector �eld in the 3-dimensional Euclidean space E3

and discussing the relevant properties. We then discuss the Laplace equation and the

Poisson equation and present some of their properties. We also present a brief survey

of the analytic and numerical techniques to solve the Laplace and the Poisson equa-

tions. We then discuss the background of the numerical techniques that we utilize in

this dissertation, namely the Di¤erential Algebra (DA) and the Taylor Model (TM).

2.1 Vector �eld and the Helmholtz theorem

Let V be a bounded region in the 3-dimensional (3D) Euclidean space E3. A vector

�eld on the E3 is a function ~B that assigns to each point (x; y; z) in V a three-

dimensional vector ~B (x; y; z). A vector �eld that has zero curl everywhere is called

an irrotational �eld. Such a �eld can be expressed as a gradient of a scalar �eld.

This scalar �eld is called a scalar potential. A vector �eld that has zero divergence

everywhere is called a solenoidal �eld. Such a �eld can be expressed as a curl of a

vector �eld. This vector �eld is called a vector potential.

3



2.1.1 The Helmholtz theorem for Euclidean three-space

The Helmholtz theorem [40, 59, 44, 62, 61] expresses any general vector �eld as a sum

of an irrotational �eld and a solenoidal �eld over all of a Euclidean three-space.

Theorem 1 (The Helmholtz theorem for Euclidean three-space) A general

continuous three-vector �eld de�ned everywhere in a Euclidean three-space, that along

with its �rst derivatives vanishes su¢ ciently rapidly at in�nity, may be uniquely rep-

resented as a sum of an irrotational part and a solenoidal part.

The theorem imply that any vector �eld ~B (~r) can be written as

~B = �r�n +r� ~At; (2.1.1)

where ~At is a vector potential and �n is a scalar potential. A simple proof of this

statement follows directly from a well-know vector identity for an arbitrary vector

�eld,

�r2~V = ~r�
�
r� ~V

�
�r

�
r � ~V

�
Now by choosing ~B = �r2~V , �n = r � ~V and ~At = r � ~V , we get the equation

(2.1.1). However, this assumes that there is always a solution to the vector Poisson

equation, ~B = �r2~V . We now propose the following

Proposition 2 For any vector �eld ~B (~r) that vanishes fast for large r, and satis�es

a Hölder condition, a vector potential ~V given by

~V (~r) = �
Z
E3

~B
�
~r
0�

4�
���~r � ~r0���d
0 ; (2.1.2)

is the solution to a vector Poisson equation

~B (~r) = �r2~V (~r) : (2.1.3)

4



We now prove the proposition above. We �rst note that the volume integral in the

equation (2.1.2) exists only if the vector �eld ~B (~r) vanishes fast for large r. Such a

vector �eld has a compact support in E3, as a result the integral over all of Euclidean

three-space in the equation (2.1.2) can expressed as an integral on �nite volume

~V (~r) = �
Z
V

~B
�
~r
0�

4�
���~r � ~r0���d
0 ; (2.1.4)

where volume V is in E3. We now take the Laplacian of ~V in equation (2.1.4) to get

r2~V (~r) = �r2
24Z

V

~B
�
~r
0�

4�
���~r � ~r0���d
0

35 ; (2.1.5)

= �
Z
V

~B
�
~r
0�

4�
r2
0@ 1���~r � ~r0���

1A d

0
:

Since the Laplacian is with respect to the unprimed coordinates, r, the integral and

the vector ~B can be brought out of the Laplacian. The �nal step is proving the

relation

�
Z
V

~B
�
~r
0�

4�
r2
0@ 1���~r � ~r0���

1A d

0
= ~B (~r) : (2.1.6)

Once we prove the equation above, we can use the above equation and the equation

(2.1.5) to complete the proof that the vector potential V (~r) given by equation (2.1.1)

is the solution to the vector Poisson equation (2.1.3). To prove the equation (2.1.6)

we need all the three components of the vector �eld Bi (i = 1; 2; or 3) to satisfy a

Hölder condition.

De�nition 3 [61] Let r0 = j~r2 � ~r1j be the distance between two points ~r1 and ~r2.

If three positive constants a; n; c exist such that

jBi (~r2)�Bi (~r1)j < arn0 ;

for all points ~r1 and ~r2 for which r0 < c, the quantity Bi is said to satisfy a Hölder

condition.
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The Bi is also said to be Hölder continuous. We are now ready to prove the relation

expressed in equation (2.1.6).

Proof. We note that

r2
0@ 1���~r � ~r0���

1A = 0 8 ~r 6= ~r
0
;

thus the volume integral in equation (2.1.6) is zero except for the contribution from

the singular point ~r = ~r
0
: As ~r

0
approaches ~r, the distance

���~r � ~r0��� tends towards
zero. We surround this singular point by a small sphere of radius �, with surface S�

and volume V�. Since ~B
�
~r
0�
satis�es a Hölder condition, we can choose � so small

that for all values of ~r
0
inside the sphere, ~B is essentially equal to its value ~B

�
~r
0�
at

the singular point. Then the integral in the equation (2.1.6) becomes

Z
V

~B
�
~r
0�

4�
r2
0@ 1���~r � ~r0���

1A d

0
=

~B (~r)

4�

Z
V�
r2
0@ 1���~r � ~r0���

1A d

0
: (2.1.7)

Using the relations,

r

0@ 1���~r � ~r0���
1A = �r

0
0@ 1���~r � ~r0���

1A ;

r2
0@ 1���~r � ~r0���

1A = r
02
0@ 1���~r � ~r0���

1A ;

and the divergence theorem on the volume integral we obtain

~B (~r)

4�

Z
V�
r2
0@ 1���~r � ~r0���

1A d

0
=

~B (~r)

4�

I
S�

n̂

�
~r
0
�
� r
0
0@ 1���~r � ~r0���

1A dS
0
; (2.1.8)

where n̂
�
~r
0�
is the unit vector normal to the surface S� at ~r

0
. We note that

dS
0
=

����~r � ~r0����2 d!;
r
0
0@ 1���~r � ~r0���

1A =
�n̂
�
~r
0����~r � ~r0���2 ;

6



substituting this in the equation (2.1.8), we prove the relation expressed in the equa-

tion (2.1.6)

Z
V

~B
�
~r
0�

4�
r2
0@ 1���~r � ~r0���

1A d

0
=

~B (~r)

4�

I
S�

n̂

�
~r
0
�
�
�n̂
�
~r
0����~r � ~r0���2
����~r � ~r0����2 d!

=
� ~B (~r)
4�

I
S�

d! = � ~B (~r) :

We see that the vector �eld ~B
�
~r
0�
must satisfy a Hölder condition the equation

(2.1.7) to be valid. This requirement is stronger than continuity but less stringent

than di¤erentiability. All in�nitely often di¤erentiable functions in C1 satisfy this

condition.

2.1.2 The Helmholtz theorem for a �nite volume

For a bounded region the statement can be modi�ed as follows

Theorem 4 (The Helmholtz theorem for a �nite volume) A general continu-

ous three-vector �eld that is de�ned everywhere in a �nite volume V of a Euclidean

three-space and whose tangential and normal components on the bounding closed sur-

face S are given may be uniquely represented as a sum of an irrotational part and a

solenoidal part.

Once again, the theorem implies that any vector �eld ~B (~x) can be written as

~B = �r�n +r� ~At:

We now proceed to prove theorem 4, and obtain the explicit expressions for the vector

potential ~At and the scalar potential �n in terms of the essential characteristics of the

vector �eld, namely, divergence, curl, discontinuities, and boundary values. We adapt

7



the derivation from [62]. By using the equation (2.1.6) a vector function ~B (x; y; z)

can be represented as

~B (~r) = �
Z
V

~B
�
~r
0�

4�
r2
0@ 1���r � r

0���
1A dV

0
;

= �r2
Z
V

~B
�
~r
0�

4�
���r � r

0���dV 0 : (2.1.9)

Using the vector identity

r�
�
r� ~B

�
= r

�
r � ~B

�
�r2 ~B;

we rewrite equation (2.1.9) as

~B (~r) = r�

0BBBBBB@r�
Z
V

~B
�
~r
0�

4�
���r � r

0���dV 0| {z }
~At

1CCCCCCA�r
0BBBBBB@r �

Z
V

~B
�
~r
0�

4�
���r � r

0���dV 0| {z }
�

1CCCCCCA : (2.1.10)

We �rst consider the divergence term �,

� =

Z
V

~B
�
~r
0�

4�
� r

0@ 1���r � r
0���
1A dV

0
: (2.1.11)

We note that

~B

�
~r
0
�
� r

0@ 1���r � r
0���
1A = � ~B

�
~r
0
�
� r
0
0@ 1���r � r

0���
1A ;

=
r0 � ~B

�
~r
0����r � r
0��� �r

0
�
~B
�
~r
0����r � r
0��� ;

substituting this in the equation (2.1.11) and using the divergence theorem for the

second part of the volume integral,

� =

Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 �
Z
V
r
0
�

~B
�
~r
0�

4�
���r � r

0���dV 0 ;
=

Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 �
I
S

~n � ~B
�
~r
0�

4�
���r � r

0���dS0 ;
8



gives the desired form of the scalar potential �. The curl term ~At in the equation

(2.1.10) can be written as

~At = r�
Z
V

~B
�
~r
0�

4�
���r � r

0���dV 0 ;
= � 1

4�

Z
V

~B

�
~r
0
�
�r

0@ 1���r � r
0���
1A dV

0
;

=
1

4�

Z
V

~B

�
~r
0
�
�r

0
0@ 1���r � r

0���
1A dV

0
: (2.1.12)

We note that

r
0
�

~B
�
~r
0����r � r
0��� =

r0 � ~B
�
~r
0����r � r

0��� � ~B

�
~r
0
�
�r

0
0@ 1���r � r

0���
1A ;

using this in equation (2.1.12) we get

~At =

Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 � 1

4�

Z
V
r
0
�

~B
�
~r
0����r � r
0���dV 0 :

For the second integral on the right hand side of the above equation we now show the

following

1

4�

Z
V
r
0
�

~B
�
~r
0����r � r
0���dV 0 = � 1

4�

I
S

~n� ~B
�
~r
0����r � r
0��� dS

0
: (2.1.13)

To prove this result we consider a constant vector ~C and apply the divergence theorem

to the quantity ~C � r0 �
�
~B
�
~r
0�
=
���r � r

0����,
Z
V

~C � r
0
�

~B
�
~r
0����r � r
0���dV 0 = �

Z
V
r
0
�C�

~B
�
~r
0����r � r
0���dV 0 ;

= �
I
S

~C �
~B
�
~r
0����r � r
0��� � ~ndS0 ;

= �~C�
I
S

~n� ~B
�
~r
0����r � r
0��� dS

0
;
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since the constant vector ~C is arbitrary we prove the relation (2.1.13). Using this

relation leads to the desired form of the vector potential ~At,

~At =

Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 +
I
S

~n� ~B
�
~r
0�

4�
���r � r

0��� dS0 :
Hence, the Helmholtz identity for any vector �eld ~B (~r) in a �nite volume is

~B (~r) = �r

264Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 �
I
S

~n � ~B
�
~r
0�

4�
���r � r

0���dS0
375

+r�

264Z
V

r0 � ~B
�
~r
0�

4�
���r � r

0��� dV 0 +
I
S

~n� ~B
�
~r
0�

4�
���r � r

0��� dS0
375 :

2.1.3 The Helmholtz theorem for time dependent vector

�elds

Recent works [30, 82, 81] have extended the Helmholtz theorem to time dependent

vector �elds. We present a summary of some of those recent works here.

It is possible to obtain the Helmholtz theorem and an explicit form of the scalar

and vector time dependent potentials by replacing the three dimensional analysis on

the Euclidian three space in the sections 2.1.1 and 2.1.2 with a four-vector equivalent

on the Euclidian four space E4, or the Minkowski four-space R3+1 [81, 80]. However,

the approach we describe below is more suitable for our purposes, as it allows us to

not only obtain the Helmholtz theorem for the time dependent vector �eld but also to

obtain Maxwell�s equation starting from the Helmholtz theorem and the continuity

equation.

Let f (~r; t) be a time dependent scalar function and let g (~r; t) be a time dependent

scalar function de�ned by

g (~r; t) =

Z f
�
~r
0
; t�

���~r � ~r0��� =c�
4�
���~r � ~r0��� dV

0
; (2.1.14)
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where c is a constant. We introduce the notation, ~R = ~r � ~r
0
, R =

���~R���,  (R) =
1= (4�R), and � = t�R=c. Using this notation, the equation (2.1.14) can be written

as

g (~r; t) =

Z
f

�
~r
0
; �

�
 (R) dV

0
: (2.1.15)

The gradient of g and its divergence, i.e., the Laplacian of g can be given as

rg (~r; t) =

Z
( rf + fr ) dV

0
;

r2g (~r; t) =

Z �
 r2f + 2rf � r + fr2 

�
dV
0

The gradient of the scalar function f and  are given by

rf = �1
c

@f

@�
êR; (2.1.16)

r = � 1
R
 êR;

and taking the divergence of rf , we obtain

r2f = 1

c2
@2f

@2�
� 2

cR

@f

@�
: (2.1.17)

Using the equations (2.1.16) and (2.1.17), the Laplacian of g can be given as

r2g (~r; t) =
Z
1

c2

@2f
�
~r
0
; �
�

@�2
 (R) dV

0
+

Z
f

�
~r
0
; �

�
r2 dV

0
: (2.1.18)

We apply the equation (2.2.4) derived in the section 2.1.2 to the three dimensional

vector �eld with one of its components being f (~r; �) and other two being zero to

obtain Z
f

�
~r
0
; �

�
r2 dV

0
= �f (~r; t) : (2.1.19)

Now, by changing the di¤erentiation with respect to � in the �rst term on the right

hand side of the equation (2.1.18) to di¤erentiation with respect to t, and bringing

the di¤erentiation with respect to t outside the integral, and using equations (2.1.19)

and (2.1.15) we obtain

r2g (~r; t) = 1

c2
@2g (~r; t)

@t2
� f (~r; t) :

11



We can now rewrite the equation above as 
r2 � 1

c2
@2

@t2

!
g (~r; t) = �f (~r; t) : (2.1.20)

We now consider a time dependent vector function ~F (~r; t) and de�ne a vector

potential ~A (~r; t) by

~A (~r; t) =

Z
~F

�
~r
0
; �

�
 (R) dV

0
; (2.1.21)

and using the equation (2.1.20) component-wise for the vector ~A; we get 
r2 � 1

c2
@2

@t2

!
~A (~r; t) = �~F (~r; t) : (2.1.22)

We now de�ne a scalar potential � associated with ~F (~r; t) such that it is a solution

to
1

c2
@� (~r; t)

@t
= �r � ~A (~r; t) : (2.1.23)

The equation above is the well-known Lorenz gauge condition. We now use the

standard vector identity for the double curl of a vector �eld on the vector ~A and use

the equations (2.1.23) and (2.1.22) to get

r�
�
r� ~A (~r; t)

�
= r

�
r � ~A (~r; t)

�
�r2 ~A (~r; t)

= r
�
� 1
c2
@� (~r; t)

@t

�
�
 
1

c2
@2 ~A (~r; t)

@t2
� ~F (~r; t)

!

= � 1
c2

@

@t

 
r� (~r; t) + @ ~A (~r; t)

@t

!
+ ~F (~r; t) :

Rearranging the equation above we arrive at theHelmholtz theorem for time dependent

vector �elds,

~F =
1

c2
@

@t

 
r�+ @ ~A

@t

!
+r�

�
r� ~A

�
:

Now we derive additional relations which would facilitate the derivation of

Maxwell�s equations from the Helmholtz theorem in the section 2.1.4. Starting from

12



the equation (2.1.21), we evaluate the divergence of ~A to obtain

r � ~A (~r; t) =

Z
r �
�
 (R) ~F

�
~r
0
; �

��
dV
0

=

Z �
�r

0
 � ~F +  r � ~F

�
dV
0

=

Z �
�r

0
�
�
 ~F
�
+  r

0
� ~F +  r � ~F

�
dV
0

=

Z
�r

0
�
�
 ~F
�
dV
0

| {z }
I

+

Z �
r
0
� ~F +r � ~F

�
 dV

0
:

Using the divergence theorem, we can write the integral I as

I =

Z
�r

0
�
�
 ~F
�
dV
0
= �

I
 ~F � d~S

0
:

Assuming that the vector function ~F vanishes su¢ ciently fast as r !1; we see that

the integral I vanishes. Thus, we have

r � ~A (~r; t) =
Z �

r
0
� ~F
�
~r
0
; �

�
+r � ~F

�
~r
0
; �

��
 dV

0
:

We rewrite r0 � ~F and r � ~F as

r
0
� ~F
�
~r
0
; �

�
=

3X
i=1

24@ ~Fi
�
~r
0
; �
�

@x
0
i

+
@ ~Fi

�
~r
0
; �
�

@�

@�

@x
0
i

35 ;
r � ~F

�
~r
0
; �

�
=

3X
i=1

24@ ~Fi
�
~r
0
; �
�

@�

@�

@xi

35 :
We note that

�
@�=@x

0
i

�
= � (@�=@xi). Using this, we can conclude that

r � ~A (~r; t) =

Z 24 3X
i=1

@ ~Fi

�
~r
0
; �
�

@x
0
i

35 dV 0
=

Z �
r
0
� � ~F

�
 dV

0
; (2.1.24)

where the notationr0� is the gradient operator with respect to x
0
i with � kept constant,

for i = 1; 2; 3. The scalar potential in the Lorenz gauge equation (2.1.23) can be
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expressed in terms on another scalar function �a (r; t) as

� (~r; t) =

Z
�a

�
~r
0
; �

�
 (R) dV

0
; (2.1.25)

and also from the equation (2.1.20), the scalar potential � (~r; t) also satis�es 
r2 � 1

c2
@2

@t2

!
� (~r; t) = ��a (~r; t) : (2.1.26)

Using the equations (2.1.24) and (2.1.23) and assuming that the time derivative can

be exchanged with the spatial integral, we get

@�a (~r; t)

@t
= �c2r � ~F (~r; t) : (2.1.27)

2.1.4 Maxwell�s equations from the Helmholtz theorem

We will now obtain Maxwell�s equations using the Helmholtz theorem for time de-

pendent vector �elds and the continuity equation

r � ~J (~r; t) + @� (~r; t)

@t
= 0; (2.1.28)

where ~J (~r; t) is the current density vector and � (~r; t) is the charge density at point ~r

and at time t.

We start from the Helmholtz theorem for time dependent potentials

~F =
1

c2
@

@t

 
r�+ @ ~A

@t

!
+r�

�
r� ~A

�
: (2.1.29)

We choose ~F (~r; t) to be �0 ~J (~r; t), where �0 is permeability of the free space. Using

the equation (2.1.21), we see that the vector potential ~A can be written as

~A =

Z �0 ~J
�
~r
0
; �
�

4�R
dV
0
;

and using the equation (2.1.27), we get

@�a (~r; t)

@t
= �c2r � �0 ~J (~r; t)

= ��0c2r � ~J (~r; t) = �0c
2@� (~r; t)

@t
: (2.1.30)
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In the equation (2.1.30) we use the continuity equation (2.1.28). We now attribute

a meaning to the constant c as the speed of light, and c = 1=
p
�0�0, and �0 is the

permittivity of free space. We thus get

�a (~r; t) =
� (~r; t)

�0
: (2.1.31)

Using the equation (2.1.25), we de�ne �, the electric scalar potential, as

� (~r; t) =

Z �
�
~r
0
; �
�

4��0R
dV
0
:

Additionally, we now de�ne two new quantities. The electric �eld intensity ~E (~r; t) is

de�ned as

~E (~r; t) = �
 
r� (~r; t) + @ ~A (~r; t)

@t

!
; (2.1.32)

and the magnetic induction ~B (~r; t) is de�ned by

~B (~r; t) = r� ~A (~r; t) :

From the de�nition of ~B (~r; t) it follows that the divergence of ~B (~r; t) vanishes, that

is,

r � ~B (~r; t) = 0: (2.1.33)

Now the equation (2.1.29) becomes the Ampere-Maxwell equation

r� ~B (~r; t) = �0 ~J (~r; t) +
1

c2
@ ~E (~r; t)

@t
: (2.1.34)

Taking the curl of both sides of the equation (2.1.32) and using the de�nition of

~B (~r; t) ; we get

r� ~E (~r; t) = �@
~B (~r; t)

@t
(2.1.35)

Taking the divergence of both side of the equation (2.1.32) and using the equations
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(2.1.23), (2.1.26) and (2.1.31), we get

r � ~E (~r; t) = �r2� (~r; t)� @

@t

h
r � ~A (~r; t)

i
= �r2� (~r; t)� @

@t

�
� 1
c2
@� (~r; t)

@t

�
= �

 
r2 � 1

c2
@2

@t2

!
� (~r; t) =

� (~r; t)

�0
: (2.1.36)

We have derived Maxwell�s equations (2.1.36), (2.1.35), (2.1.33), and (2.1.34) start-

ing from the Helmholtz theorem (2.1.29) and the continuity equation (2.1.30).

2.2 Laplace�s and Poisson�s equations

A vector �eld that is both solenoidal and irrotational and is continuously di¤erentiable

is called a Laplacian vector �eld. Since this �eld is irrotational, there is a potential �

such that

~B=�r�;

and since the �eld is solenoidal and continuously di¤erentiable, this potential satis�es

Laplace�s equation,

r2� = @2�

@x2
+
@2�

@y2
+
@2�

@z2
= 0; (2.2.1)

the corresponding inhomogenous equation is called Poisson�s equation,

�r2� = f: (2.2.2)

Laplace�s and Poisson�s equations describe a wide variety of physical processes,

e.g. the gravitational potential, the electrostatic potential, the magnetostatic poten-

tial, chemical concentrations, steady-state heat conduction, steady-state di¤usion of a

solute, steady-state irrotational �ow of the incompressible �uids, and the probabilistic

investigation of Brownian motion. In a typical interpretation, � denotes the density

of some quantity in equilibrium, as in the case of an electric potential. Laplace�s

equation is equivalent to the requirement that there be no maximum or minimum of
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� inside the volume V and the value of � at a point be equal to the average of the

values of � at the neighboring points.

