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ABSTRACT
It is reviewed how transfer maps of arbitrary order can be calculated in a convenient way using Differential Algebraic
( DA) Techniques. Such high-order maps are of use for high-precision optical systems, as well as for the case of
repetitive particle accelerators, where nonlinear effects often have a tendency to build up over many turns.

It is shown how the methods can be extended to also allow a rigorous treatment of the Lagrange remainder term
of the Taylor expansion. The methods can be applied for the estimation of the effects going beyond the aberration
order; it is also for the study of the repetitive motion where, leaning on ideas of Lyapunov, Nekhoroshev and others,
it for the first time allows a rigorous determination of guaranteed particle survival times.

Keywords: 1ansfer map, High order aberrations, Differential Algebras, Truncated Power Series Algebra, Remainder-
enhanced Differential Algebras, Taylor model, COSY INFINITY, Verified integration

1. MAP COMPUTATION
The effect of an optical system is described by the transfer map, which relates final conditions to initial conditions
z and possibly system parameters ö via

if =M(2).
Motion in optical systems is dominated by linear effects, and because of this the map is often Taylor-expanded; the
expansion coefficients have a practical meaning, as they describe the aberrations of the system under consideration.

The treatment of the nonlinear effects could be unified to all orders by the differential algebraic method."2 It
is based on the observation that for any functional dependence on the computer, it is possible to determine the
Taylor expansion of the function in a very convenient way by building up the final Taylor expansion step by step
via the respective arithmetic operations. The knowledge of the Taylor expansions of summands or factors allows the
determination of the Taylor expansion of the sum or product; hence letting T denote the process of Taylor expansion
to a given order n, it is possible to close the diagrams

f,g T F,G f,g T F,G

+,- I .,/
I I '® (1)

I T
>

FG fg T FG
with the introduction of suitable arithmetic operations , e as well as , 0. The resulting structure, together with
the multiplication with reals, forms an algebra, the so-called Truncated Power Series Algebra TPSA.3'4 It allows the
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convenient computation of the Taylor expansion to any order of a functional dependence that can be represented in
a computer environment.

In this vein, the computation oftransfer maps can be performed by taking a conventional integrator that integrates
the equations of motion, and perform all of its arithmetic in TPSA. Practically straightforward, care must be taken
only to adjust the step size in the properly, since a step size that was sufficiently small to integrate particles is usually
not sufficiently small to obtain higher aberrations accurately.

While robust and easy to use, the main drawback of the method is its efficiency. Significant improvements of
several orders of magnitude in speed can be obtained by custom-made integrators.2 These are based on augmenting
TPSA by the derivation operation 0, which naturally exists on function spaces. So we have an additional commuting
diagram

f T F

8,8-'
I 8o''

(2)

af,a-'f T

and the resulting structure becomes a differential algebra.5'1 The integrators based on the differential algebraic
derivation are of arbitrary order, and to obtain high precision, in practice6'7 usually one utilizes large steps and
orders in the range of 25 through 35.

2. TREATMENT OF REMAINDERS OF MAP BY RDA METHODS
Recently it was realized5'8'9 that not only is it possible to obtain Taylor maps of any functional relationship, but that
one can even obtain rigorous bounds on the remainder terms. This is convenient for many practical applications,
as it provides an estimate about the accuracy of the map of the given order; it can also be used for the estimation
of the effect of measurement uncertainties.10 Furthermore, for applications demanding any kind of rigor, it is even
essential. One important case in the field of optics is the estimation of long-term stability described below.

Interval methods have a long history of providing rigorous statements based on computations. The idea is to
represent all numbers on a computer by including them in an interval. By rounding down for lower bounds and up
for upper bounds, rigorous bounds for sums and products can be found, and thus the diagrams in eq. (1) can be
made to commute. Similarly, intervals can be used to represent an extended domain of numbers.

However, in practice, interval methods have some severe disadvantages, which in certain cases even make the
mere interval method useless for calculation of complicated functions: The width of resulting intervals scales with
the width of original intervals; and a blow-up occurs in extended calculations, which can be seen in the simple
example, [a, b] — [a, b] = [a — b, b — a] [0, 0]. Furthermore, a difficulty exists in case of multiple dimensions d with
n sampling points, because computational expense scales with

The new approach presented here, the Remainder-enhanced Differential Algebraic (RDA) method, provides a
remedy to these disadvantages of interval computations.8

A C°° function f : [d C RV R can be expressed by the n-th order Taylor polynomial F, expanded around
the reference point io and a remainder as f(s) = P( — n(x — Let the interval I, be such that
V±* E [a, b], e(a — o) E In. Then

VE[O,b],
Because of the special form of the Taylor remainder term ,in practice usually the remainder decreases as 01n+1
Hence, if — is chosen to be small, the interval remainder bound I, can become very small. We say a pair
(Pa, I) is an n-th order Taylor model of f.

Having introduced Taylor models, the question is now how to make the diagrams in eq. (1) commute. This
requires methods to determine Taylor models for sums and products from those of the summands or factors.