A C2 function that satis�es Laplace�s equation is called a harmonic function. In

this section we discuss properties of harmonic functions which are relevant to the work

that we present. All theorems presented are valid over Rn, but since the problems

that we address are all in two or three dimensions we restrict our attention to the

special case n = 2 or n = 3. We also discuss the established techniques to solve

Laplace�s and Poisson�s equations. The material presented here is adapted from [36].

2.2.1 Fundamental solution and Green�s functions

In the section 2.1.1 we proved that for any vector �eld ~B (~r) the vector potential ~V (~r)

given by

~V (~r) = �
Z
E3

~B
�
~r
0�

4�
���~r � ~r0���d
0 ; (2.2.3)

is a solution to the vector Poisson equation ~B = �r2~V . In the equation above,

irrespective of what the vector �eld ~B (~r) is, the kernel of the volume integral,

1=
�
4�
���~r � ~r0����, will always remain the same. This observation leads us to de�ne

the fundamental solution � of the Laplace equation as

� (~r) = 1= (4� j~rj) :

We can also arrive at a fundamental solution by �nding an explicit solution to the

Laplace equation with certain symmetry properties [36]. For a two dimensional case it

can be easily shown that a fundamental solution is given by � (~r) = � (log j~rj) = (2�).

The fundamental solution � has a property that it is invariant under rotation and it

is singular at origin. Using the notation for the fundamental solution the equation

(2.2.3) can be written as a convolution integral

~V (~r) = �
Z
E3
�

�
~r � ~r

0
�
~B

�
~r
0
�
d

0
:
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We see that the recognizing the fundamental solution of the Laplace equation al-

lows us to construct the solution to the more complicated Poisson equation using a

convolution integral.

The Green�s function is a fundamental solutions that also satisfy boundary condi-

tions or initial conditions. To discuss Green�s function it will be useful to �rst present

Green�s formula.

Theorem 1 (Green�s Formulas) Let �;  2 C2 on a closed domain U � E3: Then

1.
R
U r

2�dV =
R
@U

@�
@� dS

2.
R
U r� � r dV = �

R
@U �r

2 dV +
R
@U �

@ 
@� dS

3.
R
U

h
�r2 �  r2�

i
dV =

R
@U

h
�@ @� �  @�@�

i
dS

All three Green�s formulas above can be easily proved using the divergence theorem

[36]. Greens�s formulas along with the de�nition of Green�s function can be used to

prove the uniqueness of the solution for certain boundary value problems. We now

formally de�ne Green�s function.

De�nition 2 (Green�s function) Green�s function for the region U is of the form

G

�
~r; ~r
0
�
= �

�
~r � ~r

0
�
�	

�
~r; ~r
0
�
; (2.2.4)

where �
�
~r � ~r0

�
is a fundamental solution and 	 is a harmonic function.

The boundary conditions will depend on the problem. For the special case of the

Dirichlet and the Neumann boundary condition, it can be shown using the de�nition

of Green�s function and Green�s formulas that the unique solution can be found for

the Poisson problem �r2� = � in U . The solution to this problem can be expressed

as

� (~r) =

Z
U
�

�
~r
0
�
G

�
~r; ~r
0
�
dV +

Z
@U

24G�~r; ~r0� @�
�
~r0
�

@�
0 � �

�
~r0
� @G�~r; ~r0�

@�
0
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For the Dirichlet boundary conditions where the potential � is speci�ed on the bound-

ary @U , Green�s function can be chosen to be

G

�
~r; ~r
0
�
= 0 on the boundary @U;

and for the Neumann boundary conditions where the normal component of the gra-

dient of the potential � is speci�ed on the boundary @U , Green�s function can be

chosen to be
@G
�
~r; ~r
0�

@�
0 = 0 on the boundary @U:

Green�s function is uniquely determined by the equation (2.2.4) and the boundary

conditions. Green�s function is symmetric with respect to ~r and ~r
0
, G

�
~r; ~r
0�
=

G
�
~r
0
; ~r
�
. Except for few simple geometries, like the half-plane and the sphere, it

is usually very hard to �nd Green�s functions. For many problems Green�s function

may not exist or may not be uniquely determined.

2.2.2 Mean-value formulas

Consider an open set U � E3 and suppose � is a harmonic function within U . Let

S (~r0; R) denote a ball at ~r0 with radius R in U . The mean-value formulas declare

that � (~r0) equals both the average of � over the ball @S (~r0; R) and the average of �

over the entire ball S (~r0; R).

Theorem 3 (Mean-value formulas for 3D Laplace�s equation). If � 2 C2 (U) is har-

monic, then

� (~r0) =
1

4�R2

I
@S(~r0;R)

�ds =
3

4�R3

Z
S(~r0;R)

�d
 (2.2.5)

for each sphere of radius R with center at point ~r0, S (~r0; R) � U .

The converse of this theorem is also true. One of the consequences of the mean

value theorem is that the maximum or a minimum of a Harmonic function can occur
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only on the boundary. If the function has a maximum or minimum inside U then the

function is just a constant. This result provides another way to establish uniqueness

of solutions in certain boundary value problems for Poisson�s equation.

Regularity

The regularity theorem says that if � 2 C2 is harmonic, then necessarily � 2 C1.

Thus harmonic functions are automatically in�nitely often di¤erentiable. Even

though the Laplace equations itself has only second order partial derivatives it has

the interesting feature that the all partial derivatives of the solution � exist.

Analyticity

An analytic function � is an in�nitely di¤erentiable function such that the Taylor

series around any point x0

T (x) =
1X
n=0

�n (x0)

n!
(x� x0)

n ;

is convergent for x close enough to x0, and its value equals � (x). The analyticity

theorem states

Theorem 4 (Analyticity) Assume � is harmonic in U . Then � is analytic in U .

This property allows us to express a harmonic function � as a Taylor series .

The last important property is the Harnack�s inequality, which assert that the

values of a non-negative harmonic function within V are all comparable. The value

of a harmonic function � cannot be very small or very large at any point of V unless

� is very small or very large everywhere in V .

2.2.3 An analytical solution of the 2D Laplace equation

Let z = x+iy, dz = dx+idy and dz = dx�idy. Then, (@=@z) = 1
2 ((@=@x) + i (@=@y))

and (@=@z) = 1
2 ((@=@x)� i (@=@y)). The Laplacian operator in 2D can be given as
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� = 4 (@=@z) (@=@z). For any C1 complex function f on a complex domain 
 with

boundary @
, the Cauchy-Pompeiu integral representation can be written as

f (z0) =
1

2�i

Z
@


f (z)

z � z0
dz � 1

�

Z Z



(@f=@z)

z � z0
dxdy: (2.2.6)

If the function f is analytic then it satis�es the Cauchy-Riemann equation (@f=@z) =

0, and the equation (2.2.6) reduces to the standard Cauchy�s formula

f (z0) =
1

2�i

Z
@


f (z)

z � z0
dz:

Cauchy�s formula tells us that the value f at any point z0 in 
 is completely deter-

mined by the value of f on the boundary @
. This can also be used to develop a

numerical scheme to solve the 2D Laplace equation.

2.2.4 Analytical and numerical solutions of the 3D Laplace

equation

A solution of Laplace�s equation is uniquely determined if the value of the function

is speci�ed everywhere on the boundary (Dirichlet boundary conditions) or the nor-

mal derivative of the function is speci�ed everywhere on the boundary (Neumann

boundary conditions) or a linear combination of the solution and its normal deriva-

tive is speci�ed on the boundary (Robin boundary conditions). For many problems

neither of the three boundary conditions above is suitable. We may then use the nat-

ural boundary conditions. Natural boundary conditions usually set the solution to a

distinct value at in�nity (asymptotic boundary conditions). The kind of boundary

condition can vary from point to point on the boundary, but at any given point only

one boundary condition can be speci�ed. When the region on which the PDE prob-

lem is posed is unbounded, one or more of the above boundary conditions is usually

replaced by a growth condition that limits the behavior of the solution at in�nity.
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Coordinate System Solution Functions
Cartesian Exponential, Circular and Hyperbolic functions
Circular cylindrical Bessel, Exponential and Circular functions
Conical Ellipsoidal harmonics and Power
Ellipsoidal Ellipsoidal harmonic
Elliptic cylindrical Mathieu and Circular function
Oblate spheroidal Legendre polynomial and Circular function
Parabolic Bessel and Circular function
Parabolic cylindrical Bessel, Circular and Parabolic cylinder functions,
Paraboloidal Circular function
Prolate spheroidal Legendre polynomial and Circular function
Spherical Legendre polynomial, Power and Circular functions

Table 2.2.1. Analytic solution functions for di¤erent coordinate systems where the
method of seperation of variables can be applied.

The method of separation of variables

The method of separation of variables is a suitable technique for determining solutions

to linear PDEs, usually with constant coe¢ cients, when the domain is bounded in

at least one of the independent variables. It turns out that in the three-dimensional

Laplace�s equation, there are some coordinate systems in which the solution takes

on the form R (�1; �2; �3) � X1 (�1) � X2 (�2) � X3 (�3), where the additional factor

R is independent of the separation constants. Laplace�s equation can be solved by

separation of variables in 11 coordinate systems [76, 59]. The form these solutions take

is summarized in Table 2.2.1. In addition to these 11 coordinate systems, separation

can be achieved in two additional coordinate systems by introducing a multiplicative

factor.

In addition to the method of separation of variables, the �nite Fourier transform

and the power series method can be used to �nd an analytic solution to the Laplace

and the Poisson boundary value problems.

Numerical methods

For all the electromagnetic problems that cannot be solved analytically, numerical

methods are the only way to proceed. Most of the industrial packages are based on
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one of the three classes of numerical techniques [6]:

The �nite di¤erence method (FDM) discretizes the di¤erential operator at

each point of a rectangular grid covering the entire region of interest. The di¤erential

operator is approximated by an algebraic expression (di¤erence formula) with refer-

ence to the adjacent nodes. This leads to a large system of linear equations and the

solution requires inversion of large and sparse matrices. The FDM usually utilizes

uniformly spaced grids. The results usually are less accurate than other methods.

The �nite element method (FEM) is based on division of the volume of space

in which the Laplace or Poisson equation is satis�ed into small volumes (the �nite

elements). Within each �nite element a simple polynomial is used to approximate

the solution. To obtain the polynomial a variational formulation over the volume is

used. The variational quantity to be minimized is the total electrostatic or magne-

tostatic energy stored in a region. Element geometries and unknowns are expressed

by polynomials with nodal values as coe¢ cients. Relating these approximations to

the operator equation through minimizing the energy functional yields the solution

at the nodes. The FEM utilizes either uniform or nonuniform grids and it is possible

to implement automatic mesh size control. Even though, this method is considered

superior to FDM, but still su¤ers from some drawbacks. Among them are:

� The �nite element techniques requires the mesh be extended to a reasonable

distance with either potential or derivative boundary conditions applied to the

outer surface, so that the truncation has an insigni�cant e¤ect on the region of

interest. This usually leads to a large number of �nite elements.

� For problems where the magnetic or the electric �eld in the region of inter-

est di¤er by a large ratio (~106 ) in the maximum and minimum value, the

FEM elements have to start with extremely small element size and gradually

adapt themselves to much larger element size. This will increase the number of

unknowns substantially.
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Most of these techniques using FDM or FEM utilize relatively low approximation

order and provide solution as a data set in the region of interest. They also require

a prohibitively large number of mesh points and careful meshing. Both FDM and

FEM are geared to solve electric and magnetic potentials. Since in beam physics

applications the knowledge of the values of electric or magnetic �eld is required,

these values have to be extracted by numerical di¤erentiation of the potential. But

the numerical di¤erentiation process is very sensitive to numerical, truncation and

round o¤ errors.

The boundary element method (BEM) or source based �eld models the �eld

inside of a source free volume due to a real sources outside of it can be exactly

replicated by a distribution of �ctitious sources on its surface. The error due to

discretization of the source falls o¤ rapidly as the �eld point moves away from the

source. Since the discretization is done only on the surface, the dimensionality of the

problem is decreased by one. It makes the modeling of the problem easier and more

user friendly. The trade o¤ here is that the matrices generated by BEM are usually

smaller and denser matrices. One technique that falls in this category is the image

charge method. This requires proper choice of planes/grids to place point charges (or

Gaussian distribution) and solve a large least square �t problem to �nd the charges.

This involves a lot of guess work and computation time involved in getting the right

solution. Knowing these charges, the potential and �eld can be directly computed

everywhere in space. In problems where extreme ratios exist between smallest and

largest details of the structure, BEM will be the method of choice. Finally, since the

�eld and the potential everywhere in space are being computed from the actual charge

distribution on the boundaries, it will result in extremely accurate results when this

method is applied to particle ray tracing.

BEM methods are only applicable to problems for which Green�s functions can be

de�ned. This places considerable restrictions on the range and generality of problems
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to which boundary elements can usefully be applied. And once again these methods

usually compute the potential and not the �eld.

New methods that use the Helmholtz vector decomposition theorem are being used

in recent years to overcome the di¢ culties encountered by the BEM. The techniques

based on this method have the added bene�ts of giving the �eld directly and are

particularly suitable for beam physics applications. The references [63, 74, 73, 72, 75]

describe techniques based on this method to compute multipole decomposition of the

�elds. Other applications based on this method include vector tomography [60] and

incompressible �ows [33].

In beam physics, the detailed simulation of particle trajectories through magnets

in spectrographs and other large acceptance devices requires the use of detailed �eld

information obtained from measurements. Likewise, for high energy accelerators like

the LHC, higher order description of the beam dynamic via one-turn maps is required

to study the long term beam stability [69, 35]. The construction of such high order

one-turn truncated Taylor maps [17] requires the precise information of the electro-

magnetic �eld in the individual electromagnetic components (quadrupoles, dipoles,

sextupoles etc.) of the lattice.

It is commonly known that for a device that satis�es midplane symmetry, the entire

�eld information can be extracted from the data in the midplane of the device [17].

However, it is well known that this method has limitations in accurately predicting

nonlinear �eld information outside the immediate vicinity of the midplane because

the extrapolation requires the computation of higher order derivatives of in-midplane

data, which is di¢ cult to do with accuracy if the data is based on measurements.

Thus it is particularly useful to employ techniques that rely on �eld measurements

outside the midplane. In particular, in modern particle spectrographs it is common to

measure the �elds on a �ne mesh on 2 to 4 planes outside the midplane. These data

have frequently been used to model the overall �eld as a superposition of point-charge
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�elds of so-called image charges [32, 18]. However, the computational e¤ort required

for this approach is large, as it requires the inversion of a matrix with a dimension

equal to that of the number of image charges.

However, the out-of-plane �eld measurements in essence provide �eld data on the

top and bottom surfaces of a box containing the region of interest through which the

beam passes. If the planes extend outward far enough to a region where the fringe

�eld becomes very small, or can easily be modeled, and inwards far enough that the

�eld becomes rather homogenous, �eld data are known on an entire surface enclosing

the region of interest. The method we present can extract the �eld information as a

multipole expansion in the volume of interest if a discrete set of �eld measurements

are provided on a closed surface enclosing the volume of interest.

2.3 The Di¤erential Algebra nDv

For real analytic function f in v variables, we form a vector that contains all Taylor

expansion coe¢ cients at ~x = ~0 up to a certain order n. The vector with all the

Taylor coe¢ cients is called the DA vector. Knowing this vector for two real analytic

functions f and g allows to compute the respective vector for f+g and f �g, since the

derivatives of the sum and product function is uniquely de�ned from those of f and

g. The resulting operations of addition and multiplication lead to an algebra, the

so-called Truncated Power Series Algebra (TPSA) [7]. The power of TPSA can be

enhanced by the introduction of the derivations @ and their inverses, corresponding

to the di¤erentiation and integration in the space of functions. This resulted in

the recognition of the underlying di¤erential algebraic structure and its exploitation,

based on the commuting diagrams for the addition, multiplication, and di¤erentiation
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and their inverses:

f; g
T���! F;G

+;�
??y ??y�;	

f � g ���!
T

F
�
	G

f; g
T���! F;G

�;=
??y ??y�;�
f
�
=g ���!

T
F
�
�G

(2.3.1)

f
T���! F

@;@�1
??y ??y@
;@�1


@f; @�1f ���!
T

@
F; @
�1

 F

In the equation above the operation T is extraction of the Taylor coe¢ cients of

prespeci�ed order n of the function. Thus, the operation T can be used to create

a DA vector from a function. The operation T is an equivalence relation, and the

application of T corresponds to the transition from the function to the equivalence

class comprising all those functions with identical Taylor expansion to order n. The

symbols �; 	; �; �; @
 and @�1
 denote operations on the space of DA objects

which are de�ned such that the commuting relation expressed in the equation (2.3.1)

holds.

Using the Di¤erential Algebra and analytic formulae to compute the n-th order

derivative of an univariant fundamental function, like sin x; cosx; log x; tan x etc., we

can compute the derivatives up to order n of functions in v variables. The detailed

description of obtaining the n-th order Taylor expansion for a multivariate function

that is expressible on a computer is described in [17]. Also, composition of two

multivariate functions can be de�ned using the DA. Many problems involving the use

of DA techniques can be formulated as �xed-point problems, such as the inversion of a

multivariate function. Here �xed point theorems can be applied to show that existence

of the solution, and this also provides a practical means to obtain the solution [39].

As mentioned before the DA techniques have been widely applied in beam physics,

asteroid problems and other problems involving the solution of ODEs or PDEs. The

focus of the work we present is �nding a solution to the Laplace and Poisson equation
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using DA techniques. In this context it is worthwhile to look at the techniques that

already use DA to solve PDEs [17].

2.3.1 Solution of PDEs using DA

The complicated PDEs for the �elds and potentials stemming from the representation

of Maxwell�s equations in particle optical coordinates could be iteratively solved in

the DA framework to any order in �nitely many steps by rephrasing them in terms

of a �xed-point problem [17, 54]. For example, consider the general PDE

a1
@

@x

�
a2
@�

@x

�
+ b1

@

@y

�
b2
@�

@y

�
+ c1

@

@z

�
c2
@�

@z

�
= 0;

where a1; b1; c1; a2; b2; and c2 are functions of x; y and z. The equation above can be

written in �xed point form

� (x; y; z) = �jy=0 +
Z
y

1

b2

(
@�

@y
jy=0 �

Z
y

�
a1
b1

@

@x

�
a2
@�

@x

�
+
c1
b1

@

@z

�
c2
@�

@z

��)
:

If � and @�=@y are speci�ed on the y = 0 plane then it is possible to iteratively

calculate various high orders in y. Techniques based on the �xed point scheme for

PDEs can be used to solve the Laplace equation when the potential � and the normal

derivative @�=@y are speci�ed e.g. on the midplane of a magnet. Also, by considering

the Laplace equation in cylindrical coordinates, it is possible to devise a technique

to obtain the magnetic �eld of a magnet with cylindrical symmetry when the �eld is

speci�ed on the central axis.

2.3.2 Taylor transfer maps

An ensemble of particles with similar coordinates is called a beam. Detailed under-

standing of the beam dynamics requires the study of the motion of the reference

particle as well as the motion of the particle in the relative coordinates. The position

and momenta are usually su¢ cient to describe the motion. The state vector is given
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by

~Z (s) = (x; px; y; py; z; pz);

where the point (x; y; z) and the momentum vector
�
px; py; pz

�
gives the position and

the momentum of a particle, and the arclength s along the reference orbit is used as

the independent variable. The space spanned by the state vector is called phase space

and the volume of the phase space is called emittance. At each point on the reference

orbit it is possible to de�ne an unique orthogonal coordinate system, denoted by�
êx; êy; ês

�
, satisfying a certain set of conditions [50, 17]. In this coordinate system

the motion of the particles in the beam can be described using relative coordinates,

which are given by

~Z (s) =

0BBBBBBB@

x

a = px=p0
y

b = py=p0
l = k(t� t0)

� = (E � E0) =E0

1CCCCCCCA
where the position (x; y) describe the position of the particle in the local coordinate

system, p0 is a �xed momentum and E0 and t0 are the energy and the time of �ight

of the reference particle, a and b are the momentum slopes, E is the total energy,

and k has a dimension of velocity which makes l a length like coordinate. The point

~Z = 0 corresponds to the reference particle.

The transfer map or transfer function M relates initial conditions at s0 to the

conditions at s via

~Z (s) =M (s0; s)
�
~Z (s0)

�
:

Transfer maps are origin preserving, M
�
~0
�
= ~0, and the transfer maps have the

property that

M (s1; s2) �M (s0; s1) =M (s0; s2) ;

which says that the transfers maps of systems can be built up from the transfer maps

of the pieces. For a deterministic system (a unique solution exists) the transfer map
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is the �ow of ODEs
d~z

ds
= ~f (~z; s) , (2.3.2)

in the independent variable s. For most dynamical systems, the transfer map can not

be represented in a closed form. For weakly non-linear systems, like an accelerator

system, the map can be expanded as a Taylor series. Usually, the Taylor expansion

converges rapidly. Implementation of such a map on a computer would require the

map to be truncated at a certain order. From the implementation point of view the

Taylor transfer map is an array of DA vectors with each DA vector being an array

storing the coe¢ cients of the truncated Taylor series expansion of the �nal phase

space coordinate in terms of the initial phase space coordinates. The Taylor transfer

maps can be used to replace and speed up element-by-element tracking, to look at

aberration content, or to monitor a design process [45]. A detailed discussion of the

properties and use of the Taylor transfer maps can be found in [17].