187

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/30/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Let the functions f, g : {d C R' R have Taylor models (P,1, (P,g, In,g). Then an n-th order Taylor
model for f + g is obviously obtained as

(P,f + Pn,g, Iii,f +
An n-th order Taylor model for f g is obtained as

(P,1.9, where

In,f.f3 = B(P,1 •P — Pn,i.g) + B(P,f)
+B(P,9) . + .

with B(P) denoting a bound of the polynomial P.

The key idea of computing Taylor models for intrinsic functions is to employ Taylor's theorem of the function
under consideration; but for reasons of space, we will restrict ourselves from discussing details here.

For questions of integration of ODEs, it is also necessary to study the differential algebraic operators 5 and 0.
Given an n-th order Taylor model (Ps, I) of a function f, we can determine a Taylor model for the indefinite integral
__1f = f f dx with respect to variable i. The operator DT'on the space of Taylor models is defined as

OT'(P, I)

= (Lxi P_1dx , (B(P — P1)+ I) . B(x)).

Similar to the case of the Differential Algebra on the set of Truncated Power Series, and following one of the main
thrusts of the theory of Differential Algebras, we will use these for the solution of the initial value problem

f(t) = (i?(t),t), (3)

where P is continuous and bounded. We are interested in both the case of a specific initial condition f, as well as
the case in which the initial condition is a variable, in which case our interest is in the flow of the differential
equation

i?(t) = M(,t).

3. VERIFIED INTEGRATION WITH TAYLOR MODELS
Our goal is now to determine a Taylor model for the flow M(, t) of the differential equation (3). The remainder
bound should be fully rigorous for all initial conditions and times t that satisfy

j; E {b1,i2} 8, t E [to,t1].

In particular, itself may be a Taylor model, as long as its range is known to lie in 1.

Since conventional numerical integrators do not provide rigorous estimates for the integration error but only
approximate estimates, the brute force method of utilizing a numerical integrator and viewing it as a functional
dependence cannot be applied. Rather, we have to start from scratch from the foundations of the theory of differential
equations." To this end, we re-write the differential equation as an integral equation

(t) = + L P((t'), t') dt',

noting that the initial value problem has a (unique) solution if and only if the corresponding integral equation has
a (unique) solution. Now we introduce the operator A : C°[to,t,] -4 C°[to, t1] on the space of continuous functions
from [to, t,] to R' via

A (1) (t) = + f (1(e) ,e) dt'.
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Then the problem of finding a solution to the differential equation is transformed to a fixed-point problem on the
space of continuous functions

,p= A(i?).

We will now apply Schauder's fixed point theorem to rigorously obtain a Taylor model for the flow.

Theorem (Schauder) : Let A be a continuous operator on the Banach Space X. Let M C X be compact and
convex, and let A(M) C M. Then A has a fixed point in M, i. e. there is an f E M such that A(?) =

In our specific case, X = d°{t0,t1], the Banach space of continuous functions on [to, t1], equipped with the
maximum norm, and the integral operator A is continuous on X. The process to apply Schauder's theorem consists
of the following steps:

. Determine a family Y of subsets of X, the Schauder Candidate Sets. Each set in Y should be compact and
convex, it should be contained in a suitable Taylor model, and its image under A should be in Y.

. Using differential algebraic methods on Taylor models, determine an initial set M0 Y that satisfies the
inclusion property A(Mo) C M0. Then all requirements of Schauder's theorem are satisfied, and M0 contains
a solution.

. Iteratively generate the sequence M =A(M_1) for i = 1, 2, 3 Each M also satisfies A(M) C M, and we
have M1 3 M2 j .... We continue the iteration until the size stabilizes sufficiently.

For the first step, it is necessary to establish a family of sets Y from which to draw candidates for M0. Let (P + I)
be a Taylor model depending on time as well as the initial condition i . Then we define the associated set Mp1 as
follows:

Mp1 C d°[to, tiJ; and for i? E Mp:
i?(to) =
(t) E P + fVt E [to, t1] W

V(t') — ?(t") I � kit' — t"
I Vt',t" E [to , t1] Vi;b.

In the last condition, k is a bound for 1, which exists because P is continuous and the solutions can cover only
a finite range over the interval [to, t1]. The last condition means that all E Mp are uniformly Lipschitz with
constant k. Define the family of candidate sets Y as

Y =
P+I

Let M E Y. Then M is convex, because , E M c + (1 —o)2 E M Va E [0, 1].

Furthermore, M is compact, i.e. any sequence in M has a clusterpoint in M. To see this, let () be a sequence
of functions in M. Then by definition of M, () is uniformly Lipschitz, and thus uniformly equicontinuous. (x) is
also uniformly bounded, and hence according to the Ascoli-Arzela Theorem, has a uniformly convergent subsequence.
Since the are continuous, so is the limit K of this subsequence, and since M is closed, the limit & is in M.

Finally, A maps Y into itself, and the uniform Lipschitzness follows because 1 is bounded by k.