Generating transfer maps

To generate a transfer map we have to solve the equation 2.3.2. For beam physics

applications, the set of ODEs describing the equations of motion when the reference

trajectory is restricted to a plane and the energy is conserved are given by

x
0
= a (1 + hx)

p0
ps
;

y0 = b (1 + hx)
p0
ps
;

l
0
=

�
(1 + hx)

1 + �

1 + �0

p0
ps
� 1
�
k

v0
;

a
0
=

�
1 + �

1 + �0

p0
ps

Ex
�e0

+ b
Bz
�m0

p0
ps
�

By

�m0

�
� (1 + hx) + h

p0
ps
;

b
0
=

�
1 + �

1 + �0

p0
ps

Ey

�e0
+

Bx
�m0

� a
Bz
�m0

p0
ps

�
� (1 + hx) ;

�
0
= 0; (2.3.3)
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Figure 2.3.1. Flow chart for extracting the Taylor transfer maps from either the
electric or the magnetic �eld information or both.

where h is the radius of curvature, the ratio p0=ps is given by

p0
ps
=

 
� (2 + �)

�0 (2 + �0)
� m

2

m20
� a2 � b2

!�12
;

the ratio � of the kinetic to rest mass energy is given by � =

(E � eV (x; y; s)) =
�
mc2

�
, the �m0 = p0= (ze) is the magnetic rigidity and �e0 =

(p0v0) = (ze) is the electric rigidity. In the equation (2.3.3) Bx; By; Bz and Ex; Ey; Ez

represent the x; y and z components of the magnetic �eld and the electric �eld.

Using the di¤erential algebra and the knowledge of the magnetic and the electric

�eld we can solve the equation (2.3.3) by using one of the ODE integration schemes.

Figure 2.3.1 shows the �ow chart for the extraction of transfer maps. Traditionally,

it was only possible to extract the transfer maps to low orders (� 3), using the

perturbative analytic approach. However, the introduction of di¤erential algebra to

beam physics has made it possible to extract maps to in principle arbitrary order.

Further, the direct availability of the derivation @i and their inverses @
�1
i allows
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to devise e¢ cient numerical integrators of any order. The code COSY INFINITY

makes it possible to use DA integrators or a Runge-Kutta integrator of order eight

with automatic step size control based on a seventh-order scheme for this purpose.

The Runge-Kutta integration can be carried out not only with real numbers but also

for DA vectors. At each time step the eighth order Runge-Kutta scheme requires the

evaluation of the function ~f at thirteen points to compute the Taylor transfer map

[51, 64, 48], which in turn requires the electric and magnetic �eld information at these

thirteen points.

2.4 Taylor Models

Taylor model methods are newly developed techniques that unify many concepts

of high-order computational di¤erentiation with veri�cation approaches covering the

Taylor remainder term. These were developed as a better alternative to the conven-

tional interval methods that have limited practical applicability. The reasons for the

failure of conventional interval methods for large dimensional and domain size prob-

lems are discussed in [50, 42, 53]. The results obtained with Taylor model methods

include veri�ed optimization, veri�ed quadrature and veri�ed propagation of extended

domains of initial conditions through ODEs, and approaches towards veri�ed solution

of DAEs and PDEs.

De�nition 1 (Taylor Model) Let f : D � Rv �! R be a function that is (n+ 1)

times continuously partially di¤erentiable on an open set containing the domain D.

Let x0 be a point in D and P the n� th order Taylor polynomial of f around x0. Let

I be an interval such that

f(x) 2 P (x� x0) + I for all x 2 D:

Then the pair (P; I) is called an n� th order Taylor model of f around x0 on D:
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For the problems we discuss in this work the domain D is always [�1; 1]v � Rv. A

full theory of Taylor model arithmetic for elementary operations, intrinsic functions,

initial value problems and functional inversion problems has been developed; see [50,

42, 53] and references therein. The arithmetic and the computational implementation

is performed in such a way that the interval enclosure is mathematically rigorous,

taking into account all round-o¤ and threshold cut-o¤ errors due to �oating point

arithmetic. Details about the veri�ed implementation of arithmetic operation in the

code COSY INFINITY can be found in [66, 53].

For the purposes of the further discussion, one particular intrinsic function, the

so-called antiderivation, plays an important role. We note that a Taylor model for

the integral with respect to variable i of a function f can be obtained from the Taylor

model (P; I) of the function by merely integrating the part Pn�1 of order up to order

n� 1 of the polynomial, and bounding the n-th order into the new remainder bound.

2.4.1 The Taylor Model integration scheme

We start out by de�ning the inde�nite integration for a Taylor model in one variable

and then proceed to de�ne a special �nite integral that we are going to use extensively

in this work.

De�nition 2 For an n-th order Taylor model T = (P; I) and k = 1; : : : ; v, let

Qk =

Z xk

0
P(n�1)

�
x1; : : : ; xk�1; �k; xk+1; : : : ; xv

�
d�k:

The antiderivative @�1k of T is de�ned by

@�1k (P; I) =
�
Qk;

�
B
�
P(n) � P(n�1)

�
+ I
�
� 2
�
:

More details about the implementation of the anti-derivation operation can be

found in [22].
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Let T v = (P; I) ; be a n�th order Taylor model in v variables. While solving PDEs

we commonly encounter the �nite integration

J(v�1) =
Z 1
�1

T v
�
x1; : : : xk�1; �k;xk+1; : : : ; xv

�
d�k;

where J(v�1) is the resulting Taylor model of order n in (v � 1) variables, and k =

1; : : : ; v. We now describe the steps to compute the Taylor model J(v�1) using the

antiderivative @�1�1
operator.

1. Split the Taylor Model T v = (P; I) in to a polynomial P of order n and interval

I.

2. Construct a new Taylor model Gv = (P; I�), where I� = [0; 0].

3. Apply the antiderivative operator @�1�1
to the Taylor model Gv.

4. Evaluate the Taylor models @�1�1
Gv (at �1 = 1) and @

�1
�1
Gv (at �1 = �1) and

subtract them to obtain a new Taylor model Rv�1.

5. Add the interval 2 � I to the Taylor model Rv�1 to give the Taylor model after

integration with respect to the �1 variable.

The steps 1 through 5 can be repeated for the integration in more than one variable.

2.4.2 An example of Taylor Model expansion

For a rectangular surface enclosing the volume of interest we now show the Taylor

model expansion of the kernel 1=
�
4�
���~r � ~r0���� over one surface element and one vol-

ume element. A point, ~r = (x; y; z), inside the volume element centered at (x0; y0; z0)

is described by

x = x0 + 0:5 � �1�xv;

y = y0 + 0:5 � �2�yv;

z = z0 + 0:5 � �3�zv;
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where �xv, �yv and �zv are the dimensions of the rectangular volume element and

the parameters �1; �2; �3 2 [�1; 1]. A point, ~r
0
=
�
x
0
; y
0
; z
0�
, on the surface element

centered at (xs; ys; zs) is described by

x
0
= xs + 0:5 � �4�xs;

y
0
= ys + 0:5 � �5�ys;

z
0
= zs;

where �xs and �ys are the dimensions of the rectangular surface element and the

parameters �4; �5 2 [�1; 1]. A schematic diagram of the rectangular volume element,

rectangular surface element and the rectangular box enclosing the region of interest

is shown in Figure 2.4.1.

For illustration we choose the volume element to be centered at (1; 1; 1) and surface

element at (2; 2; 3) and �xs = �ys = 1=16 and �xv = �yv = �zv = 1=8. The

Taylor model expansion of the kernel with respect to the parameters �1; �2; �3; �4

and �5 using Taylor model is given in tables 2.4.1 and 2.4.2. In the representation

of the Taylor model expansion, the entries in the �rst column provide the number

assigned to each of the coe¢ cients in the Taylor model expansion to easily identify

them. The entries in the second column provide the numerical value of the coe¢ cients.

The entries in the fourth through eighth provide the expansion orders with respect to

the parameters �1; �2; �3; �4 and �5. The total order for each coe¢ cient is the sum

of all the orders in columns four through eight, which is given in the third column.

The Taylor Model integration of the kernel over the surface element, dS, can be

expressed as Z
dS

1

4�

1���~r � ~r0���dy0dx0 =
Z 1
�1

Z 1
�1

1

4�

1���~r � ~r0���d�4d�5:
Table 2.4.3 shows the Taylor model integration of the Taylor model expansion of the

kernel given in tables 2.4.1 and 2.4.2.
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Figure 2.4.1. The �gure shows a volume element centered at (x0; y0; z0) element and
a surface element (xs; ys; zs).
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I COEFFICIENT ORDER EXPONENTS
1 0.2012846454507073E-01 0 0 0 0 0 0
2 0.1529273937765291E-03 1 1 0 0 0 0
3 0.1529273937765291E-03 1 0 1 0 0 0
4 0.2334154957641759E-03 1 0 0 1 0 0
5 -.3823184844413227E-04 1 0 0 0 1 0
6 -.3823184844413227E-04 1 0 0 0 0 1
7 -.7724385987298169E-06 2 2 0 0 0 0
8 0.3485629176768297E-05 2 1 1 0 0 0
9 -.7724385987298169E-06 2 0 2 0 0 0
10 0.5320170848751610E-05 2 1 0 1 0 0
11 0.5320170848751610E-05 2 0 1 1 0 0
12 0.1544877197459632E-05 2 0 0 2 0 0
13 0.3862192993649084E-06 2 1 0 0 1 0
14 -.8714072941920742E-06 2 0 1 0 1 0
15 -.1330042712187903E-05 2 0 0 1 1 0
16 -.8714072941920742E-06 2 1 0 0 0 1
17 0.3862192993649084E-06 2 0 1 0 0 1
18 -.1330042712187903E-05 2 0 0 1 0 1
19 -.4827741242061355E-07 2 0 0 0 2 0
20 0.2178518235480185E-06 2 0 0 0 1 1
21 -.4827741242061355E-07 2 0 0 0 0 2

Table 2.4.1. The Taylor model expansion of the kernel. The coe¢ cients up to second
order are shown.
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22 -.3526083774525404E-07 3 3 0 0 0 0
23 0.8876341263195013E-08 3 2 1 0 0 0
24 0.8876341263195013E-08 3 1 2 0 0 0
25 -.3526083774525404E-07 3 0 3 0 0 0
26 0.1354809982277133E-07 3 2 0 1 0 0
27 0.2021018196702667E-06 3 1 1 1 0 0
28 0.1354809982277133E-07 3 0 2 1 0 0
29 0.9690617197256710E-07 3 1 0 2 0 0
30 0.9690617197256710E-07 3 0 1 2 0 0
31 -.9032066548514218E-08 3 0 0 3 0 0
32 0.2644562830894053E-07 3 2 0 0 1 0
33 -.4438170631597507E-08 3 1 1 0 1 0
34 -.2219085315798754E-08 3 0 2 0 1 0
35 -.6774049911385670E-08 3 1 0 1 1 0
36 -.5052545491756669E-07 3 0 1 1 1 0
37 -.2422654299314178E-07 3 0 0 2 1 0
38 -.2219085315798754E-08 3 2 0 0 0 1
39 -.4438170631597507E-08 3 1 1 0 0 1
40 0.2644562830894053E-07 3 0 2 0 0 1
41 -.5052545491756669E-07 3 1 0 1 0 1
42 -.6774049911385670E-08 3 0 1 1 0 1
43 -.2422654299314178E-07 3 0 0 2 0 1
44 -.6611407077235133E-08 3 1 0 0 2 0
45 0.5547713289496883E-09 3 0 1 0 2 0
46 0.8467562389232092E-09 3 0 0 1 2 0
47 0.1109542657899377E-08 3 1 0 0 1 1
48 0.1109542657899377E-08 3 0 1 0 1 1
49 0.1263136372939167E-07 3 0 0 1 1 1
50 0.5547713289496883E-09 3 1 0 0 0 2
51 -.6611407077235133E-08 3 0 1 0 0 2
52 0.8467562389232092E-09 3 0 0 1 0 2
53 0.5509505897695944E-09 3 0 0 0 3 0
54 -.1386928322374221E-09 3 0 0 0 2 1
55 -.1386928322374221E-09 3 0 0 0 1 2
56 0.5509505897695944E-09 3 0 0 0 0 3
----------------------------------------------

VAR REFERENCE POINT DOMAIN INTERVAL
1 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
2 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
3 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
4 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
5 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]

REMAINDER BOUND INTERVAL
R [-.6787457395636954E-007,0.1769369034586471E-006]

*********************************************************

Table 2.4.2. The Taylor model expansion of the kernel. The third order coe¢ cients,
the reference points and the remainder bound interval are shown.
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I COEFFICIENT ORDER EXPONENTS
1 0.1965667222668859E-04 0 0 0 0 0 0
2 0.1493431579848917E-06 1 1 0 0 0 0
3 0.1493431579848917E-06 1 0 1 0 0 0
4 0.2279448200822031E-06 1 0 0 1 0 0
5 -.7543345690720868E-09 2 2 0 0 0 0
6 0.3403934742937790E-08 2 1 1 0 0 0
7 -.7543345690720868E-09 2 0 2 0 0 0
8 0.5195479344483994E-08 2 1 0 1 0 0
9 0.5195479344483994E-08 2 0 1 1 0 0
10 0.1508669138144172E-08 2 0 0 2 0 0
----------------------------------------------

VAR REFERENCE POINT DOMAIN INTERVAL
1 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
2 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
3 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
4 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
5 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]

REMAINDER BOUND INTERVAL
R [-.1628051142682157E-008,0.2054209443924109E-008]

*********************************************************

Table 2.4.3. The Taylor model expansion of the kernel. The third order coe¢ cients,
the reference points and the remainder bound interval are shown.
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CHAPTER 3

3D Laplace and Poisson solver

using DA

In this chapter we describe a new method to solve the Poisson equation

r2� (~r) = � (~r) in the bounded volume 
 � E3; (3.0.1)

r� (~r) = ~g (~r) on the surface @
:

In comparison to the Neumann problem where only the component of the gradient

normal to the surface is speci�ed, the boundary condition speci�ed in the equation

(3.0.1) requires the full gradient to be speci�ed on the surface. However, as we will see

later that the numerical scheme we develop requires all components of the gradient to

be speci�ed on the boundary. In practice this poses no problem as we often measure

or have information about the complete �eld rather than just the normal component.

In the equation (3.0.1) the source density � (~r) and the normal component of the

gradient ~g (~r) are related byZ


� (~r) d3x =

Z
@


n̂ � ~g (~r) d2x; (3.0.2)

where n̂ is the unit vector perpendicular to the surface @
 at ~r. The equation (3.0.2)

states that the net �eld across the surface of the volume 
 is equal to the total
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amount of �eld created at the sources inside the volume 
; and this follows directly

from application of the divergence theorem to the equation (3.0.1). The potential

�1 (~r) due to the source density � (~r) in vacuum is given by

�1 (~r) =
1

4��0

Z



� (~r)

j~rj d
3x:

The potential �1 (~r) satis�es the Poisson equation

r2�1 (~r) = � (~r) in the bounded volume 
 � E3: (3.0.3)

Now, subtracting the equation (3.0.3) from (3.0.1), we get

r2 (� (~r)� �1 (~r)) = 0 in the bounded volume 
 � E3;

r (� (~r)� �1 (~r)) = ~g (~r)�r�1 (~r) on the surface @
:

Let a new potential  (~r) and a vector �eld ~f (~r) be de�ned by

 (~r) = � (~r)� �1 (~r) ;

~f (~r) = ~g (~r)�r�1 (~r) :

The potential  (~r) is then the solution to the Laplace equation

r2 (~r) = 0 in the bounded volume 
 � E3; (3.0.4)

r (~r) = ~f (~r) on the surface @
:

We have succeeded in splitting our original problem of solving the Poisson equation

(3.0.1) into two independent problems, the solutions of which can then be combined

to get the �nal solution. In the �rst problem we �nd the scalar potential  (~r) that

satis�es the Laplace equation inside the volume 
 enclosed by surface @
, when

the gradient of the potential, r (~r) = ~f (~r) is speci�ed on the surface @
. In the

second problem we compute the potential �1 (~r) due to the source distribution � (~r)

in vacuum. Both these elements can then be combined to get the solution to the

Poisson equation.
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In the section 3.1.1 we �rst discuss the bene�ts of using the boundary data and

present the analytic closed form solution for the 2D case that can be easily found

by application of Cauchy�s integral formula. We then use a 2D example to highlight

the advantages of the methods that use the boundary data to compute the solution.

In section 3.1.3 we present the theory and the implementation of the new scheme

to �nd the solution of the 3D Laplace equation when the gradient of the solution

is speci�ed on the surface enclosing the volume of interest . This scheme is based

on the Helmholtz theorem and the tools of the code COSY INFINITY [17, 23, 24].

In the section 3.1.3 we present an application of this new scheme to a theoretical

bar magnet problem. We also extend the theory to �nd the veri�ed solutions of

the Laplace equation 3.2. The implementation and the results of the application to

the analytic bar magnet problem are discussed. The rest of this chapter describes a

new DA based technique to compute the magnetic �eld due to an arbitrary source

distribution.

3.1 The Laplace solver

The 3D Laplace equation

r2 (~r) = 0 in the bounded volume 
 � E3 (3.1.1)

is one of the important PDEs of physics, describing among others the phenomenol-

ogy of electrostatics and magnetostatics. In many typical applications, not only the

normal derivative of  but indeed the entire gradient ~r is known on the surface;

for example, in the magnetostatic case the entire �eld ~B = ~r is measured, and

not merely the component normal to the surface under consideration. Thus the �eld

computation problem can be viewed as solving a boundary value problem for the

three dimensional (3D) Laplace equation for the �eld, i.e. to obtain the solution of
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the PDE

r2 (~r) = 0 in the volume 
 � E3

where r (~r) = ~f (~r) is speci�ed on the surface @
.

As discussed in the chapter 2 the existence and uniqueness of the solution for the 3D

Laplace equation case can easily be shown through the application of Green�s formulae

or by using mean-value formulas. But, the analytic closed form solutions for the 3D

Laplace equation case can usually only be found for special problems with certain

regular geometries where a separation of variables can be performed. However, in

most practical 3D cases, numerical methods are the only way to proceed. Frequently

the �nite di¤erence or �nite element approaches are used to �nd the approximations of

the solution on a set of points in the region of interest. But because of their relatively

low approximation order, for the problem of precise solution of PDEs, the methods

have very limited success because of the prohibitively large number of mesh points

required. Furthermore, direct validation of such methods is often very di¢ cult.

3.1.1 Methods using boundary data

Boundary data methods such as those utilized below are based on a description of

the interior �eld in terms of particular surface integrals involving the surface data.

These approaches have various advantages. Firstly, the solution is analytic in terms

of the interior variables, even if the boundary data fail to be di¤erentiable or are even

piecewise discontinuous; all such non-smoothness is removed after the integration is

executed. Hence a Taylor polynomial approximation in terms of interior variables

can be performed; and we expect that a Taylor approximation of a certain order will

provide an accurate approximation over suitable domains.

Secondly, since for the PDEs under consideration here the solution functions are

known to assume their extrema on the boundary because of analyticity or harmonic-
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ity, a method that uses boundary data is expected to be robust against errors in

those boundary data with errors in the interior not exceeding the errors on the sur-

face. Thirdly, if the boundary data given have statistical errors, such errors have a

tendency to even average out in the integration process as long as the contributions

of individual pieces of integration are of similar signi�cance. Thus we expect the

error in the computed �eld in the interior to be generally much smaller than the

error in the boundary data. This ensures that the methods using boundary data are

computationally stable .

3.1.2 The two dimensional case

As an introduction to the general approach, we begin with the discussion of the 2D

case, the theory of which can be fully developed in the framework of elementary

complex analysis, and which also describes the situation of static electric or magnetic

�elds as long as no longitudinal �eld dependence is present. It is based on the use

of Cauchy�s integral formula stating that if the function f is analytic in a region

containing the closed path C, and if � is a point within C, then

f (�) =
1

2�i

I
C

f (z)

z � �
dz (3.1.2)

where the integral denotes the path integral over C. Cauchy�s formula is an integral

representation of f which permits us to compute f anywhere in the interior of C,

knowing only the value of f on C. This integral representation of f is also the

solution of the 2D Laplace equation for the primitive of (Re(f);� Im(f)) with the

function f speci�ed on the path C.

Now, suppose a random error of � (z) is introduced in the measured data around

the path C. Then by the equation (3.1.2) we can compute the error E(a) introduced

in the computation of f(�) at some point � inside C as

E(�) =
1

2�i

I
C

f (z) + � (z)

z � �
dz � f(�) =

1

2�i

I
C

� (z)

z � �
dz (3.1.3)
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We note that while E(�) is given by a Cauchy integral, E need not be analytic since

�(z) need not assume the function values of an analytic function. In fact, if it would,

then it already would be uniquely speci�ed on any dense subset S of C; which removes

the freedom for all values of E on points on C that are not in S:

While the error E itself may be bounded in magnitude, if the integral is approx-

imated by one of the conventional numerical quadrature methods, the result can

become singular as the point � approaches the boundary C. This case may limit the

practical use of the method and needs to be studied carefully. As an example, we

consider the case of quadrature based on adding the terms of a Riemann sum, i.e.

the approximation

1

2�i

I
C

� (z)

z � �
dz � 1

2�i
�
NzX
j=1

�
�
zj

�
�
zj � � (r)

� � �zj � zj�1
�
= ~E(�) (3.1.4)

where theNz points zj are spaced equidistantly aroundC; since C is closed, z0 = zNz :

By studying the approximation ~E(a) as the point � approaches the boundary C; we

can analyze the stability of the method with respect to the discretization of the path

C.

As an example, we choose the path C as a circle of radius R enclosing the region of

interest. We assume a random error of � (z)
�
�10�2

�
is introduced in the measured

data around C. The point � is given by r � exp (i � �) and the points zj are given

by R � exp (i � 2�j=Nz) for j = 0; : : : ; Nz. Letting �m(zj) denote the error assigned

to point zj in error set m, for each of these error sets we express the Riemann sum

�m (�) for point � by

�m (�) =
1

2�i
�
NzX
j=1

izj�m

�
zj

�
�
zj � � (r)

� � 2�
Nz

We then form the average of the magnitude of the error over Ne error sets to obtain

� (r) =
1

Ne

NeX
m=1

j�m (�)j :
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Note that �(r) still depends on the phase �: However, in the statistical limit there

is apparently invariance under rotation by exp (i � 2�=Nz); and one quickly sees that

there are two limiting cases for the choice of the phase. These are the case � = 0;

where the � will eventually collide with the zj for j = Nz as r ! R and thus a

�worst case� divergence will appear, and the case � = 2�=2Nz ; in which case the

� will approach the mid point between zj for j = Nz and zj for j = 1 as r ! R:

Choosing su¢ ciently �ne discretization of the path and su¢ ciently many error sets

�m; the quantity �(r) for these two cases will be a good measure for the accuracy

that can be achieved with the surface integral method.

For our speci�c example, we choose random errors of maximum magnitude 10�2

at Nz = 10; 000 points on the circle of radius R = 2. For each value of r; we perform

the computation for a total of Ne = 10; 000 error sets. The results of this analysis

are shown as plots in Figure 3.1.1a and Figure 3.1.1b for the two cases that represent

the �worst case�and the �best case�situation.

We �rst observe that su¢ ciently away from the surface, the expected smoothing

e¤ect is happening, and the errors in the function values are indeed well below the

errors assumed on the surface. A rough quantitative analysis shows that this error is

about two orders of magnitude below the surface data error, corresponding well with

the statistically expected decrease of the error by 1=
p
Nz : As � approaches the curve

closer than 10�3; in the �best case�situation, the error rises to about 10�2; which is

because now only nearby grid points contribute to the sum and thus the smoothing

e¤ect disappears. In the �worst case�scenario, divergence actually happens; but the

average error is still at the level of the original random error of 10�2 for values of r

that are only about 10�4 away from the radius 2:

So overall we see that the method performs signi�cant smoothing, and even with

the simplest discretization as a Riemann sum, good accuracy is maintained even as

we approach C: We note in passing that with more sophisticated quadrature meth-
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Figure 3.1.1. (a) The plot shows the dependency of � (r) on the radius r. (b) The plot
shows the dependency of � (r) on the radius as the radius r approaches the boundary.
10; 000 error sets (Ne) around the circle or radius R = 2 were chosen for the analysis.
We show the plots for both the best and the worst case scenario.

47



ods, for example those based on Gaussian methods [17], the divergence e¤ect can be

signi�cantly controlled.

3.1.3 The three dimensional case

The scheme we use for the 3D case is based on the Helmholtz vector decomposition

theorem discussed in the sections 2.1.1 and 2.1.2. We begin by representing the

solution of the PDE via the Helmholtz theorem, which states that any vector �eld
�!
B

which vanishes at in�nity can be written as the sum of two terms

�!
B (~x) = ~r� ~At (~x) + ~r�n (~x) ; where (3.1.5)

�n (~x) =
1

4�

Z
@


~n (~xs) �
�!
B (~xs)

j~x� ~xsj
ds� 1

4�

Z



~r � �!B (~xv)
j~x� ~xvj

dV; and

~At (~x) = � 1

4�

Z
@


~n (~xs)�
�!
B (~xs)

j~x� ~xsj
ds+

1

4�

Z



~r��!B (~xv)
j~x� ~xvj

dV:

Here @
 is the surface which bounds the volume 
. ~xs denotes a point on the

surface @
; and ~xv denotes a point within 
. ~n is the unit vector perpendicular to

@
 that points away from 
. ~r denotes the gradient with respect to ~xv.

The �rst term is usually referred to as the solenoidal term, and the second term as

the irrotational term. Because of the apparent similarity of these two terms to the

well-known vector- and scalar potentials to ~B; we note that in the above representa-

tion, it is in general not possible to utilize only one of them; for a given problem, in

general both �n and ~At will be nonzero.

For the special case that ~B = ~rV; we have ~r � ~B = 0; furthermore, if V is a

solution of the Laplace equation ~r2V = 0; we have ~r � �!B = 0: Thus in this case, all

the volume integral terms vanish, and �n (~x) and ~At (~x) are completely determined

from the normal and the tangential components of ~B on the surface @
 via

�n (~x) =
1

4�

Z
@


~n (~xs) �
�!
B (~xs)

j~x� ~xsj
ds (3.1.6)

~At (~x) = �
1

4�

Z
@


~n (~xs)�
�!
B (~xs)

j~x� ~xsj
ds: (3.1.7)
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For static electric or magnetic �elds without sources in 
; which are characterized

by the Laplace problem that we are studying, the divergence and the curl of the

�eld vanish and hence these �elds can be decomposed into irrotational and solenoidal

parts. For any point within the volume 
, the scalar and vector potentials depend

only on the �eld on the surface @
. And due to the smoothing properties of the

integral kernel, the interior �elds will be analytic even if the �eld on the surface data

fails to be di¤erentiable.

Surface integration and �nite elements via DA

Since the expressions (3.1.6) and (3.1.7) are analytic, they can be expanded at least

locally. The idea is now to expand them to higher orders in BOTH the two components

of the surface variables ~xs and the three components of the volume variables ~x: The

polynomial dependence on the surface variables will be integrated over surface sub-

cells, which results in a highly accurate integration formula with an error order equal

to that of the expansion. The dependence on the volume variables will be retained,

which leads to a high order �nite element method. By using su¢ ciently high order,

high accuracy can be achieved with a small number of surface elements, and more

importantly, a small number of volume elements. We describe the details of the

implementation in the following.

The volume 
 is subdivided into volume elements. Using the prescription for the

surface �eld, the Taylor expansion of the �eld is computed at the center of each volume

element. The �nal solution inside the overall volume is given as local expansions of

the �eld in di¤erent volume elements.

To �nd the local expansions for each volume element, we �rst split the domain of

integration @
 into smaller elements �i. From the surface �eld formula we extract

an approximate Taylor expansion in the surface variables ~xs about the center of the

surface element. Then the integral kernel 1= j~r � ~rsj and the �eld ~B on the surface
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are Taylor expanded in the surface variables ~rs about the center of each surface

element. We also Taylor expand the kernel in the volume variables ~r about the center

of the volume element. The �nal step is to integrate and sum the resulting Taylor

expansions for all surface elements. Depending on the accuracy of the computation

needed we choose step sizes, order of expansion in r (x; y; z), and order of expansion

in rs (x; y; z).

All the mathematical operations to perform the expansion, surface integration,

curl and divergence were implemented using the high-order multivariate di¤erential

algebraic tools available in the code COSY INFINITY [23, 24, 17] which automat-

ically leads to the respective �eld representation to any order without any manual

computations.

An analytical example: the bar magnet

As a reference problem we consider the magnetic �eld of an arrangement of the two

rectangular iron bars with inner surfaces (y = �y0) parallel to the midplane (y = 0m)

as shown in Figure 3.1.2a. The interior of these uniformly magnetized bars, which are

assumed to be in�nitely extended in the �y-directions, is de�ned by: x1 � x � x2,

jyj � y0, and z1 � z � z2. From this bar magnet one can obtain an analytic solution

for the magnetic �eld ~B (x; y; z) - see for example [31] - and the result is given by

By (x; y; z) =
B0
4�

2X
i;j=1

(�1)i+j
24arctan

0@ Xi � Zj
Y+ �R+ij

1A+ arctan
0@ Xi � Zj
Y� �R�ij

1A35
Bx (x; y; z) =

B0
4�

2X
i;j=1

(�1)i+j
24ln

0@Zj +R�ij
Zj +R+ij

1A35
Bz (x; y; z) =

B0
4�

2X
i;j=1

(�1)i+j
24ln

0@Xj +R�ij
Xj +R+ij

1A35
where Xi = x � xi, Y� = y0 � y, Zi = z � zi, and R�ij =

�
X2i + Y 2j + Z2�

�1
2 . We

note that because of the symmetry of the �eld around the midplane, only even order
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Figure 3.1.2. (a) The geometric layout of the bar magnet, consisting of two bars

of magnetized material. (b) The magnetic field By on the center plane of the bar

magnet. B0 = 1T and the interior of this magnet is defined by −0.5 ≤ x ≤ 0.5,

|y| ≤ 0.5, and -0.5 ≤ z ≤ 0.5.

terms exist in the Taylor expansion of this field about the origin. The mid plane field

of such a magnet is shown in Figure 3.1.2b.

The method presented in the section 3.1.3 is valid for any volume enclosed by a

smooth surface. For this example we choose three cases, (a) a volume enclosed by a

cube, (b) a volume enclosed by a cylinder, and (c) a volume enclosed by a sphere. For

these cases we first study the performance of the surface integration method. To this

end, we consider a cube of edge length 0.8 m, a cylinder of length 0.8 m and radius

0.4 m, and a sphere of radius 0.4 m. The center of all three geometries coincides with

the center of the interior of the uniformly magnetized bars. The six surfaces of the

cube are each subdivided into a 44 × 44 mesh. The surface of the cylinder and the

sphere are also subdivided so that the number of cells are same as in the cube case.

On each of the mesh cells, the contribution from the Helmholtz integral is expanded

using differential algebraic tools [17], and the resulting polynomial is integrated.

51



Figure 3.1.3 shows the accuracy of the predicted �eld, compared with the exact

solution, as a function of the order of expansion within the surface mesh cells. Results

are shown for the points (0; 0; 0), (0:1; 0:1; 0:1), (0:2; 0:2; 0:2) and (0:3; 0:3; 0:3) for the

cube case. It can be seen that at order six, an accuracy of approximately 10�12 is

reached, which is very high compared to conventional numerical �eld solvers. The

corresponding results for the cylinder and sphere case are shown in �gures 3.1.4 and

3.1.5.
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Figure 3.1.3. The error for the �eld calculated for the bar magnet example
with rectangular grid for individual points (0; 0; 0), (0:1; 0:1; 0:1) and (0:2; 0:2; 0:2)
(0:3; 0:3; 0:3).

We note that a change from an even order to the next higher order does not

produce signi�cant change in the error, which is due to the speci�c symmetry of

the magnetic �eld and the resulting fact that even orders dominate in the Taylor

expansion. Also, this study clearly demonstrates that the method works for all smooth

surfaces. Henceforth we only present the results for the cube case.

For the next example, we split the volume inside the bar magnet into 4�4�4 �nite
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Figure 3.1.4. The error for the �eld calculated for the bar magnet example
with cylinderical grid for individual points (0; 0; 0), (0:1; 0:1; 0:1) and (0:2; 0:2; 0:2)
(0:25; 0:25; 0:25).
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Figure 3.1.6. The average error for the �eld calculated for the bar magnet example
for �nite elements of width 0:4 around points (0; 0; 0) and (0:1; 0:1; 0:1).

elements of width �0:1 m. Within each of the elements, a Taylor expansion in the

three volume variables is carried out, resulting in a polynomial representation of the

�eld within the �nite element cell. The polynomial representation is used to evaluate

the �eld at 1000 randomly chosen points within the cell, and comparing the result

with the analytical answer. Figure 3.1.6 shows the resulting RMS error for �nite

elements centered around (0; 0; 0), (0:1; 0:1; 0:1), (0:2; 0:2; 0:2) and (0:3; 0:3; 0:3). The

plot for the �nite element centered at (0:3; 0:3; 0:3) shows the behavior of the RMS

error as we approach the boundary. It can be seen that the method remains stable as

we approach the boundary. For the �nite elements well within the volume of interest,

it can be seen that at order 7; an accuracy of approximately 10�6 is reached.

We see that the method of simultaneous surface and volume expansion, all of which

can be carried out fully automatically using di¤erential algebraic tools [17] imple-

mented in the code COSY [23, 24], leads to accuracies that are signi�cantly higher
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than those of conventional �nite element tools, even when unusually large �nite ele-

ments are used.

For purposes of illustration, we now show in the table 3.1.1 the Taylor expansion of

the �eld given by the equation (3.1.6) and calculated using the DA tools of COSY over

one surface element for a particular point frozen inside the volume of interest. The

center of the surface element is at (�0:39;�0:39; 0:4) and the point is at (0:1; 0:1; 0:1).

The surface element is described by
�
�0:39 + 0:5�xxs;�0:39 + 0:5�yys; 0:4

�
, where

�x; �y represent the length and width of the surface element and xs; ys 2 [�1; 1]. In

I COEFFICIENT ORDER EXPONENTS

1 0.1430015055365947E-01 0 0 0 0 0 0

2 0.6922600731781813E-03 1 0 0 0 1 0

3 -.9437452710153340E-03 1 0 0 0 0 1

4 -.1561210105220474E-04 2 0 0 0 2 0

5 -.4471499751575185E-04 2 0 0 0 1 1

...

20 -.3232493054085583E-07 5 0 0 0 1 4

21 0.6156849473575023E-07 5 0 0 0 0 5

22 0.8960505971632865E-10 6 0 0 0 6 0

23 0.1890553337467643E-08 6 0 0 0 5 1

24 -.9792219471281489E-09 6 0 0 0 4 2

...

41 -.2417698920592542E-10 8 0 0 0 4 4

42 0.7717865536738434E-10 8 0 0 0 3 5

43 -.2649803372019223E-11 8 0 0 0 2 6

44 -.2561415687161454E-10 8 0 0 0 1 7

45 0.8506329051477273E-10 8 0 0 0 0 8

--------------------------------------------

Table 3.1.1. A sample eighth order Taylor expansion in two surface variables.

the representation of the Taylor expansion in xs and ys in the table 3.1.1, the entries

in the �rst column provide the number assigned to each of the coe¢ cients in the

Taylor expansion to easily identify them. The entries in the second column provide
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the numerical value of the coe¢ cients. The entries in the fourth, �fth and the sixth

columns provide the expansion orders with respect to the volume variables(x; y; z).

And the entries in the seventh and eighth column provide the expansion orders with

respect to the surface variables (xs; ys). The total order for each coe¢ cient is the

sum of all the orders in columns four through eight, which is given in the third

column. Since we compute the Taylor expansion about a particular point (0:1; 0:1; 0:1)

frozen in the volume of interest in two surface variables (xs; ys), we notice that the

entries in column four, �ve, six are all zero. It can be seen that in this expansion,

the contributions of higher order terms depending on the surface variables decrease

rapidly, and thus the expansion shown would lead to a result of very high accuracy.

We now present the Taylor expansion of the contribution of the equation (3.1.6)

for one surface element and over one volume element inside the volume of interest

in the table 3.1.2. The center of the surface element is at (�0:39;�0:39; 0:4) and

the center of the volume element is at (0:1; 0:1; 0:1). The surface element and the

volume element can be fully described by
�
�0:39 + 0:5�xxs;�0:39 + 0:5�yys; 0:4

�
and

�
0:1 + 0:5�xx; 0:1 + 0:5�yy; 0:1 + 0:5�zz

�
, respectively, where �x; �y represent

the length and width of the surface element, and �x; �y; �z represent the length,

width and height of the volume element, and xs; ys; x; y; z 2 [�1; 1]. In this case

the coe¢ cients of the Taylor expansion depend on both the surface (xs; ys) and the

volume variables (x; y; z). The coe¢ cients depending only on the surface variables

and the coe¢ cient of the zeroth order term are same as in the previous example of the

expansion in just the surface variables. Once again we notice that the contributions of

higher order terms decrease rapidly for higher order, showing that also the expansion

in volume variables leads to a very accurate representation.

We now study the error dependency on the size(length) of the volume element, or

equivalently the number of volume elements chosen for the computation. For the order

of computation 3,5,7 and 9, Figure 3.1.7 and Figure 3.1.8 provide the dependence of
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I COEFFICIENT ORDER EXPONENTS

1 0.1430015055365947E-01 0 0 0 0 0 0

2 -.9590481459719686E-02 1 1 0 0 0 0

3 -.9590481459719686E-02 1 0 1 0 0 0

4 -.9768082968233012E-02 1 0 0 1 0 0

5 0.6922600731781813E-03 1 0 0 0 1 0

6 -.9437452710153340E-03 1 0 0 0 0 1

...

454 -.4509222359486833E-07 6 0 1 0 0 5

455 -.3067430813781439E-07 6 0 0 1 0 5

456 0.8960505971632865E-10 6 0 0 0 6 0

457 0.1890553337467643E-08 6 0 0 0 5 1

458 -.9792219471281489E-09 6 0 0 0 4 2

...

1283 -.2417698920592547E-10 8 0 0 0 4 4

1284 0.7717865536738462E-10 8 0 0 0 3 5

1285 -.2649803372019148E-11 8 0 0 0 2 6

1286 -.2561415687161455E-10 8 0 0 0 1 7

1287 0.8506329051477271E-10 8 0 0 0 0 8

--------------------------------------------

Table 3.1.2. A sample eighth order Taylor expansion in two surface variable and three
volume variables.

the average error on the length of the volume element and the total number of volume

elements. As an example, for cell lengths of 0:1, which leads to a total number of only

550 �nite elements, an accuracy of 10�10 can be reached with a ninth order method.

Similarly, for a seventh order method with a cell length of 0.2, corresponding to 125

boxes, accuracies of about 10�6 can be reached. Compared to the conventional 3D

Laplace solvers which typically utilize in the order of 106 cells to achieve accuracies

in the order of 10�3; these results are quite promising.
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Figure 3.1.7. The plot shows the dependency of the average error on the length of
the volume element.

3.2 Veri�ed solution of the 3D Laplace equation

For various practical problems, very precise and veri�ed solutions of this PDE are

required; but with conventional �nite element or �nite di¤erence codes this is di¢ cult

to achieve even without validation because of the need for an exceedingly �ne mesh

which leads to often prohibitive CPU time. The method presented in the section

3.1 can used to build an alternative approach based on high-order quadrature and

a high-order �nite element method to �nd a veri�ed solution to Laplace�s equation.

Both of the ingredients become accessible through the use of Taylor model methods

[53, 50] and the corresponding tools in the code COSY INFINITY [24, 23]. The

solution in space is �rst represented as a Helmholtz integral over the two-dimensional

surface. The latter is executed by evaluating the kernel of the integral as a Taylor

model [53, 50] of both the two surface variables and the three volume variables inside
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Figure 3.1.8. The plot shows the dependency of the average error on the number of
volume element.

the cell of interest. Finally, the integration over the surface variables is executed as a

mere polynomial integration, resulting in a local Taylor model of the solution within

one cell. The �nal solution is provided as a set of local Taylor models, each of which

represents an enclosure of a solution for a sub-box of the volume of interest. Examples

of the method and the precision that can be achieved will be given.

To obtain a veri�ed solution to Laplace�s equation we start from equations 3.1.6 and

3.1.7. Using the fact that if ~x 6= ~xs; we have ~r (1= j~x� ~xsj) = � (~x� ~xs) = j~x� ~xsj3 ;

and similar relationships, it is possible to explicitly obtain the gradient of the scalar

potential, and with some more work the curl of the vector potential; the results have
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the explicit form

~r�n (~x) = �
1

4�

Z
@


(~x� ~xs)
�
~n (~xs) �

�!
B (~xs)

�
j~x� ~xsj3

ds (3.2.1)

~r� ~At (~x) =
1

4�

Z
@


(~x� ~xs)�
�
~n (~xs)�

�!
B (~xs)

�
j~x� ~xsj3

ds (3.2.2)

From the equation (3.1.5) we know that the �eld inside the volume of interest is just

a sum of the irrotational (equation (3.2.1)) and the solenoidal (equation (3.2.2)) part.

This is then the solution for the magnetic �eld as surface integrals. But to numerically

integrate the kernel and get the veri�ed solution as the local Taylor model we need

a specialized numerical scheme. In the next section we introduce one such scheme

based on the Taylor models of the code COSY INFINITY [24, 23]. The anti-derivation

operation on the Taylor models discussed in section 2.4 will be extensively used in

implementation of the scheme.

Solution of the Helmholtz Problem using Taylor models

In the following, we develop a veri�ed method based on Taylor model methods to

determine sharp enclosures of the �eld ~B and the potential  utilizing the Helmholtz

method.

Utilizing Taylor model arithmetic, the following algorithm now allows to solve the

Laplace equation for the Helmholtz problem.

1. Discretize the surface @
 into individual surface cells Si with centers si and the

volume 
 into volume cells Vj with centers vj :

2. Pick a volume cell Vj :

3. For each surface cell Si; evaluate the integrands in the equation (3.2.1) and

(3.2.2), the so-called �kernels�, in Taylor model arithmetic to obtain a Taylor

model representations in BOTH the surface variables of Si AND the volume

variables of Vj , i.e. in a total of �ve variables.
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4. Use the Taylor model anti-derivation operation twice to perform integration

over the surface variables of each cell Si:

5. Add up all results to obtain a three dimensional Taylor model enclosing the

�eld ~B over the volume cell Vj :

6. If a veri�ed enclosure of the potential  to ~B over the volume cell Vj is desired,

integrate the �eld ~B over any path using the anti-derivation operation.

As a result, for each of the volume cells Vj ; Taylor model enclosures for the �elds

~B and potentials  are obtained. All the mathematical operations to evaluate these

Taylor Models and surface integration are implemented using the Taylor Model tools

available in the code COSY INFINITY [24, 23].

Apparently the computational expense scales with the product of the number of

volume elements and the number of surface elements; of these, the number of volume

elements is more signi�cant because of their larger number. In practice one observes

that when using high-order Taylor models, a rather small number of volume elements

is required, in particular compared to the situation in conventional �eld solvers.

3.2.1 An analytical example: the bar magnet

Once again, we consider the bar magnet example described in the section 3.1.3. Now

we compute the validate solution to Laplace�s equation with the boundary conditions

described in this example.

Results and analysis As a �rst step in the analysis of the in�uence of the dis-

cretization of the surface and volume on the result, we study the contributions of

the surface elements towards the remainder interval part of the total integral. The

volume expansion point is chosen as ~r = (:1; :1; :1) ; and the size of the volume box

around it is chosen zero. Thus after the surface integration, the polynomial part of
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the dependence on volume vanishes except for the constant term, and the accuracy

is only limited by the width of the surface element, which after integration over the

surface variables in�uences the width of the remainder bound. We plot the width

of the remainder interval versus surface element length for the scalar potential in

Figure 3.2.1. The center of the surface element is chosen as ~rs = (:034; :011; :5). It

is observed that for high orders, the method quickly reaches an accuracy of around

10�16 for about 25 surface subdivisions, which correspond to about 210 � 1000 sur-

face element cells per surface. Under the assumption that each of these surface cells

brings a similar contribution, the accuracy due to the surface discretization will be

in the range of approximately 6 � 1000 � 10�16 < 10�12:
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Figure 3.2.1. The remainder interval width versus the surface element length for
integration over a single surface element and vanishing volume size.

We now study the dependency of the polynomial part and width of the remainder

interval of the magnetic �eld on the volume element length. In all these plots the

surface element length is kept �xed at 1/128. Figure 3.2.2 shows the remainder
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interval width for the y component of the magnetic �eld versus volume element lengths

for di¤erent orders of computation. The other components of the magnetic �eld

exhibit a similar behavior.
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Figure 3.2.2. The remainder interval width versus the length of volume element for
y component of the magnetic �eld.