The only remaining requirements for Schauder's theorem is to find a Taylor model P + I such that

This condition can be checked computationally using the differential algebraic operations on the set of Taylor models.
To succeed with the inclusion requirement depends on finding suitable choice for P and I. Furthermore, it is desirable
to have I tight. Both benefit from the choice of a polynomial P that is already "close" to the true solution of the
ODE.
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Attempt sets M* f the form

M* Mp*+. , where fi* t),

the n-th order Taylor expansion of the flow of the ODE. It is to be expected that J can be chosen smaller and
smaller as the order n of P increases.

This requires the knowledge of the n-th order flow t), including time dependence. It can be obtained by
iterating in conventional DA. To this end, one chooses an initial function M( t) = I, where I is the identity
function, and then iteratively determines

M1 A(M).
In case P is origin preserving, this process converges to the exact DA result M in exactly n steps.

Now try to find f such that
M+I* cA(M+I*),

the Schauder inclusion requirement. The suitable choice for I requires experimenting, but is greatly simplified by
the observation

1* 3 110) where

M(i,t) + 110) A(M(i, t) + [d iJ).

Evaluating the right hand side in the RDA yields a lower bound for f, and a benchmark for the size to be expected.
Now iteratively try

11k) 2k 110),

until a computational inclusion is found, i.e.

A(M(f,t) + 11k)) c M(f,t) + I1c).

Once a computational inclusionhas been determined, the solution of the ODE is known to be contained in the
Taylor model M(i, t) + . Set 1(1) = I1') ; since the solution is a fixed point of A, it is even contained in

Ac(M(, t) + ti)) for all k.

Furthermore, the iterates of A are shrinking in size, i.e.

A'(M(i, t) + Ji)) c Ak_l(M(, t) + Ii)) Vk.
So the width of the remainder bound of the flow can be decreased by iteratively determining

M( t) + 1k) A(M( t) + '(k-i)),
until no further significant decrease in size is achieved. As a result,

M( t) + I(k)
is the desired sharp inclusion of the flow of the original ODE.

As an example for the practical use of the method, we analyze the motion of a charged particle in a homogeneous
dipole magnet. The flow of the differential equation over a region of initial conditions is determined. The integration
was carried out through the dipole with the deflection radius of im over a deflection angle of 36 degrees with a fixed
step size of 4 degrees. The initial conditions of four phase space variables, x, a =px/p0, J and b = py/p0, are within
the domain intervals

[—.02, .02] x {—.02, .02] x {—.02, .02] x {—.02, .02],

and the Taylor polynomial describing the dependence of the four final coordinate values on the four initial coordinate
values was determined. The order in time and initial conditions was chosen to be 12, and the step size was estimated
so as to ascertain an overall accuracy below ion; since no automatic step size control was utilized, the estimate
proved conservative and the actual resulting error was somewhat lower:
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[-0 .4496880372277553E-09 ,+o .3888593417126594E-09]
[-0 . 1301070602141642E-09 ,+0 . 1337099965985420E-09]
[-0 . 341707980563'7740E- 10 ,+0 .3417079805637'140E-10]
[-0 . 0000000000000000E+00 ,+0 .0000000000000000E+00].

The resulting Taylor polynomials describing the dependence of final on initial coordinates were compared with
those obtained by our particle optics code COSY INFINITY,7'6 and agreement was found. A further check was to
compare a large collection of rays through the dipole obtained by COSY INFINITY with ones through the results
of the flow calculated by the verified integrator. For all rays studied, the difference between the final coordinates
determined geometrically by the dipole element in COSY INFINITY and those predicted by the twelfth order Taylor
polynomial were within the calculated remainder bounds.

4. LONG-TERM STABILITY ESTIMATES
The RDA methods described in this paper can be used for the rigorous estimate of long-term stability of motion
in repetitive systems. The method is based on the search of families of functions that are almost invariants of the
motion, and the rigorous determination of the defect from invariance. It is commonly used in theoretical arguments
about stability (see for example,'2 but in practice it presents a significant challenge to make the necessary estimates.
Within a computer environment, using the RDA methods these estimates can be made sharply and economically.

As an example, we made a comparison computation to show how the new method works to obtain a rigorous
bound. The family of nearly-invariant functions were obtained with normal form techniques,2 and we used RDA
techniques to obtain a bound within the domain intervals [.04, .06] in each of the six coordinate variables. To get
the rough idea of the actual size, we made a real number scan at 1000 random points and at 36points at edges and
center in each dimension. The bound of values by the scan is

[- .3121185581961283E-05,0 .4212429306152572E-04].

Themere interval computation gave the bound

[-4.471335284762441 , 4.807741733133240 ],

which is rigorous but quite useless because of a severe blow-up. Now, the remainder bound carried by the sixth order
Taylor model computation is

[— . 5358533718862318E-05 , 0. 53588 14729171932E-05]

and it added up to a total bound of

3466186723563667E-04,0.5352931790602934E-04].

The comparison with the estimate by the scan shows the practical strength of the RDA method.
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