We see that a veri�ed accuracy in the range of 10�4 can be achieved for a vol-

ume element width of around 10�1; corresponding to a total of around 1000 volume

elements. This number compares very favorably to the above-mentioned numbers

for the commercial code TOSCA [3, 4]. An accuracy in the range of 10�7 can be

achieved for a width of around 10�1:4; corresponding to a total of around 200; 000

volume elements.

Overall, we see that the method of simultaneous surface and volume expansion

of the Helmholtz integrals leads to veri�ed tools for the solutions of PDEs which

when executed in the Taylor model arithmetic can lead to very sharp enclosures. It is

obvious that the method can be generalized to other surface-integral based approaches
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to the solution of PDEs.

3.3 Parallel implementation of the Laplace solver

Recently the code COSY INFINITY has been ported to support large scale computa-

tions for beam dynamics simulation and design optimization, including veri�ed global

optimization. Test results with some of the COSY tools adapted to parallel execu-

tion have shown that they scale linearly to about 1000 processors [46]. Along this

line of high performance computing e¤orts with COSY INFINITY, a parallel imple-

mentation of the Laplace solver has been practiced on the NERSC (National Energy

Research Scienti�c Computing Center) IBM RS6000 Seaborg Cluster consisting of

6080 processors [2].

In our implementation of the Laplace solver, we �rst discretize the surface enclosing

the volume of interest into surface elements, and then the magnetic �eld contribu-

tion of each surface element at a given observation point or volume is computed

independently. We then sum up the magnetic �eld contributions of all the surface

elements to obtain the magnetic �eld at the observation point or volume. The large

summation over all the surface elements can be trivially parallelized. However, if

trivially parallelized, the large summation over all the surface elements at the end

may take signi�cant time and render the algorithm ine¢ cient. Also, to utilize the

computational resources productively and minimize the cross communication between

processors, which may potentially slow down the computation, we need to contrive

an e¢ cient algorithm.

An e¢ cient parallel algorithm to some extent depends on the architecture of the

cluster that we use. For example, the Seaborg cluster, on which we implement our

parallel algorithm, has 380 computing nodes with each node having 16 processors.

Processors on each node have a shared memory pool of 16 to 64 GBytes. The commu-
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nication between the processors within a node is much faster than the communication

between the processors of di¤erent nodes. Hence, care must be taken in designing an

algorithm to minimize the communication between the processors of di¤erent nodes.

Also, the Seaborg cluster supports several optimization modes that further improve

the performance of the algorithm. The detailed discussion is beyond the scope of this

work, but can be found in [2].

We now highlight some of the aspects of the parallel algorithms for the Laplace

solver. Let NPR be the number of processors we choose to use on the cluster for

parallel execution, and let NSP be the number of surface elements over which the

magnetic �eld is speci�ed. The master processor will divide the computation of NSP

surface points over NPR processors. The master processor itself is a part of the

NPR processors.

If the summation over all surface elements is trivially parallelized, each processor

computes the partial sum of the magnetic �eld contributions for the assigned surface

elements, and sends the result of the partial sum back to the master processor, where

these partial sums are summed up to get the total magnetic �eld. The number of

communications between processors is equal to k � NPR, where k is a constant

depending upon the problem.

We now describe a new e¢ cient algorithm for parallelization of the summation over

all the surface elements. The master processor will divide the computation of NSP

surface points over NPR processors. The NPR processors are split into groups of N1

processors each, leading to N2 = NPR=N1 groups. The master processor assigns

one of the processors in a group as the master processor for the group, and these

processors are referred to as sub-masters. The master processor itself is a part of the

NPR processors and also a part of the N2 sub-masters. The number of processors

N1 in each group is given by

N1 = INT
�
2 �
p
NPR

�
;
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where the INT function �nds nearest integer smaller than are equal to
�
2 �
p
NPR

�
.

However, if NPR is not exactly divisible by N1; then we decrease the value of N1

by one, N1 = (N1� 1). We repeat the process till NPR is exactly divisible by N1:

This ensures that both N1 and N2 are integers. Each processor computes the partial

sum of the magnetic �eld contributions for the assigned surface elements, and sends

the computed result of the partial sum back to the sub-master processor. Each sub-

master processor computes the partial sum of the magnetic �eld contributions for each

group and sends the result of the groups partial sum back to the master processor,

where these group partial sums are summed up to get the �nal �eld. The number of

communications between the processors is roughly equal to k � (N1 +N2). Since,

(N1 +N2)� N1�N2, the communication time is greatly reduced as compared to

the trivial parallelization case.

The above algorithm is implemented using the parallel loop block (PLOOP) avail-

able in the code COSY INFINITY. The steps are highlighted in Table 3.3.1. We

use two nested parallel loop blocks, one over the N2 groups and the other over N1

processors in each group. At the end of a parallel loop a communication option can

be speci�ed to gather computed results from all the processors that have participated

in the parallel loop block on to only one processor, which once again minimizes the

cross communication between the processors. In the section 4.3.4 we present exam-

ple of the parallel implementation to compute the magnetic �eld for the Super-FRS

quadrupole magnets.

3.4 Magnetic �eld due to arbitrary current distri-

bution

In this section we describe a method to compute the magnetic �eld of an arbitrary

current distribution using DA techniques. The motivation to look at this problem
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{Loop over N2 groups}
PLOOP JJ 1 N2;

{Loop over N1 processors}
PLOOP II 1 N1;

{Evaluate the processor number PP}
PP:=II+(JJ-1)*N1;

[Code to identify the surface elements JBEG through JEND
for which the processor PP will evaluate the partial sum]

{Loop to compute the partial sum of the scalar and vector potential
contributions over surface elements JBEG through JEND}
LOOP IL JBEG JEND;

...
[Code to compute the scalar and the vector potential
contribution of a surface element IL.]

...
ENDLOOP;

{End the parallel loop over the group of N1 processors and
send the results to sub-master processor using communication mode 4}
ENDPLOOP 4 PN1_SCLPOT PN1_VECPOT;

{Loop to evaluate group partial sum of N1 processors}
LOOP II 1 N1;

...
[Summation to get group partial sum GN2_SCLPOT and GN2_VECPOT ]
...

ENDLOOP;

{End the parallel loop over the N2 groups and send the results to master processor}
ENDPLOOP 4 GN2_SCLPOT GN2_VECPOT;

{Loop to evaluate sum over N2 groups}
LOOP JJ 1 N2;

...
[Summation to get sum SCLPOT and VECPOT ]
...

ENDLOOP;

[Code to evaluate the divergence of SCLPOT and the curl of VECPOT and sum them
to get the magnetic �eld ]

Table 3.3.1. The code for the parallel algorithm.
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comes from the need to design and optimize an accelerator magnet in a simple and in

an e¢ cient way. Once again the DA based techniques have the advantage of providing

the complete multipole decomposition of the �eld. It is also straight-forward to verify

the that the �eld computed in the source free region indeed has identically vanish-

ing divergence and curl. Hence, it is guaranteed that the �eld computed is always

Maxwellian. Previous attempts to compute the magnetic �eld using DA techniques

are described in [34, 68].

3.4.1 Field computations using the Biot-Savart law and DA

We �rst describe a general frame work that uses the Biot-Savart law to compute the

�eld due to an arbitrary current distribution. The Biot-Savart law for line, surface

and volume currents is given by

~B (~r) =
�0
4�

Z
l

~I (~r)� ~u
~r�~r0�

~r � ~r0
�2 dl

0
; (3.4.1)

~B (~r) =
�0
4�

Z
S

~K (~r)� ~u
~r�~r0�

~r � ~r0
�2 da

0
; (3.4.2)

~B (~r) =
�0
4�

Z
V

~J (~r)� ~u
~r�~r0�

~r � ~r0
�2 d�

0
; (3.4.3)

where ~I is a current vector, and the surface current density vector ~K is the current per

unit width perpendicular to the current �ow, and the volume current density vector

~J is the current per unit area perpendicular to the �ow of the current. The vector

~r�~r0 points from the current element at ~r0 to the observation point ~r where we want

to compute the magnetic �eld. The vector ~u
~r�~r0

represents the unit vector in this

direction. The magnetic constant, �0, is the permeability of vacuum. In SI units,

the value is exactly expressed by �0 = 4� � 10�7NA�2. In most cases numerical

integration is usually required to �nd the total magnetic �eld at any point.
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The general idea is to discretize the domain and express the integral over the domain

as the sum of integrals over smaller intervals. Depending on the type of the problem,

we express the domain in terms of one, two or three parameters and scale them such

that the new domain is a box [�1; 1]n, where n is number of parameters. We then

Taylor expand the kernel in terms of the previously de�ned parameters and integrate

it. We �rst present two analytical examples to describe the DA approach to obtain

the multipole decomposition of the magnetic �eld for the line and surface currents.

And, in the section 3.4.4 we describe the technique to �nd the magnetic �eld for the

volume current distribution.

3.4.2 Line current example: circular loop

For a circular loop with its axis oriented in the ẑ direction, the analytic formula for

the magnetic �eld on the z-axis is given by

~B (0; 0; z) =
�0
4�

2�R2I�
z2 +R2

�3
2

ẑ:

We choose an example with radius R = 0:4 m and current of I = 1 A. For this

example, the eighth order expansion of the ẑ component of the magnetic �eld at z = 0

is given in Table 3.4.1.

I COEFFICIENT ORDER EXPONENTS

1 0.1570796326794896E-05 0 0 0 0

2 -.1472621556370215E-04 2 0 0 2

3 0.1150485590914231E-03 4 0 0 4

4 -.8388957433749600E-03 6 0 0 6

5 0.5898485695605188E-02 8 0 0 8

-----------------------------------------

Table 3.4.1. A eighth order Taylor expansion of the analytic formula for the z com-
ponent of the magnetic �eld of a circular coil on the central axis.
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In the representation of the Taylor expansion above, the entries in the �rst column

provide the number assigned to each of the coe¢ cients in the Taylor expansion to

easily identify them. The entries in the second column provide the numerical value

of the coe¢ cients. The entries in the fourth, �fth and the sixth columns provide the

expansion orders with respect to the observation point (x; y; z). The total order for

each coe¢ cient is the sum of all the orders in columns four through eight, which is

given in the third column.

We now use a DA based approach to solve this problem. Let the point ~r = (x; y; z)

be the observation point. We discretize the length of the current loop into N = 4000

current elements of length (2�R) =N . Let (xn; yn; zn) describe a point inside the nth

current element, where n = 1; : : : ; N . And let s be a parameter such that

xn = R � cos (4s � (n� 0:5 + 0:5s)) ; (3.4.4)

yn = R � sin (4s � (n� 0:5 + 0:5s)) ;

zn = 0;

where 4s = 2�=N and s 2 [�1; 1]. By varying s we can now get all points inside any

given current element which is centered at ~r
0
n = (R � cos (n � 4s) ; R � sin (n � 4s) ; 0).

We can now compute the contribution due to the current element at ~r
0
n using the

Biot-Savart law for a line current, the equation (3.4.1), by �rst expressing the inte-

gral in terms of the new parameter s using the equation (3.4.4), and then expanding

the kernel in terms of the variables x; y; z and s. We then integrate the resulting

polynomial with respect to s in the interval [�1; 1]. Finally, we sum up the contribu-

tion due to all the current elements to get the resulting �eld at (x; y; z) :The Taylor

expansion of the ẑ component of the magnetic �eld, ~B (x; y; z) ; computed using the

DA framework available in the code COSY INFINITY is given in Table 3.4.2.

Note that the expansion given in Table 3.4.2 reduces to the expansion for the
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I COEFFICIENT ORDER EXPONENTS

1 0.1570796326794921E-05 0 0 0 0 0

2 0.7363107781851075E-05 2 2 0 0 0

3 0.7363107781851056E-05 2 0 2 0 0

4 -.1472621556370156E-04 2 0 0 2 0

5 0.4314320965821285E-04 4 4 0 0 0

6 0.8628641931856381E-04 4 2 2 0 0

7 0.4314320965821278E-04 4 0 4 0 0

8 -.3451456772742676E-03 4 2 0 2 0

9 -.3451456772742692E-03 4 0 2 2 0

10 0.1150485590914342E-03 4 0 0 4 0

11 0.2621549198046754E-03 6 6 0 0 0

12 0.7864647594140242E-03 6 4 2 0 0

13 0.7864647594140274E-03 6 2 4 0 0

14 0.2621549198046748E-03 6 0 6 0 0

15 -.4718788556484144E-02 6 4 0 2 0

16 -.9437577112968266E-02 6 2 2 2 0

17 -.4718788556484138E-02 6 0 4 2 0

18 0.6291718075312196E-02 6 2 0 4 0

19 0.6291718075312182E-02 6 0 2 4 0

20 -.8388957433749353E-03 6 0 0 6 0

-----------------------------------------

Table 3.4.2. A sixth order Taylor expansion of the z component of the magnetic �eld
computed for the circular loop example.

analytic case, Table 3.4.1, when x = 0; y = 0. The result that we get is valid as

long as the observation point does not lie on the current loop. This case will require

special treatment. It is also easy to verify that the magnetic �eld computed here is

divergence less and curl free.

The DA technique that we develop here can easily be generalized to compute the

magnetic �eld due to the current on a wire of arbitrary shape and orientation in

space. We only need the discretization information and the parametrization over

each current element to compute the magnetic �eld.
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Figure 3.4.1. The cross section of a �ux ball consisting of a sphere with winding on
its surface.

3.4.3 Surface current example: spherical coil

For the case of a properly wound spherical coil the magnetic �eld inside has the

property that it is uniform. The current density on the surface can be thought of as

a sinusoidally distribution between the north and south poles of a sphere. Current

loops of appropriately varying diameter, spaced evenly as projected onto the ẑ axis,

automatically simulate such a distribution. The coil, with a radius R and a wire

carrying the current I, is shown in Figure 3.4.1.

To deduce the surface current density representing this winding, note that the

density of turns on the surface is the total number, N , divided by the total length,

2R, and so the number of turns in the incremental length dz is (N=2R) dz. Since

z = r cos � , a di¤erential length dz corresponds to an angular increment d�=dz =

�R sin �: Therefore, the number of turns in the di¤erential length Rd� as measured

along the periphery of the sphere is (N=2R) sin �. With each turn carrying the current

I, the surface current density is

~K = {̂�
N

2R
I sin �
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Figure 3.4.2. Magnetic �eld lines for the spherical coil.

The magnetic �eld intensity for such a surface current distribution is shown in

Figure 3.4.2. The �eld inside the sphere is constant.

The magnetic �eld inside and outside the sphere is as follows.

~B = �0
NI

3R
(cos (�) {̂r � sin (�) {̂�) =

�0
4�

NI

3R
ẑ; r < R

~B = �0
NI

6R

�
R

r

�3
(2 cos (�) {̂r + sin (�) {̂�) ; r > R

The exterior lines of the magnetic �eld intensity are those of a dipole, while the

interior �eld is uniform. Figure 3.4.2, shows the magnetic �eld lines.

We consider a speci�c case where we choose the radius of sphere R = 0:4 m and the

total current, NI, such that NI2R = 1000 A=m. The analytic formula then gives the

ẑ component of the �eld inside the sphere to be 83�� 10
�4 = 0:8377580409572781�

10�03 Tesla. We now use a DA based approach to solve this problem. Let the

point ~r = (x; y; z) be the observation point. Let Nx = Ny = 88 be the number of

subdivisions in azimuthal � and polar � angles, leading to Nx�Ny surface elements.

Let
�
Xi;j ; Yi;j ; Zi;j

�
describe a point inside the (i; j)-th surface element and ~Ki;j
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describe the surface current on the (i; j)-th surface element, where i = 1; : : : ; Nx and

j = 1; : : : ; Ny. The point
�
R; �i; �j

�
in spherical coordinates is equivalent to the

point
�
Xi;j ; Yi;j ; Zi;j

�
in the Cartesian coordinates. The surface elements and the

current at (i; j) can now be described in terms of two parameters, xs and ys, such

that

�i = 4x � (i� 0:5 + 0:5xs) (3.4.5)

�j = 4y � (j � 0:5 + 0:5ys)

Xi;j = R � cos (�i) � sin
�
�j

�
Yi;j = R � sin (�i) � sin

�
�j

�
Zi;j = R � cos

�
�j

�
~Ki;j =

NI

2R
� sin

�
�j

�
� (� sin (�i) x̂+ cos (�i) ŷ) ;

where4x = 2�=Nx, 4y = 2�=Ny and xs; ys 2 [�1; 1]. By varying xs; ys we can now

get all points inside any given surface element. We can now compute the contribution

due to the surface element at ~r
0
n using the Biot-Savart law for the surface current, the

equation (3.4.1), by �rst expressing the integral in terms of the new parameters xs

and ys using the equation (3.4.5), and then expanding the kernel in terms of the three

volume variable x; y; z; and the two surface variables xs and ys. We then integrate

the resulting polynomial with respect to (xs; ys) over the domain [�1; 1] � [�1; 1].

Finally, we sum up the contribution due to all the surface elements to get the resulting

�eld at (x; y; z) : The ẑ component of the magnetic �eld, ~B (x; y; z) ; computed using

the DA framework available in the code COSY INFINITY is given in Table 3.4.3

Note that the zeroth order term in the Taylor expansion given in Table 3.4.3 agrees

with the values computed using the analytic formula. The result that we get is valid

as long as the observation point does not lie on the surface. This case will require

special treatment. It is also easy to verify that the magnetic �eld computed here is

divergence less and curl free.
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MAGNETIC FIELD (Bx,By,BZ)

0.000000000000 0.000000000000 0.8377580409801E-03 00000

0.000000000000 0.000000000000 -0.7490871758478E-12 20000

0.000000000000 0.000000000000 -0.7490871081318E-12 02000

-0.1496412647114E-11 0.000000000000 0.000000000000 10100

0.000000000000 -0.1496412522919E-11 0.000000000000 01100

0.000000000000 0.000000000000 0.1496363218034E-11 00200

0.000000000000 0.000000000000 0.1406498322650E-08 40000

0.000000000000 0.000000000000 0.2812995931364E-08 22000

0.000000000000 0.000000000000 0.1406498327655E-08 04000

0.5625993567287E-08 0.000000000000 0.000000000000 30100

0.000000000000 0.5625991024637E-08 0.000000000000 21100

0.5625991025586E-08 0.000000000000 0.000000000000 12100

0.000000000000 0.5625993571062E-08 0.000000000000 03100

0.000000000000 0.000000000000 -0.1125198581064E-07 20200

0.000000000000 0.000000000000 -0.1125198581536E-07 02200

-0.7501323883764E-08 0.000000000000 0.000000000000 10300

0.000000000000 -0.7501323883789E-08 0.000000000000 01300

0.000000000000 0.000000000000 0.3750661939904E-08 00400

0.1072194029532E-15 0.000000000000 0.000000000000 31100

---------------------------------------------------------------------

Table 3.4.3. A fourth order Taylor expansion of the z component of the magnetic
�eld computed for the spherical coil example.

Once again, the DA technique that we develop here can easily be generalized to

compute the magnetic �eld due to an arbitrary surface current distribution. We only

need the discretization information and the parametrization over each surface element

to compute the magnetic �eld.

3.4.4 Three dimensional current distribution

We discuss the three-dimensional case by using the example of the current in the

straight wire with a �nite cross section. This particular case is of practical importance

and we will use this to develop tools to design new accelerator magnets. These tools

will then be used to design a 3D model of a quadrupole magnet in the section 4.1.
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Magnetic �eld computation for a wire with a rectangular cross section

using DA

We �rst develop a framework to express a point inside a �nite length current wire of

a rectangular cross section that is oriented in an arbitrary direction in the 3D space.

This would then facilitate the implementation of the Biot-Savart law and Ampere�s

law in the di¤erential algebraic (DA) framework.

Let n̂1 and n̂2 be two unit vectors on a plane (n̂1 6= n̂2), then any point on the plane

can be given as �1n̂1+ �2n̂2, where the parameters �1 and �2 are any real numbers.

The unit vector n̂? = n̂1� n̂2 along with two points on the plane completely de�nes

the plane formed by the unit vectors n̂1 and n̂2. In the special case where n̂1 is

perpendicular to n̂2 (n̂1 � n̂2 = 0) and �1; �2 2 [�1; 1] ; the vector (�1n̂1 + �2n̂2) =2

describes a point inside a unit square lying on the plane and centered at the origin.

We can translate and scale this unit box to describe a rectangle lying on this plane.

The vector ~Vp de�ned by

~Vp = ~Vc + 0:5 � (�1b � n̂1 + �2w � n̂2) ; (3.4.6)

describes a point inside a rectangle of the length b and width w and centered at

a point ~Vc. All points inside the rectangle are completely described by the two

parameters (�1; �2) and are independent of the actual dimensions of the rectangle

and its orientation in the three dimensional space. In other words, we have projected

the area of the rectangle oriented in an arbitrary direction in the three dimensional

space on to a square described by the parameters (�1; �2).

For the case of a rectangular box of height l, let the cross section be de�ned by the

unit vectors n̂1 and n̂2. The center point of the rectangular cross section lies on a

straight line whose direction is given by the unit vector n̂?. A point on this line can

be expressed by

~Vc = ~Vc0 + �3 � n̂?;
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where the vector ~Vc0 is the center of a face on the rectangular box that is perpendicular

to the unit vector n̂?; and �3 2 [0; l]. The parameters (�1; �2; �3) then completely

describe a rectangular box. Any point inside the box is given by

~V boxp = ~Vc0 + 0:5 � (�1b � n̂1 + �2w � n̂2) + �3 � n̂?: (3.4.7)

Once again, we have projected the volume of the rectangular box oriented in an

arbitrary direction on to a box de�ned by the parameters (�1; �2; �3) : The equations

(3.4.6) and (3.4.7) will be used in the next two sections to express the Biot-Savart

law and Ampere�s law in the DA framework.

Magnetic �eld of a wire with a rectangular cross section using the Biot-

Savart law and DA

We can choose the direction of the current in the wire to coincide with the unit vector

n̂?. Using the Biot-Savart law, we can write the magnetic �eld at an observation

point ~r as

~B (~r) =
�0
4�

I0
b � w

Z 1
�1

Z 1
�1

264Z l

0

�
n̂? �

�
~r � ~V boxp

��
���~r � ~V boxp

���2 � d�3

375 d�2 � d�1: (3.4.8)

To perform integration with respect to �3 in the equation (3.4.8), we �rst split the

domain of integration into smaller intervals. Let the length l be divided into N parts

of the size h = l�N . Then the parameter �3 can be written as

�3 (i) = (i+ 0:5 � v) � h;

where i = 0:5; : : : ; (N � 0:5), and v 2 [�1; 1]. The position of a point inside the box

in terms of the new parameters (�1; �2; v) is given by

~V boxp (i; �1; �2; v) = ~Vc0 + ih � n̂? + 0:5 � (�1b � n̂1 + �2w � n̂2 + vh � n̂?) : (3.4.9)
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The equation (3.4.8) can now be written as

~B (~r) =
�0
4�

I0
b � w

i=N�0:5X
i=0:5

Z 1
�1

Z 1
�1

Z 1
�1

�
n̂? �

�
~r � ~V boxp (i)

��
���~r � ~V boxp (i)

���2 � l
N
� dv � d�2 � d�1:

(3.4.10)

The parameters (�1; �2; v) become the DA variables with respect to which the kernel

of the integral in the equation (3.4.10) is expanded to a high order. In the DA

framework it is straightforward to perform the volume integral over the resulting

polynomial representation.

In the DA frame work it is also straightforward to treat the wires with rectangular

cross sections that have curved endings rather than the straight endings that are

perpendicular to the direction of the current �ow. Let the two surfaces at the start

and the end of the wire carrying the current be expressed as �3 = g (�1; �2) and

�3 = f (�1; �2). We can use the equation (3.4.10) to �nd the magnetic �eld due to

this new con�guration by noting

h (�1; �2) =
f (�1; �2)� g (�1; �2)

N
;

where the step h is now a function of the parameters (�1; �2). The equation (3.4.9)

can be modi�ed to express a point inside the rectangular box with curved endings as

~V boxp (i; �1; �2; v) = ~Vc0 + (g (�1; �2) + i � h (�1; �2)) � n̂?

+0:5 � (�1b � n̂1 + �2w � n̂2 + v � h (�1; �2) � n̂?) :

When the surfaces are just inclined planes, the functions f and g are just linear

combinations of the parameters �1 and �2. This special case is useful in the imple-

mentation of the numerical tool to compute the magnetic �eld due to a coil carrying

a current with a rectangular cross section .
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Magnetic �eld of an in�nitely long wire with a rectangular cross section

using Ampere�s law and DA

Once again, we can choose the direction of the current in the in�nitely long wire with

a rectangular cross section to coincide with the unit vector n̂?. The closest distance

r? between the observation point ~r and the line passing through the point ~Vp and in

the direction n̂? is given by

r? =
����~r � ~Vp

�
�
�
n̂? �

�
~r � ~Vp

��
n̂?
��� ;

where ~Vp is given by the equation (3.4.6). Ampere�s law can then be written as

~B (~r) =

Z 1
�1

Z 1
�1

�0
2�

I0
b � w

�
n̂? �

��
~r � ~Vp

�
=
����~r � ~Vp

������
r?

d�1 � d�2: (3.4.11)

The equation (3.4.11) can be used to compute the magnetic �eld of an in�nitely

long wire with a rectangular cross section . The parameters (�1; �2) become the DA

variables with respect to which the kernel of the integral in the equation (3.4.11) is ex-

panded to high order, and DA integration is performed over the resulting polynomial

representation.

COSY INFINITY tools for magnetic �eld computations

Due to their frequent use in the magnet design, a dedicated set of tools has been

written for the rectangular cross section wire and coil in the code COSY INFINITY

[23, 24]. These tools use the di¤erential algebraic framework available in COSY IN-

FINITY [23, 24] to Taylor expand, integrate and evaluate the kernels appearing in

the equations (3.4.11) and (3.4.10). In addition to providing highly accurate results

in the form of the local Taylor expansion of the magnetic �eld, the DA based im-

plementation has a unique advantage of easily obtaining the curl and divergence of

the magnetic �eld at any given point. This o¤ers one way to quickly verify if the

magnetic �eld satis�es Maxwell�s equations.
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One of the tools computes the magnetic �eld of a �nite wire of a rectangular cross

section. A �nite wire can have the current entrance and exit planes inclined to the

central axis or the direction of the current �ow. Also, a tool to compute the �eld for

an in�nitely long wire with a rectangular cross section has been implemented. Using

orders around 10, accuracy of about 14 digits can be achieved using these tools.

Another tool to compute the magnetic �eld of a current coil of a rectangular cross

section has also been implemented. More detail about the current coil implementation

will be given in the section 4.1.2.

In general, a numerical tool to compute the magnetic �eld for an in�nitely often

di¤erentiable current distribution can also be implemented using concepts above and

the DA framework available in the code COSY INFINITY [23, 24].

3.5 Extraction of transfer map from surface �eld

data or current distribution

In the sections 3.1 and 3.4 we have successfully demonstrated that we can obtain local

expansion of the magnetic �eld by either using the surface data or the current distri-

bution. We now use the technique described in section 2.3.2 to demonstrate that we

can successfully extract transfer map from the surface �eld data. The �eld informa-

tion at 13 point of each time step in the Runge-Kutta integrator is supplied as local

expansion of the magnetic �eld computed using the techniques we have developed.

We present the results for a test case of theoretical quadrupole magnetic �eld for

which the analytic transfer map is know. The quadrupole �eld varies linearly with the

distance from the magnet center, ~B (x; y; s) = (kqy; kqx; 0), where kq is a constant and

has units of T=m. The quadrupole magnet focuses the beam along one plane while

defocusing the beam along the other plane. We note that the radius of curvature,

h = 0, for the quadrupole magnet. The equation (2.3.3) can now be linearized to
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obtain

x
0
= a;

y0 = b;

a
0
= �

kq

�m0
x;

b
0
=

kq

�m0
y;

l
0
= � k

v0

1

(1 + �0) (2 + �0)
�;

�
0
= 0:

Let ! =
p
kq=�m0, and D = �k= (v0 (1 + �0) (2 + �0)) and L be length of the

quadrupole. It is straight forward to solve the above system of ODEs to obtain the

�rst order transfer map for the quadrupole, which is given as

M =

0BBBBBBB@

cos (!L) sin (!L) =! 0 0 0 0

�! sin (!L) cos (!L) 0 0 0 0

0 0 cosh (!L) sinh (!L) =! 0 0

0 0 ! sinh (!L) cosh (!L) 0 0

0 0 0 0 1 D

0 0 0 0 0 1

1CCCCCCCA
:

It is also possible to obtain similar analytic formulae for the high order coe¢ cients

[27].

We compare the transfer map computed using the analytical formulas and the trans-

fer map computed using Runge-Kutta integrator with the magnetic �eld computed

using the Laplace solver we have developed. For the case a quadrupole of length 0.2

m, 0.1 m aperture and �eld strength at the aperture of 6:725� 10�2 T we computed

the di¤erence between the transfer maps. The result is presented in tables 3.5.1 and

3.5.2. We can see that the agreement between the analytic and computed Taylor maps

is very good, and this once again demonstrate that the magnetic �eld generated by

the techniques we have developed are highly accurate. This examples also serves and

a proof that we can extract transfer maps from the measured surface �eld data using
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the techniques we have developed. In the section 4.3.4 we will present the example of

the Super-FRS quadrupole magnet for which we will extract the transfer map using

the magnetic �eld data on a closed surface.

3.6 Summary

Beam Physics
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Visit www.smartdraw.com or call 1­800­768­3729.

Figure 3.6.1. The �ow chart for extracting transfer maps from the measured magnetic
�eld data or the source distribution.

A new technique for �nding the multipole expansion solution of the three dimen-

sional Poisson equation using the surface data and the current distribution inside the

volume enclosed by the surface has been developed. Since this new technique uses the

�eld information on the surface enclosing the volume of interest and is implemented

using the high-order multivariate di¤erential algebraic tools, the accuracy achieved

is much higher than that of conventional �eld solvers. If the data on the surface
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-.7127632E-13 -.7115593E-12 .0000000E+00 .0000000E+00 .0000000E+00 100000
-.4718448E-14 -.7105427E-13 .0000000E+00 .0000000E+00 .0000000E+00 010000
.0000000E+00 .0000000E+00 .7149836E-13 .7143869E-12 .0000000E+00 001000
.0000000E+00 .0000000E+00 .4718448E-14 .7127632E-13 .0000000E+00 000100
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.7057580E-15 200000
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.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.2400857E-14 000200
.0000000E+00 .0000000E+00 -.4787837E-14 -.3571015E-13 .0000000E+00 000101
.1250188E-12 .1237387E-11 .0000000E+00 .0000000E+00 .0000000E+00 300000
.2769872E-13 .3679666E-12 .0000000E+00 .0000000E+00 .0000000E+00 210000
-.1039776E-12 .5195115E-13 .0000000E+00 .0000000E+00 .0000000E+00 120000
-.9048318E-14 -.3291182E-13 .0000000E+00 .0000000E+00 .0000000E+00 030000
.0000000E+00 .0000000E+00 -.3758715E-12 -.3729083E-11 .0000000E+00 201000
.0000000E+00 .0000000E+00 -.6323985E-13 -.7413065E-12 .0000000E+00 111000
.0000000E+00 .0000000E+00 .3319892E-13 -.3679442E-13 .0000000E+00 021000
-.3321907E-12 -.3294149E-11 .0000000E+00 .0000000E+00 .0000000E+00 102000
-.2018379E-13 -.3273745E-12 .0000000E+00 .0000000E+00 .0000000E+00 012000
.0000000E+00 .0000000E+00 .1109808E-12 .1101801E-11 .0000000E+00 003000
.0000000E+00 .0000000E+00 -.2223924E-13 -.3691161E-12 .0000000E+00 200100
.0000000E+00 .0000000E+00 -.7609278E-13 -.8903396E-13 .0000000E+00 110100
.0000000E+00 .0000000E+00 -.1665335E-15 .3047020E-13 .0000000E+00 020100
-.3292882E-13 -.6518573E-12 .0000000E+00 .0000000E+00 .0000000E+00 101100
.6717630E-13 -.1018835E-12 .0000000E+00 .0000000E+00 .0000000E+00 011100
.0000000E+00 .0000000E+00 .2599943E-13 .3276678E-12 .0000000E+00 002100
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .1057490E-14 200001
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.5331369E-13 110001
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.4746203E-14 020001
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .1057172E-14 002001
-.3793775E-13 -.5576818E-13 .0000000E+00 .0000000E+00 .0000000E+00 100200
-.2498002E-15 -.4481073E-13 .0000000E+00 .0000000E+00 .0000000E+00 010200
.0000000E+00 .0000000E+00 .1101168E-12 .4617591E-13 .0000000E+00 001200
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .5388008E-13 001101
-.2672016E-13 .5264869E-15 .0000000E+00 .0000000E+00 .0000000E+00 100002
-.4732326E-14 -.2664362E-13 .0000000E+00 .0000000E+00 .0000000E+00 010002
.0000000E+00 .0000000E+00 .2686198E-13 .5285215E-15 .0000000E+00 001002
.0000000E+00 .0000000E+00 .1000589E-13 .3795380E-13 .0000000E+00 000300
.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .4787837E-14 000201
.0000000E+00 .0000000E+00 .4815592E-14 .2678565E-13 .0000000E+00 000102

Table 3.5.1. The di¤erence between the analytic and the computed Taylor maps. The
di¤erence map is shown to the third order .
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.0000000E+00 -.5380633E-15 .0000000E+00 .0000000E+00 .1222132E-14 400000

.0000000E+00 -.2578822E-15 .0000000E+00 .0000000E+00 -.6219813E-13 310000

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.1498060E-13 220000

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .5182920E-13 130000

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .4468648E-14 040000

.0000000E+00 .0000000E+00 .1829428E-15 .2166037E-14 .0000000E+00 301000

.0000000E+00 .0000000E+00 .0000000E+00 .8101576E-15 .0000000E+00 211000

.2389887E-15 .3119767E-14 .0000000E+00 .0000000E+00 .3914068E-15 202000

.0000000E+00 .7771467E-15 .0000000E+00 .0000000E+00 .1665009E-12 112000

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .9770657E-14 022000

.0000000E+00 .0000000E+00 -.1748517E-15 -.2071154E-14 .0000000E+00 103000

.0000000E+00 .0000000E+00 .0000000E+00 -.2469727E-15 .0000000E+00 013000

.0000000E+00 -.5266477E-15 .0000000E+00 .0000000E+00 -.1087287E-14 004000

...

.2226095E-13 -.4383921E-15 .0000000E+00 .0000000E+00 .0000000E+00 100003

.4767020E-14 .2219503E-13 .0000000E+00 .0000000E+00 .0000000E+00 010003

.0000000E+00 .0000000E+00 -.2240254E-13 -.4406926E-15 .0000000E+00 001003

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.5058454E-14 000400

.0000000E+00 .0000000E+00 -.2059464E-13 -.5711100E-13 .0000000E+00 000301

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 -.7202572E-14 000202

.0000000E+00 .0000000E+00 -.4773959E-14 -.2233597E-13 .0000000E+00 000103

.5283285E-10 .5267736E-09 .0000000E+00 .0000000E+00 .0000000E+00 500000

.1758265E-10 .2631307E-09 .0000000E+00 .0000000E+00 .0000000E+00 410000

.3701574E-11 .7016947E-10 .0000000E+00 .0000000E+00 .0000000E+00 320000

.4778458E-12 .1071568E-10 .0000000E+00 .0000000E+00 .0000000E+00 230000
-.9821050E-13 .8942905E-12 .0000000E+00 .0000000E+00 .0000000E+00 140000
-.1018630E-13 .5400845E-14 .0000000E+00 .0000000E+00 .0000000E+00 050000
.0000000E+00 .0000000E+00 -.2646860E-09 -.2644290E-08 .0000000E+00 401000
.0000000E+00 .0000000E+00 -.7049192E-10 -.1056648E-08 .0000000E+00 311000
.0000000E+00 .0000000E+00 -.1076331E-10 -.2114512E-09 .0000000E+00 221000

...

.0000000E+00 .0000000E+00 .1961116E-13 .3858557E-15 .0000000E+00 001004

.0000000E+00 .0000000E+00 .1680600E-13 .1921857E-14 .0000000E+00 000500

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .1550149E-13 000401

.0000000E+00 .0000000E+00 .3178013E-13 .7154130E-13 .0000000E+00 000302

.0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00 .9658940E-14 000203

.0000000E+00 .0000000E+00 .4787837E-14 .1955467E-13 .0000000E+00 000104
------------------------------------------------------------------------------

Table 3.5.2. The di¤erence between the analytic and the computed Taylor maps. The
di¤erence map shows some of the fourth and the �fth order terms.
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enclosing the volume of interest can be given exactly, then in principle, arbitrarily

high accuracy limited only by the computational resources available can be achieved

by this new technique. In practical situations where the �eld data on the surface

enclosing the volume of interest are experimentally measured, the discretization of

the surface and the errors in the experimentally measured �eld data may limit the

accuracy achieved, but because the method is naturally smoothing, the accuracy is

expected to exceed that of the measurements. In addition, we have also developed

framework to compute the magnetic �eld of an arbitrary current distribution using

the Biot-Savart law. Using these techniques we can now extract the Taylor transfer

maps from the measured �eld data or the source data. Figure 3.6.1 shows the �ow-

chart to extract the Taylor transfer maps from the measured magnetic �elds data or

the source distribution.
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CHAPTER 4

Applications

In this chapter we present examples to demonstrate the utility of the new �eld compu-

tation techniques we have developed. We �rst present the design of the new quadru-

pole magnet with elliptic cross section and tunable high order multipoles. Next, we

present the application of the Laplace solver to the realistic case of measure mag-

netic �eld data obtained for the MAGNEX spectrometer dipole magnet. Finally, we

present the ion-optic simulations for the Super-FRS and present the �eld computa-

tions for the quadrupole magnet utilizing the high performance parallel computing

environment.

4.1 The conceptual design of a quadrupole magnet

For charged particle beams that are wider in the dispersive plane than the trans-

verse plane it is cost e¢ cient to utilize magnets that accept beams with elliptic cross

sections . We now present the conceptual design of a quadrupole magnet with an

elliptic cross section and with tunable high order multipoles. The design consists of

18 superconducting racetrack coils placed on two hollow concentric rhombic prism
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support structures.

The analysis of this design will use the new numerical tools that we have described in

the section 3.4.4 to compute the local Taylor expansion of the magnetic �eld starting

from the Biot-Savart law and Ampere�s law. In this section we �rst discuss the case

where the magnet is considered to be in�nitely long. This leads to purely transverse

magnetic �elds (2D �elds). In the section 4.1.1 we present results of numerical

computations for this 2D case. We also discuss the feasible range of multipole �eld

strength that can be achieved with this design. Finally, in the section 4.1.2 we present

the results for a �nite length magnet and discuss the fringe �eld e¤ects.

A combination of superconducting racetrack coils is used to produce the desired

magnetic �eld inside an elliptic cross section. By the proper choice of dimensions,

current density, and placement of these coils, various combinations of the quadrupole

�eld and the higher order multipole �elds can be achieved. The support structure

that holds these coils in place consists of two concentric hollow rhombic prisms, with

the ratio of the diagonals of the rhombus equal to 2. The cross section view showing

the arrangement of the current coils on the support structure is shown in Figure 4.1.1.

The superconducting racetrack coils on the inner rhombic prism produce quadrupole

and octupole �elds. The racetrack coils on the outer rhombic prism produce hexapole

and decapole �elds, and also allow for a limited dipole �eld for correction purposes.

Figure 4.1.1 shows the layout of the various coils. The signs "+" and "-" indicate the

direction of the current to produce a positive multipole term.

Due to symmetry in the design about the central axis, it is su¢ cient to describe

only one quarter of the magnet. Figure 4.1.2 shows one quarter of the cross section.

The positions and the direction of the coils in this quarter are speci�ed in Table 4.1.1.

All the coils have square cross section with thickness of 0:1 m.

In Table 4.1.1 the quantities QI1; QI2; HI1; HI2; HI3; HI3 are the magnitude of

the currents. For any given con�guration of the inner current coils, the currents
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Figure 4.1.1. The cross section view of the quadrupole.

Coil Description Position of Coils Current
x y

Inner Coils
Quadrupole 0.4473 0.8222E-01 -QI1
Octupole 0.3473 0.1322 -QI2
Octupole 0.1973 0.2072 +QI2
Quadrupole 0.9736E-01 0.2572 +QI1
Outer Coils
Hexapole 0.5591 0.1604 +HI1
Decapole 0.4591 0.2104 +HI2
Decapole 0.3091 0.2854 -HI2
Hexapole 0.2091 0.3354 -HI1

Dipole Corrector 0.8385E-01 0.4172 -HI3
Table 4.1.1. The center position of the current carrying coils in the �rst quadrant
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Quad coil

Oct coil

Hex coil

Quad coil

Oct coil
Hex coil

Deca coil

Deca coil

Dipole coil

0.5 m

0.25 m

0.1 m

0.12 m

Figure 4.1.2. The layout of the racetrack coils in the �rst quadrant.

(QI1; QI2) can be used as parameters to obtain di¤erent quadrupole and octu-

pole strength. Similarly, for any given con�guration of the outer coils, the currents

(HI1; HI2) can be used as parameters to get the desired hexapole and decapole �eld

strength.

From the construction point of view it is cost e¢ cient if the same type of coils can

be used. We use current coils of the same shape and size to generate the quadrupole

and hexapole �elds. Also, we use the same type of current coils for octupole and

decapole �elds.

4.1.1 2D design of the quadrupole magnet

For a 2D design the current coils can be considered to be of in�nite length, thus

avoiding any fringe �eld e¤ects. In this case a coil can be viewed as two current wires

of in�nite length and �nite cross section which are separated by certain distance. The
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currents in these wire are equal in magnitude but are opposite in direction.

The magnetic �eld of the magnet described in the previous section is a superposition

of the �elds produced by individual coils. In a 2D case the �eld of an individual coil is

again a superposition of �elds generated by two in�nitely long current wires of �nite

cross sections . In the next section we show the results of the computation that has

been performed using the in�nite wire tool.

Pure quadrupole con�guration

A pure quadrupole con�guration can be achieved by the following setting of the

currents.

QI1= 3965729.315790645 QI2= 80626.58244399808

HI1= 0.0000000000 HI2= 0.0000000000 HI3= 0.0000000000

The �fth order Taylor expansion of the magnetic �eld about the point (0:0; 0:0; 0:0)

that we obtained is shown in Table 4.1.2.

Pure hexapole con�guration

A pure hexapole con�guration can be achieved by the following setting of the currents.

QI1= 0.0000000000 QI2= 0.0000000000

HI1= 499792.9930948258 HI2= 938956.9619500297 HI3= 448723.7676402168

The �fth order Taylor expansion of the magnetic �eld about the point (0:0; 0:0; 0:0)

that we obtained is shown in Table 4.1.3.
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MAGNETIC FIELD (Bx,By,BZ)

Bx By Bz

0.4440892098501E-15 0.000000000000 0.000000000000 000000

0.000000000000 46.09565826333 0.000000000000 100000

46.09565826333 0.000000000000 0.000000000000 010000

-0.7105427357601E-14 0.000000000000 0.000000000000 200000

0.1421085471520E-13-0.1421085471520E-13 0.000000000000 110000

0.000000000000 0.1136868377216E-12 0.000000000000 210000

0.000000000000 -0.2842170943040E-13 0.000000000000 120000

0.7815970093361E-12 0.000000000000 0.000000000000 030000

-0.1421085471520E-13 0.000000000000 0.000000000000 400000

0.000000000000 0.5684341886081E-13 0.000000000000 310000

-0.2273736754432E-12-0.1705302565824E-12 0.000000000000 130000

-0.4263256414561E-13 0.5684341886081E-13 0.000000000000 040000

0.000000000000 -3956.535097021 0.000000000000 500000

-19782.67548511 0.000000000000 0.000000000000 410000

0.000000000000 39565.35097021 0.000000000000 320000

39565.35097021 0.000000000000 0.000000000000 230000

0.000000000000 -19782.67548511 0.000000000000 140000

-3956.535097021 0.000000000000 0.000000000000 050000

---------------------------------------------------------------------

Table 4.1.2. The �fth order Taylor expansion of the magnetic �eld about the point
(0.0,0.0,0.0) for the current con�guration producing a pure quadrupole �eld.

Operational plots

We have mentioned that the currents (QI1; QI2; HI1; HI2) can be used as parame-

ters to get the desired quadrupole and higher order multipole strength. However,

there is a maximum limit on the current density that the superconducting coils can

support. This puts a limit on the maximum quadrupole and other multipole �eld

strength that can be achieved. Because of the fact that each multipole is achieved

by superimposing the �elds of several coils, this leads to operating diagrams showing

achievable multipole settings.

To study this situation in detail, we now look at how the multipole strength depends

on the currents. The matrix given in the equation (4.1.1) relates the multipole �eld
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MAGNETIC FIELD (Bx,By,BZ)

Bx By Bz

0.000000000000 -0.8604228440845E-15 0.000000000000 000000

-0.4718447854657E-15 0.000000000000 0.000000000000 100000

0.000000000000 -0.3885780586188E-15 0.000000000000 010000

0.000000000000 -18.24792017395 0.000000000000 200000

-36.49584034790 0.000000000000 0.000000000000 110000

0.000000000000 18.24792017395 0.000000000000 020000

-0.1776356839400E-14 0.000000000000 0.000000000000 210000

-0.1776356839400E-14 0.2664535259100E-14 0.000000000000 120000

0.2220446049250E-14-0.4440892098501E-15 0.000000000000 030000

-0.1776356839400E-14-0.3463895836830E-13 0.000000000000 400000

-0.2593480985524E-12 0.000000000000 0.000000000000 310000

0.000000000000 0.4547473508865E-12 0.000000000000 220000

0.1705302565824E-12 0.1953992523340E-13 0.000000000000 130000

0.4440892098501E-14-0.4174438572591E-13 0.000000000000 040000

0.1776356839400E-14 0.8881784197001E-15 0.000000000000 500000

0.1421085471520E-13 0.1421085471520E-13 0.000000000000 410000

0.2842170943040E-13 0.3552713678801E-13 0.000000000000 320000

0.2131628207280E-13 0.000000000000 0.000000000000 230000

-0.5684341886081E-13-0.7105427357601E-14 0.000000000000 140000

-0.4440892098501E-14-0.3552713678801E-14 0.000000000000 050000

---------------------------------------------------------------------

Table 4.1.3. The �fth order Taylor expansion of the magnetic �eld about the point
(0.0,0.0,0.0) for the current con�guration producing a pure hexapole �eld.

strength at the horizontal half aperture to the currents in the coils for the speci�c case

of a horizontal half aperture of 0:5 m and a vertical half aperture of 0:25 m . In the

notationBy
(1111)

, the superscript denotes the "y" component of the magnetic �eld and

the subscript (1111) gives the exponent in transport notation. Thus, By
(1111)

is the

coe¢ cient of x4 in the Taylor expansion of the "y" component of the magnetic �eld,

or the decapole term in the expansion. The equations (4.1.2) provide relationships

between the coe¢ cients of other multipole terms in the Taylor expansion of the �eld

to the principle multipole coe¢ cients By
(11)

; B
y
(111)

and By
(1111)

.
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377777775
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2666664
0 0 �0:25137 �0:04316 +0:37029

+5:76974 +2:40063 0 0 0

0 0 �3:89914 �2:08907 �1:45431
�0:40613 +15:44685 0 0 0

0 0 +1:66569 �2:32478 +2:99743

3777775�
2666664
QI1
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HI1

HI2

HI3

3777775
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= �By
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3
= �Bx(222) = B

y
(111)

Bx(1112) = �B
x
(1222) = 4B

y
(1111)

Operational plot for the quadrupole and the octupole �elds

From the equation (4.1.1) it can be seen that the quadrupole �eld strength and the

octupole �eld strength are coupled via the currents (QI1; QI2). We vary both of these

current densities in the range
h
�108; 108

i
A=m2 and plot the resulting octupole �eld

strength and the quadrupole �eld strength; the results are shown in Figure 4.1.3.

This plot gives the possible values of the quadrupole and octupole strength that can

be achieved with the con�guration of the coils described in the section 4.1.
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Figure 4.1.3. The operational plot for the quadrupole and the octupole. The coe¢ -
cients are computed at the horizontal half aperture.
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Figure 4.1.4. The operational plot for the hexapole and the decapole. The coe¢ cients
are computed at the horizontal half aperture.

Operational plot for the hexapole and decapole �elds

From the equation (4.1.1) it can also be seen that the dipole, hexapole and decapole

�eld strength are coupled via the currents (HI1; HI2; HI3). However, under normal

operation, we have a strict requirement of zero dipole �eld for this magnet. The dipole

�eld is set zero by the proper choice of the current HI3. Once again we vary the

current densities of all currents in the range
h
�108; 108

i
A=m2 and plot the decapole

�eld strength versus the hexapole �eld strength; the results are shown in Figure 4.1.4.

This plot gives the possible values of the hexapole and decapole strength that can be

achieved with the con�guration of the coils described in the section 4.1.
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Figure 4.1.5. The schematic digram of a current coil.

Optimization of the operational region

The matrix given in the equation (4.1.1) is in�uenced by the geometrical design para-

meters of the system. In order to optimize the operational region of the currents and

the �elds, we need to �nd the optimal geometric con�guration of the coils described

in the section 4.1, where the optimal design is de�ned as the one that would decouple

the in�uence of the octupole coil current on the quadrupole component of the �eld

and vice versa. And, at the same time maximize the coupling strength of the cur-

rent in quadrupole coils on the quadrupole component of the �eld, and maximize the

coupling strength of the current in octupole coils on the octupole component of the

�eld. The same type of optimization is also required for the hexapole and decapole

components of the �eld.

4.1.2 3D design of the quadrupole and the fringe �eld analy-

sis

Figure 4.1.5 shows a current coil of a rectangular cross section . This coil is made by

joining four wires having rectangular cross section with the current entrance and exit
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planes tilted by 45� in opposite directions. This ensures that there is a continuos �ow

of current through the coil. The magnetic �eld for each of these wires is calculated

using the COSY tools described in the section 3.4.4.

Figure 4.1.6. The three dimensional layout of quadrupole coils.

The 3D layout of the quadrupole with four current coils is shown in Figure 4.1.6.

We note that when the length of the magnet is large compared to the aperture of the

magnet, the magnetic �eld at the center of the magnet is identical to the magnetic

�eld obtained by the 2D design in the section 4.1.1. We also verify that the curl and

the divergence vanishes at all points inside the magnet.

To present the results we once again consider the design presented in the section

4.1.1, but with a modi�cation that the length of the magnet is �nite. We consider a

magnet of length 1 m, extending from �0:5 m � z � 0:5 m. We now look at the mag-

netic �eld generated by this coil con�guration at four di¤erent planes perpendicular
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to the central axis, z = 0; z = 0:25 m; z = 0:5 m and z = 1:0 m.

From �gures 4.1.7 and 4.1.8 we can see that at the plane z = 0 the magnetic �eld

agrees with the textbook model where Bx = Cy; By = Cx. In the z direction the

magnitude of the magnetic �eld is of the order � 10�16, which is zero for all practical

purposes.

Now, as we start going away from the center, we start seeing deviation from the

ideal behavior (z = 0). Figures 4.1.9 and 4.1.10 show the plots for the magnetic �eld

at the quarter length of the magnet, z = 0:25 m. There is no signi�cant deviation

from ideal behavior in the x and y components of the magnetic �eld. In the z direction

we notice that the magnetic �eld is nonzero. However, the magnitude is still very

small compared to the components Bx and By.

Figures 4.1.11 and 4.1.12 show the plots for the magnetic �eld at the entrance and

the exit of the magnet, for z = 0:5 m. Now we see that the magnetic �eld is di¤erent

compared to the �eld at the center of the magnet. We see that the strength of Bx

and By falls by a factor of �ve. The Bz component is very strong, which is almost

three times as large as Bx or By.

Figures 4.1.13 and 4.1.14 show the magnetic �eld on a plane 0:5 m away from

the entrance and exit of the magnet. The overall �eld falls o¤ signi�cantly and its

magnitude is � 10�1 tesla: Finally, the plot 4.1.15 shows the magnetic �eld on the

�rst quadrant of the magnet on the y = 0 m plane. The region stretches from the

center of the magnet to 0:5m (half length of the magnet) outside the magnet in both

x and z directions. Here the fringe �eld that falls o¤ in the region can be clearly seen.
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Figure 4.1.7. (a) The plot for Bx for the data on the plane z = 0 m. (b) The plot for
By for the data on the plane z = 0 m.
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Bz for Quadrupole at Z=0
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Figure 4.1.8. (a) The plot for Bz for the data on the plane z = 0 m. (b) The vector
plot of the two dimensional �eld on the plane z = 0 m.
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Bx for Quadrupole at Z=.25
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Figure 4.1.9. (a) The plot for Bx for the data on the plane z = 0:25 m. (b) The plot
for By for the data on the plane z = 0:25 m.
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Bz for Quadrupole at Z=.25
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Figure 4.1.10. (a) The plot for Bz for the data on the plane z = 0:25 m. (b) The
vector plot of the two dimensional �eld on the plane z = 0:25 m.
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Bx for Quadrupole at Z=0.5
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Figure 4.1.11. (a) The plot for Bx for the data on the plane z = 0:5 m. (b) The plot
for By for the data on the plane z = 0:5 m.
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Bz for Quadrupole at Z=0.5
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Figure 4.1.12. (a) The plot for Bz for the data on the plane z = 0:5 m. (b) The
vector plot of the two dimensional �eld on the plane z = 0:5 m.
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Bx for Quadrupole at Z=1
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Figure 4.1.13. (a) The plot for Bx for the data on the plane z = 1 m. (b) The plot
for By for the data on the plane z = 1 m.
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Bz for Quadrupole at Z=1
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Figure 4.1.14. (a) The plot for Bz for the data on the plane z = 1 m. (b) The vector
plot of the two dimensional �eld on the plane z = 1 m.
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By for Quadrupole at Y=0 plane
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Figure 4.1.15. The plot of the magnetic �eld on the midplane, y = 0 m. Only the
magnetic �eld in the �rst quadrant is shown.

Figure 4.2.1. The dipole magnet of the MAGNEX spectrometer.
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Figure 4.2.2. The layout of the measurement grids in di¤erent regions of the dipole
magnet.

4.2 The dipole magnet of the Catania MAGNEX

spectrometer

We now address a practical application of the Laplace solver technique to magnetic

spectrometers. The trajectory reconstruction method [21] is one of the important

tools to study magnetic spectrometers. Good computational modelling of the dipole

magnet is very important for this tool to work, and this is particularly so for modern

large-aperture devices such as MAGNEX at INFN, Catania, Italy [70, 49, 29]. Figure

4.2.1 shows the MAGNEX spectrometer con�guration.

For purposes of measurement economy, magnet builders usually provide the mag-

netic �eld only on few separate horizontal planes within the dipole, while the com-

putational treatment of the device requires the knowledge of the �eld in all of space.

The MAGNEX dipole was divided into a number of volumes de�ned by areas and

planes as shown in Figure 4.2.2. Four areas were mapped as indicated in Table 4.2.1;

Areas 1 and 4 comprise the E¤ective Field Boundary regions of the magnet at the

entrance and at the exit where the �eld undergoes a sudden variation due to the
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fringe �eld e¤ects, whereas region 2 and 3 represent the central region of the magnet.

This subdivision is the result of the need of di¤erent grid sizes over the mapped area

in order to limit the measurement time. For each of the regions the measurements

were taken on seven di¤erent planes as shown in Table 4.2.1.

Area
1 EFB area at entrance
2 Central area entrance end
3 Central area exit end
4 EFB area at exit

Planes Z(cm)
a 0 Midplane
b 1.6 Above midplane
c 3.2 Above midplane
d 4.8 Above midplane
e 6.4 Above midplane
f 8.0 Above midplane
g -4.8 Below midplane

Table 4.2.1. (a)Areas mapped in the dipole (b)Planes mapped in the dipole.

The magnetic measurement were organized so that the RMS error h�Bi=Bi i =

x; y; z at any mesh point inside the working volume of the magnet was not greater

than 5 � 10�4. The �eld measurement error due to the error of measuring the Hall

probe voltage was �B = �5� 10�5 Gauss. The main source of the B measurement

error were assumed to be the errors of positioning the Hall probe [71, 65, 41].

Utilizing that su¢ ciently outside the dipole the �elds will vanish, it is thus possible

to provide �eld data over the surface of a �nite box enclosing the region of interest, and

thus to apply the Laplace solver technique to obtain a �eld representation everywhere.

We use this method to compute the �elds in the region 1 and plane A of the dipole

magnet. The contour plot of the resulting relative errors is plotted over the region

1 in Figure 4.2.3. The region where the sharp valley is observed coincides with the

physical boundary of the dipole magnet.

Figure 4.2.3 we can see that the relative error is not as small as we would expect

from our approach. Since the data was measured in several planes and in several

overlapping regions on each plane it is very hard to extract the magnetic �eld data

on a closed surface. To demonstrate our approach we have used only the data for

the entrance of the dipole magnet (region 1) and extracted data on a surface of a
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Figure 4.2.3. The contour plot of magnetic �eld errors for the region 1 and plane A.

111



Figure 4.3.1. The layout of the Super-FRS. Spatially separated rare-isotope beams
are delivered to the experimental areas via three di¤erent branches.

rectangular box enclosing the region of interest. Since the data was measured on only

seven di¤erent planes the data on two surfaces, x = �0:5 m, of the rectangular box

enclosing the region of interest are discretized with very large step size. This may

lead to large errors from the surface elements on these planes (x = �0:5 m). Also,

compared to the case where the whole data is enclosed by one closed surface the

smoothing e¤ect is limited for the rectangular box enclosing only the data on region

1 for seven di¤erent planes. The di¤erence we observe may also be attributed to the

errors in the experimental measurements and may need independent veri�cation.

4.3 Ion-optic simulations for the Super-FRS

The superconducting fragment separator (Super-FRS) [38] being built at GSI, Ger-

many will be the most powerful in-�ight separator for exotic nuclei up to relativistic

energies. The Super-FRS is a large-acceptance superconducting fragment separator

with three branches serving di¤erent experimental areas. The Super-FRS uses the
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Parameters
Max. Magnetic Rigidity B�max 20Tm
Momentum Acceptance �P=P �2:5%
Angular Acceptance �y�x �40mrad2
Momentum Resolution 1500
Table 4.3.1. The Super-FRS design parameters.

B�����B� method, where a two-fold magnetic rigidity analysis is applied in front

of and behind a specially shaped energy degrader. As a consequence the Super-FRS

consists of a two-stage magnetic system, the pre-separator and the main-separator,

each equipped with a degrader. Figure 4.3.1 shows the layout of the proposed Super-

FRS. Table 4.3.1 summarizes the design parameters for the Super-FRS.

The ion-optic design for the Super-FRS has been primarily studied using the beam

physics code GICOSY [19]. The code GICOSY computes the transfer maps to the

�fth order. However, for some electric and magnetic elements the GICOSY code

computes transfer maps to only the third order, and hence the maps generated are

only correct to the third order. The �rst, second and third order design studies have

been conducted using the code GICOSY. However, for high acceptance and high

resolution machines like the Super-FRS, the high order transfer map computations

are necessary to study the e¤ect of the high order nonlinearities on the resolution

achieved. The code COSY INFINITY [23, 24] is an arbitrary order beam physics

code and hence can be utilized to perform the high order design studies of the Super-

FRS.

The theory and the implementation details of the GICOSY and the COSY INFIN-

ITY codes can be found in [77, 78, 26, 79, 20, 15, 14, 16, 25, 52, 13, 7, 8, 12] and

references therein. Both GICOSY and COSY INFINITY codes are written in the

Fortran 77 language, and they themselves provide a programming environment to

describe a particle optical system conveniently and in an intuitive manner. However,

due to the di¤erences in their approach to the description of the optics, and their

implementation in the Fortran 77 language, they may provide di¤erent results for
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some of the ion or particle optical elements. Though they may be very small, these

di¤erences may be of relevance, for example, when analyzing instruments of high

precision, like fragment separators, where the higher order aberration corrections are

important to get the desired resolution. A systematic study of the di¤erences in the

description of the important particle optical elements in the GICOSY and the COSY

INFINITY codes has been done and the results are presented in the Appendix A.

Also, to facilitate code reusability, a code converter to translate a GICOSY program

into the COSY INFINITY program has been developed and is discussed in Appendix

B. Using this program, all GICOSY �les were converted to COSY INFINITY �les

to perform the high order simulations. It has been veri�ed that with same choice of

units and the scaling factor and ignoring the fringe �elds, the results from the COSY

INFINITY and GICOSY codes agreed to good accuracy to third order.

The code COSY INFINITY has been optimized to do single particle simulations

for large multiturn accelerators like the LHC and the FNAL. There is a plethora of

tools available in the code COSY INFINITY to study and present results for these

multiturn accelerators. However, to present the results for an ensemble of particles

for a single pass accelerator like the Super-FRS, we need to implement new output

tools. New tools developed for the purpose are discussed in Appendix C.

We now present the results of the simulation for the pre-separator stage, the main-

separator stage and the energy buncher using the code COSY INFINITY. We then

apply the Laplace solver technique to the magnetic �eld data obtained from the

TOSCA simulation of the Super-FRS quadrupole and extract the transfer map for

this magnet.

4.3.1 The pre-separator branch

The standard ion-optical layout of the pre-separator stage is presented in Figure

4.3.2a. The most relevant �rst order matrix elements are given in Table 4.3.2 at four
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Matrix Element PF1 PF2 PF3 PF4
(xjx) -3.19 1.73 -3.19 2.00
(xja) 0 0 0 0
(xj�) 3.68 -2.00 3.68 0

(aja) -0.31 0.57 -0.31 0.50
(aj�) 0.44 0 -0.44 0

(yjy) -4.81 -3.13 0.39 2.28
(yjb) 2.13 0 -1.94 0
(bjb) -0.07 -0.32 -0.02 0.43

Table 4.3.2. The relevant �rst order matrix elements for the pre-separator stage.

focal planes PF1, PF2, PF3, and PF4. In the �rst focal plane a focus is realized only

in the x direction, whereas in the symmetrical mid plane, the position of the �rst

degrader system, foci are required in both the x and y coordinates. Also a parallel

dispersion line is required at PF2. The system is mirror symmetric with respect to

PF2, �rstly to have the necessary three foci to achieve the achromatic condition at

PF4, secondly to minimize the geometrical image aberrations. Figure 4.3.3 shows the

envelopes and the dispersion line for the primary-beam emittances of 40� mm mrad

and �p=p of 2.5 % . The target spot size is assumed to be �1 mm and �2 mm in

the x and y directions, respectively.

The bene�t of the design is that the higher order aberrations are small except for

the chromatic contributions, especially (x; a�) which is responsible for an enormous

focal plane tilt. The tilt angle at PF2 would be about 7 degrees without second-order

corrections by means of hexapole magnets, while the required tilt is 90 degrees. Such a

tilt would make a high resolution degrader operation very di¢ cult or even impossible.

Therefore, hexapole magnets are used to correct this de�ciency. However, as soon as

this correction is done, induced higher order aberrations become a major challenge.

Applying hexapole and octupole corrections, about 80 % of the �rst-order momentum

resolving power at the central plane of the pre-separator was regained.

Usually, the resolution is computed using formulas which only consider the impor-

tant aberration terms. However, we can also compute the true nonlinear resolution
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Figure 4.3.3. Envelopes and the dispersion line for the pre-separator stage.

Order Non-linear resolution
1 785
2 760
3 645
4 647
5 645
6 655
7 660

Table 4.3.3. The Non-linear resolution at the focus PF2.

by launching N particles, uniformly distributed in the phase space, and compute

the spot size of the resulting beam distribution. The nonlinear resolution computed

using this is a good measure of the overall nonlinear e¤ects. Table 4.3.3 shows the

nonlinear resolution achieved at the focus PF2 by changing the order of computation.

The strength of sextupoles and octupoles were �tted to maximize the resolution while

satisfying other necessary conditions. We see that the resolution does not drop sig-

ni�cantly with the increase in the order of computation. In the pre-separator stage

the required resolution can thus be achieved with the current lattice settings.
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Order Non-linear resolution
1 1602
2 1582
3 862
4 519
5 484
6 645
7 439

Table 4.3.4. The Non-linear resolution at the focus MF2.

4.3.2 The main-separator

The main-separator consists of 4 dipole stages with focusing elements in front of and

behind each dipole magnet system. The main-separator also has 4 focal planes, MF1,

MF2, MF3 and MF4 to accommodate an achromatic system with a degrader station

in the central focal plane MF2.

An analysis similar to the pre-separator stage is performed for the main-separator

stage. Table 4.3.4 shows the non-linear resolution achieved at the focus MF2 by chang-

ing the order of computation. Once again the strength of sextupoles and octupoles

were �tted to maximize the resolution while satisfying other necessary conditions. For

the main-separator stage the resolution changes signi�cantly with change of order of

computation. The main-separator stage may require further analysis to correct for

high order aberrations.

4.3.3 The energy buncher

After production and in-�ight separation in the pre-separator and the main separator

stages of the Super-FRS, the secondary beam can be distributed to either of three

experimental areas: a high-energy cave, a storage ring complex and a dedicated low-

energy branch (LEB), as shown in Figure 4.3.1. In the LEB the exotic species can be

slowed-down to ion energies ranging from a few hundred MeV/u down to rest. The

LEB is equipped with an energy-bunching stage in order to reduce the energy spread

of the secondary ions originating from the fragment production process and from

118



Figure 4.3.4. Ion-optical layout of the energy buncher.
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straggling in the target and the degraders. For the energy buncher the simulations

were performed using the code COSY INFINITY.

The energy buncher consists of a dispersive ion-optical stage with a large split di-

pole magnet system, quadrupole and hexapole magnets. The magnetic quadrupole

triplet in front of the dipole magnet is needed to properly illuminate the �eld vol-

ume of the dipole magnet to reach the required resolving power and to focus the

secondary beam onto a monoenergetic degrader. The layout of the system and the

trajectories are shown in Figure 4.3.4. The quadrupole triplet behind the monoener-

getic degrader guides the exotic nuclei into the gas cell or any other detector array. Its

main characteristics are: B�max = 10 Tm, �x = 300 mm mrad, �y = 200 mm mrad,

�p=p = �2:5%, (transverse and longitudinal acceptance). Under these conditions a

momentum resolving power of R = 600 can be achieved.

4.3.4 The Super-FRS quadrupole magnet

Most of the current ion-optic codes use the analytic models for the magnets and

then apply an assumed fringe �eld models to obtain the transfer map. But, with

the Laplace solver techniques we have developed it is possible to extract the transfer

maps directly from the magnetic �eld information. We now use the example of the

Super-FRS superferric quadrupole to extract the magnetic �eld and the transfer map.

The Super-FRS superferric quadrupole is designed with e¤ective length of 0:8 m with

the usable horizontal aperture of �0:2 m and the vertical aperture of �0:1 m. Using

the TOSCA package, the magnetic �eld data was obtained on a rectangular surface

grid enclosing the region of interest. The surface was discretized with a step size of

5 mm, leading to a discretization of 80�40�320 surface elements. The relative �eld

computation error was �B=B = 70 � 10�4. Figure 4.3.5 shows the TOSCA model

for the magnet. We now use this surface date to compute the magnetic �eld inside

the volume and compare the result with the TOSCA simulation for the points inside
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Figure 4.3.5. The TOSCA model for the quadrupole magnet.

the volume.

Figure 4.3.6 shows the di¤erence between the TOSCA and the computed magnetic

�eld for the relative error of the y component of the magnetic �eld on the midplane of

the quadrupole magnet. Due to double midplane symmetry it su¢ cient to look at the

results only for the one quarter of the magnet. It can be seen that the results agree

� 10�3, which is within the TOSCA model computation error of �B=B = 70�10�4.

We now study the error dependence on the size (length) of the volume element,

or equivalently the number of volume elements chosen for the computation. For the

ninth order computation Figure 4.3.7 displays the dependence of the rms average

error on the length of the volume element. As an example, for cell lengths of 0:1;

with 410 volume data points, the rms error of 8 � 10�5 is observed for the volume

element at (0; 0; 0) with a ninth order computation.

We now extract the transfer map from the Super-FRS quadrupole magnetic �eld
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Figure 4.3.6. The di¤erence between the relative error of the y component of the
magnetic �eld on the mid plane. The �gure only shows the results for the �rst
quadrant.
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Figure 4.3.7. The rms average di¤erence between the TOSCA simulation result and
the new Laplace solver technique versus the volume element length for four volume
points (0.0,0.0,0.0), (-0.1,-0.025,-0.2), (-0.2,-0.05,-0.4) and (-0.3,-0.075,-0.6).
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data. We solve the ODEs of motion as described in the section 2.3.2. We use the

multipole expansion solution of magnetic �eld computed through the Laplace solver

technique to compute the transfer map for the quadrupole. Tables 4.3.5, 4.3.6 and

4.3.7 present the transfer map computed using the magnetic �eld data on a closed

surface.

-0.4705674 -1.394826 0.000000 0.000000 0.000000 100000
0.5581815 -0.4705674 0.000000 0.000000 0.000000 010000
0.000000 0.000000 3.837901 4.272580 0.000000 001000
0.000000 0.000000 3.213394 3.837901 0.000000 000100
0.000000 0.000000 0.000000 0.000000 1.000000 000010
0.000000 0.000000 0.000000 0.000000 0.3989286 000001
0.1284348E-14 0.1535115E-14 0.000000 0.000000 -0.4476261 200000
0.1159401E-14 0.9402369E-15 0.000000 0.000000 0.4865291E-01 110000
-0.1197808E-14-0.3977569E-14 0.000000 0.000000 -0.1627172 020000
0.1930759E-13 0.5931886E-13 0.000000 0.000000 -2.059670 002000
0.3353931E-13 0.9565057E-13 0.000000 0.000000 -3.933253 001100
0.4768188 -0.4891389 0.000000 0.000000 0.000000 100001
0.1259816 0.4768188 0.000000 0.000000 0.000000 010001
0.000000 0.000000 -1.858375 -0.9955222 0.000000 001001
0.1398535E-13 0.3825810E-13 0.000000 0.000000 -1.984025 000200
0.000000 0.000000 -2.589889 -1.858375 0.000000 000101
0.000000 0.000000 0.000000 0.000000 -0.2995974 000002

Table 4.3.5. The extracted Taylor transfer map for the Super-FRS quadrupole. The
Taylor transfer map is shown to second order.

The magnetic �eld data does not extend to the region far enough for the fringe

�eld to vanish. Hence the transfer map computed may not accurately represent the

real transfer map. Further analysis is required to obtain the true transfer map.

4.4 Summary

In this chapter we have successfully demonstrated the utility of the magnetic �eld

computation techniques we have developed. These techniques were applied to ana-

lyze a new design of a quadrupole magnet, and to �nd the multipole decomposition of

the magnetic �eld of the MAGNEX spectrometer dipole magnet, and the quadrupole
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-5.023497 -1.219005 0.000000 0.000000 0.2575156E-15 300000
-8.056533 -4.472267 0.000000 0.000000 0.2217327E-15 210000
-6.019470 -4.481049 0.000000 0.000000 -0.5442071E-15 120000
-2.428532 -3.420222 0.000000 0.000000 0.000000 030000
0.000000 0.000000 39.46047 50.88769 0.000000 201000
0.000000 0.000000 44.92503 63.97251 0.000000 111000
0.000000 0.000000 24.62299 41.94641 0.000000 021000
26.87556 33.22080 0.000000 0.000000 0.2950176E-13 102000
41.20143 55.84502 0.000000 0.000000 -0.1074050E-13 012000
0.000000 0.000000 -39.97053 -97.22287 0.000000 003000
0.000000 0.000000 21.56656 27.15591 0.000000 200100
0.000000 0.000000 25.13783 36.62275 0.000000 110100
0.000000 0.000000 17.11116 29.54703 0.000000 020100
29.08193 48.08264 0.000000 0.000000 0.4487431E-13 101100
56.42227 81.12632 0.000000 0.000000 -0.2178973E-13 011100
0.000000 0.000000 -68.87387 -200.9709 0.000000 002100

-0.1159274E-15 0.000000 0.000000 0.000000 0.4923260 200001
-0.2781943E-14-0.4909952E-14 0.000000 0.000000 0.1642214 110001
0.6655356E-15 0.7763230E-15 0.000000 0.000000 0.2524218 020001
-0.2643101E-13-0.4295697E-13 0.000000 0.000000 3.829388 002001
7.497146 18.20560 0.000000 0.000000 0.1510141E-13 100200
19.69457 29.28498 0.000000 0.000000 -0.1102911E-13 010200
0.000000 0.000000 -37.98898 -141.6864 0.000000 001200

-0.5441379E-13-0.1018488E-12 0.000000 0.000000 8.142136 001101
-0.2454539 0.3186799 0.000000 0.000000 0.000000 100002
-0.2452654 -0.2454539 0.000000 0.000000 0.000000 010002
0.000000 0.000000 1.639435 0.8273349 0.000000 001002
0.000000 0.000000 -5.482791 -32.98447 0.000000 000300

-0.2705811E-13-0.5399731E-13 0.000000 0.000000 4.433709 000201
0.000000 0.000000 2.527908 1.639435 0.000000 000102
0.000000 0.000000 0.000000 0.000000 0.2497318 000003

------------------------------------------------------------------------------

Table 4.3.6. The extracted Taylor transfer map for the Super-FRS quadrupole. The
third order coe¢ cients of the Taylor transfer map are shown.
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-0.2363760E-14-0.7663791E-14 0.000000 0.000000 -2.827376 400000
0.1297069E-13 0.6407553E-13 0.000000 0.000000 -4.523454 310000
0.5458716E-13 0.1335168E-12 0.000000 0.000000 -3.289673 220000
0.7936041E-13 0.1489082E-12 0.000000 0.000000 -1.611439 130000
0.5246487E-13 0.1048281E-12 0.000000 0.000000 -0.2505324 040000
0.2214878E-12 0.7629676E-12 0.000000 0.000000 -38.00841 202000
-0.9787271E-12-0.1752240E-11 0.000000 0.000000 -39.51802 112000
-0.2419524E-11-0.5075344E-11 0.000000 0.000000 -36.59077 022000

...

0.1620236E-11 0.2544577E-11 0.000000 0.000000 14.11275 000400
0.000000 0.000000 11.19360 66.04237 0.000000 000301
0.4103333E-13 0.6831805E-13 0.000000 0.000000 -7.455121 000202
0.000000 0.000000 -2.549064 -1.544657 0.000000 000103
0.000000 0.000000 0.000000 0.000000 -0.2185405 000004
1.572399 13.97146 0.000000 0.000000 0.6739899E-15 500000
18.97848 46.14729 0.000000 0.000000 0.2043959E-13 410000
46.30717 86.55577 0.000000 0.000000 0.6126932E-13 320000
40.04862 79.90497 0.000000 0.000000 0.7543286E-13 230000
18.17722 39.67904 0.000000 0.000000 0.4902103E-13 140000
2.335429 6.248855 0.000000 0.000000 0.5839144E-14 050000
0.000000 0.000000 52.34289 16.25874 0.000000 401000
0.000000 0.000000 -34.47570 -185.8744 0.000000 311000
0.000000 0.000000 -4.958071 -96.76526 0.000000 221000

...

-7.871988 7.690329 0.000000 0.000000 0.1030780E-12 100202
53.63167 53.02820 0.000000 0.000000 -0.4518421E-13 010202
0.000000 0.000000 -79.35436 -311.0261 0.000000 001202

-0.9529577E-13-0.1265356E-12 0.000000 0.000000 18.30773 001103
-0.7612110E-01 0.1853087 0.000000 0.000000 0.000000 100004
-0.2909687 -0.7612110E-01 0.000000 0.000000 0.000000 010004
0.000000 0.000000 1.494996 0.6985110 0.000000 001004
0.000000 0.000000 -201.7121 -64.37471 0.000000 000500

-0.5328690E-11-0.6519420E-11 0.000000 0.000000 -52.19016 000401
0.000000 0.000000 -15.52484 -102.2664 0.000000 000302

-0.5614135E-13-0.8194864E-13 0.000000 0.000000 11.06390 000203
0.000000 0.000000 2.597161 1.494996 0.000000 000104
0.000000 0.000000 0.000000 0.000000 0.1966990 000005

------------------------------------------------------------------------------

Table 4.3.7. The extracted Taylor transfer map for the Super-FRS quadrupole. Some
of the fourth and �fth order terms of the Taylor transfer map are shown.
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magnet of Super-FRS. We have also extracted the transfer map for the Super-FRS

quadrupole from the magnetic �eld data. In addition, we have also presented the re-

sults of the high order ion-optic simulations for the per-separator, the main-separator

and the energy buncher of the Super-FRS.
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APPENDIX A

Comparison of the GICOSY and

the COSY INFINITY beam

physics codes

Both the GICOSY [19] and the COSY INFINITY [23, 24] codes are widely used

computer codes to analyses and simulate the particle optical systems. The GICOSY

code is a combination of the GIOS [77] and COSY 5.0 [20] codes. The code GICOSY

computes the transfer maps to the �fth order utilizing the magnetic and electric

elements from the code COSY 5.0 [20]. We start out by �rst giving brief description

of the both codes. We then compare the maps computed by both the codes for

important magnetic and electric elements and summarize our �ndings.

TheGICOSY code provides description of the ion optical system using matrices up

to �fth order, dipoles with inhomogenieties, quadrupoles and all kinds of multipoles

both magnetic and electrostatic, precise treatment of the fringing �elds with fringing

�eld integral method or direct tracing of matrix elements using di¤erential algebra use

of variables, �tting with di¤erent methods, plots of the system, trajectories, envelopes,

�elds and of phase space distributions, and others. The GICOSY code creates matrix
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�les of all optical elements that can be used in the Monte-Carlo simulation program

MOCADI [1].

The code COSY INFINITY is an arbitrary order beam dynamics simulation and

analysis code. It allows the study of accelerator lattices, spectrographs, beam lines,

electron microscopes, and many other devices. It can determine high-order maps of

combinations of particle optical elements of arbitrary �eld con�gurations. The ele-

ments can either be based on a large library of existing elements with realistic �eld

con�gurations including fringe �elds, or described in detail by measured data. Analy-

sis options include computation of high-order nonlinearities; analysis of properties of

repetitive motion via chromaticities, normal form analysis, and symplectic tracking;

analysis of single-pass systems resolutions, reconstructive aberration correction, and

consideration of detector errors; and analysis of spin dynamics via computation of

spin maps, spin normal form and spin tracking.

Di¤erences in approach and implementation:

The code COSY INFINITY code can in principle computes the transfer maps for

the particle optical elements to arbitrary order, restricted only by the computational

resources available. The coe¢ cients of the transfer maps are computed to machine

precision using the di¤erential algebraic techniques. In the GICOSY code the transfer

maps for most of the particle optical elements are computed to the maximum of 5th

order. But, for some of the optical elements the transfer maps are only computed to

lower orders. The GICOSY code uses TPSA [7] package to compute the composition

of the maps and other operations. However, the coe¢ cients of a transfer map for an

individual particle optical element is computed using explicit formulas. The constants

appearing in these formulas were entered to only ten digit precision. Hence, the

overall accuracy of the maps computed using these coe¢ cients can only be in the

order � 10�10. We expect to see di¤erences of this magnitude in our comparison of

the transfer maps generated using the GICOSY and the COSY INFINITY codes.
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Parameters GICOSY and COSY INFINITY
Order of computation 5
Fringe Fields O¤
Output Coordinates Symplectic coordinates

with Energy as coordinates
Scaling Scaled in time

Natural Constants

amu = 1:6605402� 10�27 kg
e0 = 1:6021773349� 10�19C
C0 = 2:99792458� 108ms�1
amu = 931:4943307MeV
� = 3:141592653589793

Table A.0.1. System parameters used for the computation of the transfer maps.

Comparison of maps for important particle optical elements:

To compare the equivalent particle optical elements in the GICOSY and the COSY

INFINITY codes, we look at the di¤erence of the maps computed using both the

codes. These maps are computed to the 5th order, the maximum order supported

by the GICOSY code. It would be impractical and also of little use to mention all

the coe¢ cients of this di¤erence map and study each coe¢ cient separately. For the

purpose of comparison of the maps it would be more useful and practical to consider

the RMS average (�5
th
rms) of the coe¢ cients of this di¤erence map. This quantity

would clearly highlight the di¤erences in the maps, if any. In an ideal case where the

equivalent particle optical elements in both codes agree perfectly for all the coe¢ cients

of the di¤erence map, the RMS average (�5
th
rms) will be of magnitude � 10�10.

Prior to computing the transfer maps all the system parameters are adjusted to

re�ect same setting in both the codes. These parameters are listed in Table A.0.1.

The GICOSY code was run with computation mode 1, in which the transfer matrixes

of the optical elements are calculated by routines generated by the program Hamilton

[26]. Where as the COSY INFINITY code was run with default settings.

Table A.0.2 shows the result of the comparison of drift, magnetic and electric

particle optical elements. The �rst column shows the particle optical element. The

second column shows the di¤erence between the GICOSY and the COSY INFINITY

codes for the 5th order computation of the transfer map. And, the third column
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provides comment about the observed di¤erence.

The transfer maps for many of the elements in the GICOSY and COSY INFINITY

codes are same. But, for some we notice that the maps agree to only lower orders,

suggesting that in the GICOSY code these elements were implemented to lower orders.

From Table A.0.2 we see that electric hexapole is implemented to the fourth order in

the GICOSY code. And, the electric quadrupole and the magnetic multipole elements

are implemented to third order in the GICOSY code. And, the magnetic sector is

implemented to only second order in the GICOSY code. Also, it can be seen clearly

from Table A.0.2 that the description of the electric sector and electric multipole

elements are not same in the GICOSY and the COSY INFINITY codes. Further

analysis is needed to �nd the possible reasons for this di¤erence. Both the GICOSY

and the COSY INFINITY codes provide several options for specifying the fringe �eld

for the magnets. But, no options were found that would provide exactly the same

description of fringe �elds.
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Particle Optical
Elements �5

th
rms

Comments

Drift 2:74� 10�12 Identical to 5th order
Magnetic Elements
Dipole 2:21� 10�10 Identical to 5th order
Magnetic Sector 3:10� 10�01 Identical to 2nd order
Quadrupole 3:08� 10�11 Identical to 5th order
Hexapole/Sextupole 2:23� 10�11 Identical to 5th order
Octupole 7:43� 10�12 Identical to 5th order
DecaPole 9:05� 10�09 Identical to 5th order
Duodecapole 2:24� 10�07 Some di¤erences
Multipole 1:86� 10�01 Identical to 3rd order
Electric Elements
Electric Sector 3:19� 10�01 Not Identical
Quadrupole 1:54� 10�01 Identical to 3rd order
Hexapole/Sextupole 6:93� 10�02 Identical to 4th order
Octupole 2:75� 10�12 Identical to 5th order
DecaPole 7:03� 10�10 Identical to 5th order
Duodecapole 5:66� 10�11 Identical to 5th order
Multipole 722:79 Not Identical

Table A.0.2. The �rst column shows the partical optical element. The column 2
shows the RMS average of the coe¢ cients of the di¤erence map between GICO and
COSY INFINITY for the 5th order computation. And the third column provides
comments about the observed di¤erence.
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APPENDIX B

The code converter

The converter program is based on the current release of the GICOSY code [19] (as of

Sept. 2005) and the COSY INFINITY version 8.1 [23, 24] code. The converter code

is implemented using the Perl programming language. The important beamline ele-

ments are translated into the respective elements in the code COSY INFINITY; these

include drifts, multipoles, superimposed multipoles, and bends. Table B.0.1 shows

the equivalent COSY INFINITY procedure calls for the important GICOSY particle

optical elements. Some elements supported by the GICOSY code are translated to

drifts or commented out and may have to be adjusted manually. All comments in

the GICOSY code are converted to comments in the COSY INFINITY code. The

GICOSY code does not require the name and size of the variables to be declared. On

the other hand, in the code COSY INFINITY needs all the variables to be declared.

In the current converter most of the variable name are extracted from the GICOSY

code and are declared in the converted COSY INFINITY code. The loops and �tting

routines available in the GICOSY code are commented out in the converted COSY

INFINITY code. These have to be manually converted to the equivalent COSY IN-

FINITY code.
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GICOSY Command COSY Command
C O var1 ; OV var1 3 1;
S S ; UM ;
R P var1 var2 var3 ; RP var1 var2�PARA(1) var3;
D L var1 ; DL var1 ;
Magnetic Elements
M Q var1 ... var3 ; MQ var1 ... var3 ;
M H var1 ... var3 ; MH var1 ... var3 ;
M O var1 ... var3 ; MO var1 ... var3 ;
M D var1 ... var3 ; MD var1 ... var3 ;
M Z var1 ... var3 ; MZ var1 ... var3 ;
M M var1 ... var7 ; M5 var1 ... var7 ;
M S var1 ... var8 ; MS var1 ... var8 ;
F F var1 ... var3 ;
M S var1 ... var3 ; DI var1 ... VAR5 ;
Electric Elements
E Q var1 ... var3 ; EQ var1 ... var3 ;
E H var1 ... var3 ; EH var1 ... var3 ;
E O var1 ... var3 ; EO var1 ... var3 ;
E D var1 ... var3 ; ED var1 ... var3 ;
E Z var1 ... var3 ; EZ var1 ... var3 ;
E M var1 ... var7 ; E5 var1 ... var7 ;
E S var1 ... var8 ; ES var1 ... var8 ;

P M var1 ; PM 6 ;
P A var1 ; PM 6 ;
P N var1 ; PA 6 ;
P S var1.; WRITE 6 var1 ;

Table B.0.1. The table shows the equivalent COSY INFINITY procedure calls for
the important GICO particle optical elements.
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APPENDIX C

New COSY INFINITY tools for

beam physics simulations

For the convenience of presenting and analyzing the spectrometer simulation results

the following tools have been implemented in COSY INFINITY:

1. The beam pro�le generator: This would set the beam pro�le to either an elliptic

or a rectangular shape, which can then be used for phase space plot and the

transmission plot. An elliptic or a rectangular distribution of the particles is

generated using the pseudo random number generator available in Fortran 77.

2. The phase space plot: This can be used to plot the phase space by choosing

x-a or y-b. In addition this can also be used to plot between any two particle

optical coordinates.

3. The transmission plot: This tool launches a beam of 1000 randomly chosen

particles and looks at transmission through the beam line. The loss comes from

the limited aperture of the elements. Final coordinates after each element are

computed and compared with the aperture of the element. If the aperture is

smaller then the particle coordinates the particle is considered lost. This tool
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Figure C.0.1. The x-a phase space plots at the dispersive focal plane PF2 for a beam
of 40 mm mrad and three di¤erent momenta of �p=p = �2:5 %. The plot (a) shows
the phase space before second order aberration corrections, and (b) shows the phase
space after second order aberration corrections.
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Figure C.0.2. Ion-optic transmisson plot for the Super-FRS high energy branch.

can be modi�ed to include slits and other elements that in�uence the trans-

mission in a trivial manner. All transmission losses come from purely particle

optical e¤ects and is not suitable for modeling reaction products. Example of

transmission plot for the Super-FRS high energy branch is shown in the Figure

C.0.2.

4. Beam envelope and matrix element plots: This plots the beam envelope and a

matrix element versus the length along the optical axis. Figure 4.3.3 shows an

example of the beam envelope and the matrix element plot.

5. MOCADI input. This tool generates the COSY INFINITY transfer map output

in the GICOSY output format. This can then be used to create input for the

Monte Carlo simulation code MOCADI. The input �le for MOCADI is generated

using the GICOSY and transfers maps from the COSY INFINITY.
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